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Abstract: An interaction network is a collection of agents with pairwise
connections described by an graph. Our objective is to maximize the pa-
yo� of the agents simultaneously. In the classical strategic complements
or substitutes setup, the objective function has a linear and a quadratic
part, and maximized under linear constraints.

To address this task, we use quadratic objective functions on linear
or quadratic constraints. We will show how existing results of combi-
natorial graph theory and spectral clustering can be used to solve the
optimization problems, where solutions are closely related to dominant
sets or spectral clusters. Our primary focus is on the graph and show how
certain model parameters can be built into the edge-weight matrix to get
a new objective, thus modifying the interactions between the agents.
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1 Introduction

We consider edge-weighted graphs and extend existing results on strategic interacti-
ons [1, 9] to them. In the classical papers there are unweighted interactions between
the agents, and their actions, we are looking for, are nonnegative real numbers. Ho-
wever, without exact meaning, the scaling and the actual values of these actions
do not carry too much information for the physical or economic features of them.
In fact, they are rather compared with respect to the agents, and in this way, give
important information about agent groups that follow similar strategies, and hence
about the overall structure of the network from the point of view of the underlying
activity towards which the strategies are considered.

Here we rather investigate the problem from the point of the view of the graph.
Based on the spectral properties of a graph based matrix, we are able to tell how
many and what kind of strategies can be optimal for the agents, and �nd agent
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groups following similar strategies. Since the agents form a social network, the
optimal or nearly optimal strategies should inevitably be adapted to the structure
of the underlying graph. Together with clustering, we also use evaluation of the
vertices and edges, which give optima of potential functions, sometimes related to
eigenvectors or weighted characteristic vectors of dominant sets.

The structure of the paper is as follows. In Section 2 we introduce the basic noti-
ons, and the classical models of strategic complements and substitutes. In Section 3
we consider quadratic objective function over linear constraints. If we optimize over
the standard simplex, we can use the results of Motzkin and Straus [13] to unweighted
and those of Pavan and Pelillo [16] to edge-weighted graphs. In this way, unweighted
and weighted indicator vectors of maximal cliques and dominant sets enter into the
solution. In Section 4 quadratic constraints are considered, under which our qua-
dratic optimization has an explicit solution based on eigenvalues and eigenvectors of
graph based matrices. Here we use multiple strategies and spectral clustering tools
of [4]. We will show that the existence of large positive eigenvalues makes rise to
a complementary, whereas that of outstanding negative eigenvalues to a substitute
strategy. Some coordinates of the multi-dimensional strategies of some agents can be
negative here, but with appropriate rotations the strategy vectors can be substituted
by vectors close to weighted indicator vectors of agent groups. Simulation results
on generalized random graphs are also presented. We close the paper with a short
discussion in Section 5.

2 Preliminaries

2.1 Notation

Let G = (V,W) be edge-weighted graph with vertex-set V = {1, . . . , n} and n × n
symmetric edge-weight matrix W of nonnegative entries and zero diagonal. The
vertices correspond to the agents, while the weights represent their pairwise similarity
or connectedness. The diagonal is zero, as there are not self-loops at the moment.

Let di =
∑n

j=1wij be the generalized degree of vertex i; the degrees are sometimes

collected in the degree-vector d = (d1, . . . , dn)T or in the diagonal degree-matrix D =
diag (d). In the edge-weighted case we assume that

∑n
i=1 di = 1, since the normalized

edge-weight matrix, D−1/2WD−1/2, is not a�ected by this normalization. In the
unweighted case, W has 1-0 entries depending on whether two agents are connected
or not, so it is the usual adjacency matrix of a simple graph, and is denoted by A.



Strategic interactions 3

2.2 Game of strategic complements

Based on [1, 9], the strategic complements setup is the following. We generalize their
model to an edge-weighted graph G = (V,W); the agents correspond to the vertices
and they act with continuous strategies: xi ≥ 0 (i = 1, . . . , n), x := (x1, . . . , xn)T .
The payo� of player i is

ui(x) = αxi −
1

2
x2
i + φ

n∑
j=1

wijxixj ,

where α and φ are given positive constants. The �rst term is the bene�t of agent i
using strategy xi, the second is the cost of agent i, and the last term is the utility
(under strategic complementarity in e�orts), i.e., the payo� due to his/her collabo-
ration with the neighbors (the neighbors of i are vertices of the set {j : wij > 0},
and they are connected to i with strengths proportional to the edge-weights). The
players are equivalent, only their network positions di�er.

Agents want to maximize their payo�s at the same time, but they can rule only
their own strategies. Therefore, we have to maximize ui(x) with respect to xi for
i = 1, . . . , n. Via

∂ui(x)

∂xi
= α− xi + φ

n∑
j=1

wijxj = 0, i = 1, . . . , n,

for the optimal x∗ we have x∗ = α1 + φWx∗, or equivalently, (I − φW)x∗ = α1,
where 1 is the all 1's vector, and the vectors are column vectors. Consequently,

x∗ = α(I− φW)−11 (2.1)

is a unique and inner solution (equilibrium) if I − φW is positive de�nite, see also
the forthcoming potential function view of (2.2). Denoting by λ1 ≥ · · · ≥ λn the
eigenvalues of W, this condition holds if and only if 1 − ‖W‖ > 0, or equivalently,
φ < 1

λ1
.

Here we used that W is a Frobenius type matrix, therefore λ1 is the maximum
absolute value eigenvalue of W with eigenvector of nonnegative coordinates. Since
tr (W) = 0, λn = λmin(W) < 0 and |λn| < λ1. In this case, the following expansion
works:

(I− φW)−1 =
∞∑
k=0

φkWk = I + φW + φ2W2 + . . . .

Consequently, when α > 0, then

x∗ = α(
∞∑
k=0

φkWk)1.
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Note that the ith coordinate ofW1 is di, whereas the ith coordinate ofW
k1, denoted

by di(k,W), is the sum of the positive edge-weights of walks of length k emanating
from vertex i; in particular, di(1,W) = di. Hence, all the coordinates of x∗ are
positive:

x∗i = α

(
1 +

∞∑
k=1

φkdi(k,W)

)
, i = 1, . . . , n.

When W is the usual 0-1 adjacency matrix A of an unweighted graph, then
di(k,A) is the number of walks of length k emanating from i, and 1+

∑∞
k=1 φ

kdi(k,A)
is called the Katz�Bonacich centrality of vertex i. Therefore, x∗i ≥ α, and equality
holds if and only if φ = 0. Observe that now di is the usual degree of vertex i,
and as a consequence of the Frobenius theory, dmin ≤ λ1 ≤ dmax, therefore λ1 ≥ 1
and φ < 1. The closer φ to 0, the more rapidly φk decreases, and the shorter walks
dominate this centrality.

If α = 0 (no individual bene�t, the payo� is only due to collaboration with ot-
hers), then x∗i = φ

∑n
j=1wijx

∗
j , and the payo� is maximal when φ is the largest

eigenvalue λ1 of W and x∗ is the corresponding eigenvector (with nonnegative coor-
dinates, due to the Frobenius theory).

An equivalent way of reasoning is via potential function (the sum of the utilities
corrected by a term which takes into account the network extremalities exerted by
each player) as follows:

P (x) =

n∑
i=1

ui(x)− φ

2

n∑
i=1

n∑
j=1

wijxixj = αxT1− 1

2
xT (I− φW)x. (2.2)

It is easy to verify that ∂ui(x)
∂xi

= ∂P (x)
∂xi

for i = 1, . . . , n. The above P (x) has a
unique interior maximum if P is strictly concave, i.e., −(I−φW) is negative de�nite.
Equivalently, I − φW is positive de�nite, for which fact a necessary and su�cient
condition is that φλ1 < 1. After di�erentiating P with respect to x, we get back
(2.1).

2.3 Game of strategic substitutes

This type of an interaction, de�ned in [1], is computationally less tractable, but indi-
cates real competition between the agents, where agents want to use their neighbors'
bene�t instead of their own actions; in particular, free-riders. We adapt the setup
of [9] to edge-weighted graphs, with the strategies xi ≥ 0 (i = 1, . . . , n) and given
positive parameters α, δ. In view of this model, the payo� (utility) of player i is

ui(x) = αxi −
1

2
x2
i − δ

n∑
j=1

wijxixj ,
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where the �rst term is the bene�t of agent i using strategy xi, the second is the cost
of agent i, and the last term is his/her utility (under strategic substitute in e�orts),
i.e., the payo� due to the competition with the neighbors. Here e�orts are decreased
by the actions of the neighbors; for example, one do not want to borrow a book if
their friends have it, or farmers do not want to plant the same crop as their neighbors
do.

Agents again want to maximize their payo�s ui(x) with respect to xi at the same
time (i = 1, . . . , n). This is equivalent to maximizing the potential function:

P (x) =
n∑
i=1

ui(x) +
δ

2

n∑
i=1

n∑
j=1

wijxixj = αxT1− 1

2
xT (I + δW)x.

Via di�erentiation, we get

∂P (x)

∂xi
= α− xi − δ

n∑
j=1

aijxj = 0, i = 1, . . . , n.

This yields the system of equations

x∗ = α1− δWx∗ if x∗ ≥ 0. (2.3)

P has a unique interior maximum if it is strictly concave, i.e., −(I+δW) (the Hessian
of P ) is negative de�nite. Equivalently, I + δW is positive de�nite, for which fact
a necessary and su�cient condition is that δ < −1

λn
= 1
|λn| . However, we have to

ensure that the coordinates of the optimizing x∗ are nonnegative. Hence we get the
quadratic programming task:

maximize P (x) = αxT1− 1

2
xT (I + δW)x

subject to x ≥ 0,

where x ≥ 0 means that xi ≥ 0, i = 1, . . . , n. In accord with [2] and Lemma 1 of [9]:
x is a Nash equilibrium of the substitute game if and only if x satis�es the following
Kuhn�Tucker conditions:

∂P

∂xi
= 0 and xi > 0 or

∂P

∂xi
≤ 0 and xi = 0.

By Proposition 1 of [9], in the Nash equilibrium, there will be active agents with
xi > 0 (i ∈ U), and inactive ones with xi = 0 (i ∈ U); such an x is called corner

solution with support U . Then the above conditions are equivalent to

(IU + δWU )xU = α1 and δWU,UxU ≥ α1,
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where the set in the lower index indicates the corresponding segment of the vector
or matrix. The authors of [9] recommend maximizing over all subsets U , but it
is computationally intractable. In Section 3 we will show how corner solutions are
obtained, at least approximately, by using iterative algorithms.

In [9], it is also shown how partial transformations between substitutes and com-
plements can be applied when δ is `small'. Based on this, they distinguish between
di�erent types of solutions according to the range of δ. Actually, local substitutes
can be changed into global substitutes and local complements in the following way;
we adapt their reasoning to an edge-weighted graph in the case when 0 ≤ wij ≤ 1
(i 6= j). Let G = (V,W) denote the complementary graph of G = (V,W) with edge-
weights w̄ij = 1 − wij for i 6= j and w̄ii = 0 for i = 1, . . . , n. If C is the adjacency
matrix of the complete graph Kn, i.e., C = 11T − I, then W = C−W. Therefore,

ui(x) = αxi −
1

2
x2
i − δ

n∑
j=1

[1− (1− wij)]xixj

= αxi −
1

2
x2
i − δ

n∑
j=1

xixj + δ
n∑
j=1

(1− wij)xixj

= αxi −
1

2
x2
i − δ

n∑
j=1

xixj + δ
∑
j 6=i

(1− wij)xixj + δx2
i

= αxi −
1

2
x2
i − δ

n∑
j=1

xixj + δ

n∑
j=1

w̄ijxixj + δx2
i

= αxi −
1

2
(1− 2δ)x2

i − δ
n∑
j=1

xixj + δ
n∑
j=1

w̄ijxixj ,

(2.4)

which is a game of global substitutes and local complements investigated by [1]. Here
the complementarities are realized via G.

In view of Theorem 1 of [1], there is a unique equilibrium if 1− δ > δλmax(W).
Hence,

δ <
1

1 + λmax(W)
. (2.5)

For �nding the unique equilibrium x∗, the constant of the Katz-Bonacich centrality
is λ∗ = δ

1−δ . Now, let us solve (2.3), i.e., α1 − x − δWx = 0. Making use of the
previous transformations,

α1− x− δCx + δ(C−W)x = α1− δIx− (1− δ)x− δCx + δWx = 0

and

α1− δ(I + C)x− (1− δ)(I− δ

1− δ
W)x = 0.
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We will use that

(I + C)x = (11T )x = (1Tx)1 = x1,

where x = 1Tx =
∑n

i=1 xi. Therefore,

(α− δx)1 = (1− δ)(I− δ

1− δ
W)x,

consequently,

x =
α− δx
1− δ

(I− δ

1− δ
W)−11 =

α− δx
1− δ

y.

The inverse exists under (2.5), and can be expanded like the Katz-Bonacich cen-
trality. However, the right hand side also depends on x through x. To get rid of
this dependence, we introduce y and y =

∑n
i=1 yi. Summing up the coordinates,

x = α−δx
1−δ y, consequently, x = αy

1−δ+δy . This implies that

x =
α− δαy

1−δ+δy
1− δ

y =
α

1− δ + δy
y,

where

y = (I− δ

1− δ
W)−11 =

[ ∞∑
k=0

(
δ

1− δ

)k
W

k

]
1.

Therefore,

x∗i =
α

1− δ + δy

[
1 +

∞∑
k=1

(
δ

1− δ

)k
di(k,W)

]
,

where di(k,W) is the sum of the positive edge-weight of walks of length k emanating
from vertex i of G. Since δ

1−δ < 1 (it decreases with δ), it su�ces to consider the �rst
terms. Consequently, x∗i is `large' if i has `strong' connections in the complement
graph, or equivalently, `weak' connections in the original graph. Hence, it seems
reasonable, that a set close to the maximal independent one carries the leading
strategies.

Summarizing, the following cases of [9] apply in the edge-weighted setup too:

• If δ < 1
1+λmax(W)

, then a unique inner equilibrium exists xi > 0 (i = 1, . . . , n).

• If 1
1+λmax(W)

≤ δ < − 1
λmin(W) , then a unique equilibrium exits which is a

corner or inner point.

• If − 1
λmin(W) ≤ δ < 1, then there are multiple equilibria among those there are

corners. In this case, only corner equilibria can be stable.
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If δ = 1 (see [7, 8], the stable equilibrium is corner: xU = 1, where U is a
maximal independent set of G. Note that the maximal independent sets of G
are the maximal cliques of G, and to �nd them we recommend algorithms in
Section 3.

We remark that the lower range of δ can be made wider and the middle range
1

1+λmax(A)
≤ δ < − 1

λmin(A) narrower by using results of [10, 17], when we have an

unweighted graph G = (V,A) at the beginning. In view of these, we are able to �nd
an edge-weighted graph (V,W) with the same skeleton as G, i.e., wij = 0 whenever
aij = 0, for which λmin(W) is the largest possible. Likewise, for the complementary
graph G = (V,A) we are also able to �nd an edge-weighted graph (V,W), with the
same skeleton as G, for which λmax(W) is the smallest possible. To �nd the optimal
edge-weights, the authors of [10, 11, 17] suggest theory and algorithms. Roughly
speaking, we have to decompose the underlying graph into odd cycles and balanced
bipartite graphs, and assign symmetric evaluations to their vertices, which in turn
give the optimal evaluations of the edges.

3 Optimizing over the unit simplex

3.1 Maximal cliques and interactions

First, let us consider the simplest case of an edge-weighted graph G = (V,W) when
the agents have only mutual bene�ts and there are complementarities between them.
Then the utility of agent i is

ui(x) = b
n∑
j=1

wijxixj

with positive normalizing constant b, and we maximize it with respect to xi, the
strategy of agent i, for i = 1, . . . , n over the simplex

S = {xi ≥ 0 (i = 1, . . . , n),

n∑
i=1

xi = 1} = {x ≥ 0, xT1 = 1}.

This is equivalent to the following quadratic programming task:

maximize P (x) =
1

2
bxTWx

subject to x ∈ S.
(3.1)

Apart from the constant b > 0, the quadratic form xTWxmaximizes the cohesiveness
of a cluster of vertices with fuzzy membership vector x ≥ 0 under the simplex



Strategic interactions 9

constraint. With a `small' value of the coordinate xi, vertex i is weakly, while with a
`large' value, it is strongly associated with the cluster. Under cluster we understand
internal homogeneity and external inhomogeneity of the vertices included in it.

Motzkin and Strauss were the �rst to consider this quadratic programming task
for simple graphs as the continuous relaxation of the maximal clique problem. A
clique C ⊂ V (complete subgraph) of the simple graph G = (V,A) is maximal if no
strict superset of C is a clique. A maximal clique C is strictly maximal if no vertex
i external to C has the property that that the enlarged set C ∪ {i} contains a clique
of the size |C|. Maximal cliques can be several (even overlapping), and to �nd all of
them is NP-hard. A maximum clique is a maximal clique with largest cardinality.
The characteristic vector of a vertex-subset U ⊂ V is denoted xU and is de�ned with
the following coordinates: xUi = 1

|U | if i ∈ U and 0 otherwise.

Theorem 3.1 (Motzkin�Strauss theorem as formulated in [6]). Let G = (V,A) be

a simple graph and C ⊂ V . Then (xC)TA(xC) = 1− 1
|C| if and only if C is a clique.

Moreover,

• xC is a strict local maximizer of xTAx over S if and only if C is a strictly

maximal clique.

• xC is a global maximizer of xTAx over S if and only if C is a maximum clique.

In case of an unweighted graph G, Motzkin and Straus [13] further generalized the
maximization problem to what they called non-square-free quadratic forms. Their
theorem solves the problem of maximizing the utility function

ui(x) = dix
2
i +

∑
j∼i

x2
j + bxi

∑
j∼i

xj

with respect to xi (i = 1, . . . , n) over S. Here the �rst term is the bene�t of the
agent i proportional to his/her number of ties (di is the degree of vertex i), the
second term is the sum of the bene�ts of the neighbors, while the last term is the
mutual bene�t due to collaboration multiplied with the constant b > 0. This model
may not be applicable in economy, but in cultural collaborations and co-authorships,
where personal costs are not counted and the agents are glad with the success of their
neighbors, it indeed has rational. Since

ui(x) =
n∑
i=1

n∑
j=1

aij(x
2
i + x2

j + bxixj),

in the potential function context this is equivalent to

maximize P (x) =
1

2
xT (D +

b

2
A)x

subject to x ∈ S,
(3.2)
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where D is the diagonal degree-matrix. The solution is given in [13], and depending
on the relation of dmax and

b
2 , local maxima are again related to characteristic vectors

supported by maximal cliques or vertices having maximal degree.

Theorem 3.2 (Theorem 4 of [13]). Let G = (V,A) be unweighted graph, and let

dmax denote its maximal vertex degree. Then a strict local maximum of (3.2) is the

following:

• If dmax >
b
2 then maxS P (x) = dmax, and the maximum is attained at an x

which is the characteristic vector of a vertex of degree dmax.

• If dmax = b
2 , then maxS P (x) = dmax and the maximum is attained at the

weighted characteristic vector of a complete subgraph, all of whose vertices have

degree dmax.

• If dmax <
b
2 , then maxS P (x) = b

2−
c
2 with 1

c = maxG′
∑

G′(b−2di)
−1, where G′

ranges over the cliques of G; the maximum is attained at an x with coordinates

xi = c
b−2di

for i ∈ G′ and xj = 0 for j /∈ G′.

3.2 Dominant sets and weighted characteristic vectors

Now letG = (V,W) be an edge-weighted graph. We will use the notion of a dominant
set as introduced by Pavan and Pelillo [16] as follows. Let U ⊂ V and j /∈ U . Then

ϕU (i, j) = wij −
1

|U |
∑
l∈S

wil, i ∈ U

is the relative similarity between vertices i and j with respect to the average simila-
rity between vertex i and its neighbors in U , where the second term is the average
weighted degree of i with respect to vertices of U . Note that ϕU (i, j) is positive if the
connection between vertices i and j is stronger than the connection between vertex i
and its neighbors in U , and it is negative, otherwise. Using their relative similarity,
the weight of vertex i with respect to U is de�ned by the following recursive formula:

wU (i) =


1, if |U | = 1∑
l∈U\{i}

ϕU\{i}(l, i)wU\{i}(l), otherwise.

The total weight of U is W (U) =
∑
i∈U

wU (i). The function wU (i) measures the

relative similarity between vertex i and the vertices of U \ {i} with respect to the
overall similarity among the vertices in U \ {i}.
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De�nition 3.3. If W (T ) > 0 for any nonempty T ⊆ U , U ⊆ V , then U is a
dominant set if

• wU (i) > 0, for all i ∈ U ,

• wU∪{i}(i) < 0, for all i /∈ U .

These two conditions correspond to the main properties of a cluster: internal
homogeneity and external inhomogeneity. The �rst condition ensures that vertices in
U are strongly connected to each other, i.e., U induces a strongly connected subgraph,
while the second condition ensures that the set U induces the most strongly connected
subset in G. This de�nition shows that in a dominant set, the overall similarity
among its vertices is higher than the similarity between its vertices and the rest of
the vertices in V . Note that in an unweighted graph (with 0-1 weights) dominant
sets correspond to the strictly maximal cliques. The quadratic programming task

maximize P (x) = xTWx

subject to x ∈ S,
(3.3)

is the generalization of the problem (3.1) and it favors pairs of vertices with simi-
lar coordinates in x that also have strong connection in W. Pavan and Pelillo [16]
characterized the strict local maxima of the above task by means of weighted cha-
racteristic vectors.

De�nition 3.4. The weighted characteristic vector of a set U , also denoted by xU ,
has the following coordinates:

xUi =

{
wU (i)
W (U) , if i ∈ U
0, otherwise.

Note that the weighted characteristic vector satis�es the simplex constrains, and
it also corresponds to a corner solution in Section 2.3.

Theorem 3.5 (Theorem 1 of [16]). Let G = (V,W) be an edge-weighted graph.

• If U is a dominant set of G, then its weighted characteristic vector xU is a

strict local solution of the program (3.3).

• Conversely, if x∗ is a strict local solution of the program (3.3), then its support

σ = {i : x∗i 6= 0} is a dominant set, provided that wσ∪{i}(i) 6= 0 for all i /∈ σ.
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In [15, 16], the authors recommend the so-called replicator dynamics to solve the
problem (3.3). Namely, they used the following iteration:

xi(t+ 1) = xi(t)
(Wx(t))i

x(t)TWx(t)
(3.4)

for i = 1, . . . , n and t = 0, 1, 2, . . . , until convergence. The simplex S is invariant
under the above dynamics, which means that every trajectory starting in S will
remain in S for the eternity. Further, if W is symmetric, the objective function is
strictly increasing along any nonconstant trajectory of (3.4), and its asymptotically
stable points are in one-to-one correspondence to the strict local solutions of (3.3).

To avoid spurious solutions (that are not characteristic vectors), in the unweigh-
ted case (0-1 weights) Bomze et al. [6] suggested the following regularization of (3.1)
with introducing a positive parameter α:

maximize xT (A + αI)x

subject to x ∈ S.
(3.5)

They proved the following.

Theorem 3.6 (Theorem 10 of [6]). Let G = (V,A) be an unweighted graph and

0 < α < 1. Then

• the only strict local maximizers of xT (A+αI)x over S (i.e., the only attracting

stationary points under the replicator dynamics with A+ αI instead of A) are

characteristic vectors xC where C is a maximal clique of G;

• conversely, if C is a maximal clique of G, then xC represents a strict local

maximizer.

Therefore, when selecting an α ∈ (0, 1), e.g., α = 1
2 , all local maximizers of (3.5)

are strict and are in one-to-one correspondence with the characteristic vectors of the
maximal cliques of the unweighted graph G = (V,A).

It is an open question, what kind of regularization is useful when we have an edge-
weighted graph G = (V,W). Since the argmax xTWx is invariant under scaling the
entries of W, we may assume that 0 ≤ wij ≤ 1 (i 6= j). We conjecture that
the regularization with α ∈ (0, 1) will have the same e�ect. Alternatively, without
normalizing W, we could run the dynamics for W + αI, where 0 < α < maxi 6=j wij .

3.3 Interactions and dominant sets

First, let us consider the simplest case when the agents have individual costs and
mutual bene�t based on complementaries between them. The connections between
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the agents is described by the edge-weighted graph G = (V,W). The utility of agent
i is

ui(x) = βxi
∑
j∼i

xj − αx2
i = β

n∑
j=1

wijxixj − αx2
i (3.6)

with positive constants α and β, balancing between the bene�t of agent i due to
collaborations and its individual quadratic cost; further, we maximize it with respect
to xi for i = 1, . . . , n over the simplex S.

In potential function view, (3.6) is equivalent to the following quadratic program-
ming task:

maximize P (x) =
1

2
βxTWx− 1

2
αxT Ix =

1

2
xT (βW − αI)x

subject to x ∈ S.
(3.7)

Using the ideas of [15], the solutions of (3.7) remain the same if the matrix βW−αI
is replaced with βW − αI + κ11T , where κ is an arbitrary real number. Indeed,
κxT11Tx = κ(xT1)2 = κ, since xT1 = 1 due to x ∈ S. In particular, if κ = α, the
resulting matrix has nonnegative entries and zero diagonal. Therefore, Theorem 3.5
is applicable to it, and implies that the strict local maxima of (3.7) are weighted
characteristic vectors of dominant sets for the scaled edge-weight matrix βW +
α(11T−I) having zero diagonal and o�-diagonal entries equal to βwij+α ≥ 0 (i 6= j).
Let us denote by G′ this new edge-weighted graph: G′ = (V, βW + α(11T − I)).

In [15, 16], the authors adapted the replicator dynamics (3.4) to maximize (3.7)
over S. Namely, they recommended the following iteration:

xi(t+ 1) = xi(t)
(βWx(t))i − αxi(t)
x(t)T (βW − αI)x(t)

(3.8)

for i = 1, . . . , n and t = 0, 1, 2, . . . , until convergence.

However, α could basically change the scale that would result in excluding do-
minant sets under a certain size. When α is large, namely α > βλmax(W), then the
regularization term dominates, and the only solution is an x having all positive coor-
dinates, and hence, being the weighted characteristic vector of the whole V . If α gets
smaller, but α > βλmax(WU ), where WU is the edge-weight matrix of the induced
subgraph of G on the vertex-set U ⊂ V , then there is no maximizing x with support
which is the subset or equal to U . Therefore, if one wants to avoid too small clusters,
we select an α according to this rule. Starting with α = β(n − 1) ≥ βλmax(W),
we can decrease α one by one to obtain smaller and smaller clusters, which support
the weighted characteristic vector of the solution. However, if α > β(m − 1), then
we exclude characteristic vectors of dominant sets with |U | ≤ m. Nonetheless, if α
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is very small, the e�ect of regularization becomes negligible and dominant sets of
G = (V, βW), or equivalently, those of G = (V,W) will enter into the solution.

Summarizing, the constants α and β are built into the edge-weight matrix of G,
hence reshaping its structure, and suppressing the ties wij 's if α is large relative to β.
The smaller α, the smaller dominant sets of agents will pursue a non-zero strategy
(with the coordinates of the support of their weighted characteristic vectors). This
means that if the individual costs are large compared to the mutual bene�t, then
larger sets of agents can collaborate fruitfully. On the contrary, when the individual
costs are small compared to the mutual bene�ts, then the e�ect of the original edge-
weights dominates, and smaller dominant sets � close to the ones of the original
graph � of agents maximize their payo�s at the same time. However, in this case, a
larger number of agents is rendered to have zero strategy.

We illustrate this process on a so-called generalized random graph.

De�nition 3.7. Let n be a natural number and k ≤ n be a positive integer. The
graphGn(P,Pk) is a generalized random graph with probability matrixP and proper
k-partition Pk = (V1, . . . , Vk) of the vertices if it satis�es the following. The vertex
set is V , |V | = n; the k × k symmetric matrix P is such that its entries satisfy
0 ≤ pij ≤ 1 (1 ≤ i ≤ j ≤ k). Then vertices of Vi and Vj are connected independently,
with probability pij , 1 ≤ i ≤ j ≤ k.

With the probability matrix

P =

 0.8 0.1 0.15
0.1 0.75 0.2
0.15 0.2 0.7


a random graph on 50 vertices was generated, where the vertices formed three loo-
sely connected clusters; particularly, Cluster 1 (V1)is loosely connected to Cluster
2 (V2) and Cluster 3 (V3). Depending on the initialization, we obtained indicator
vectors of subsets of V1, V2, or V3. The support of them is indicated by red points
in Figures 1,2,3. With β = 1 and decreasing values of α, smaller and smaller sup-
ports appeared, but they were concentrated on one of the clusters. The weighted
characteristic vectors supported on parts of the �rst cluster appeared soon, whereas
those supported on parts of the second and third clusters were separated later. With
α = −0.5, the result of Theorem 3.6 is applicable, and we indeed obtain the support
of a strongly maximal clique within one of the clusters.

4 Optimizing over spheres and ellipsoids

From now on, we consider multiple strategies. The k-dimensional strategies of the
agents can be thought of as intensities of buying/selling k di�erent stocks or borro-
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α ∈ (3.5, 6.5) α = 1 α = −0.5

Figure 1: Dominant sets with weighted characteristic vectors concentrated on the
�rst cluster. Vertices of the three clusters are denoted by O,�,4 and red dots
indicate the support of the weighted characteristic vector obtained by the dynamics
with the actual values of α.

α = 6.5 α ∈ (1.5, 2) α = −0.5

Figure 2: Dominant sets with weighted characteristic vectors concentrated on the
second cluster. Vertices of the three clusters are denoted by O,�,4 and red dots
indicate the support of the weighted characteristic vector obtained by the dynamics
with the actual values of α.

α = 6.5 α = 1.5 α ∈ (−0.5, 0.5)

Figure 3: Dominant sets with weighted characteristic vectors concentrated on the
third cluster. Vertices of the three clusters are denoted by O,�,4 and red dots
indicate the support of the weighted characteristic vector obtained by the dynamics
with the actual values of α.
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wing/lending k di�erent goods (they may have negative coordinates).

Now the quadratic objective function of Section 3 or its multidimensional exten-
sion will be maximized with respect to quadratic constraints. Here we have exact
solutions: the maxima are given in terms of the bottom or top eigenvalues of the
transformed edge-weight matrix, whereas the optimal multiple strategies are derived
by means of the corresponding eigenvectors. The two extremes, corresponding to
strategic complements or substitutes are uni�ed into a multiway clustering problem,
where we are looking for groups of agents following similar strategies with respect to
the other groups, and in this case, strategies can be assigned to the agents, depending
on their group memberships.

We saw that in the classical setup of strategic complements (see Section 2.2)
when the parameter δ is small (δ < 1

1+λmax(Ḡ)
), a unique inner equilibrium exists

(∀xi > 0), and it can be found by matrix inversion, also using the Katz�Bonacich
centrality. However, in the case of strategic substitutes (see Section 2.3), for larger
δ's corner equilibria appear, and these are the only stable equilibria. To �nd corner
equilibria, in [9] the authors de�ne an algorithm which examines all subsets of vertices
for possible corner solutions. This is computationally not tractable if the number of
vertices is very large, since it is NP-complete. Instead, we may approximate corner
equilibria by spectral clustering tools of [4] in polynomial time.

4.1 When there are complementarities between the agents

The utility function of agent i is de�ned by

ui(X) =

k∑
`=1

αs2
i` −

1

2

k∑
`=1

s2
i` + φ

k∑
`=1

n∑
j=1

wijsi`sj` (4.1)

where α and φ are given positive constants. The �rst term is the bene�t of agent i
using strategy xi, the second is the cost of agent i, and the last term is the utility
(under strategic complementarity in e�orts), i.e., the payo� due to his/her colla-
boration with the neighbors. The k-dimensional strategies s1, . . . , sn ∈ Rk of the
agents are collected as row vectors of the n × k matrix X. The coordinate si` of si
denotes the strategy of agent i towards the `-th subject. The constant α now scales
the quadratic gain of the agents. We assume that 0 < α ≤ 1

2 , so the gain would
not exceed the costs for solitary agents; further, φ > 0 is a constant that serves to
regulate the e�ect of complementarities.

The simultaneous maximization of ui(X)'s with respect to s1, . . . , sn subject to∑n
i=1 sis

T
i = XTX = Ik is equivalent to maximizing the following potential function
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under the same constraint:

P (X) =

n∑
i=1

ui(X)− φ

2

n∑
i=1

k∑
`=1

n∑
j=1

wijsi`sj`

=
1

2

k∑
`=1

xT` [(2α− 1)I + φW]x` =
1

2
trXT [(2α− 1)I + φW]X,

where x1, . . . ,xk denote the column vectors of the suborthogonal matrix X. The
maximum of P (X) subject to XTX = Ik is taken on with the X that maximizes

trXT [(2α− 1)I + φW]X

on the constraint XTX = Ik. Irrespective of the de�niteness of the matrix in brac-
kets, the maximum is attained by an X∗ which contains pairwise orthogonal, unit-
norm eigenvectors, corresponding to the k largest eigenvalues of (2α− 1)I + φW in
its columns, and the maximum is

∑k
l=1(2α− 1 + φλl), where λ1 ≥ · · · ≥ λn are the

eigenvalues of W, and it is attained by the corresponding eigenvectors u1, . . . ,uk as
columns ofX∗. These may contain negative coordinates, but they can be approxima-
ted by stepwise constant vectors of mainly nonnegative coordinates if the following
condition is met: the subspace of these partition-vectors is close to the subspace
spanned by u1, . . . ,uk. This is the case if there is a gap between λk and λk+1. In
this case, the squared distance between these two subspaces is the k-variance of the
clusters S2

k (see [4]), which is the minimum of the objective function of the k-means
algorithm. Hence, the clusters of agents following similar strategies are obtained
by applying the k-means algorithm to the optimum strategy vectors, row vectors of
the optimum X. Note, that the representatives can as well be rotated so that the
column vectors of the matrix X∗ are near to characteristic vectors of the optimizing
vertex clusters, giving the same representation, but resulting in near zero or positive
strategies. In this way, a k-partition of the vertices is obtained, so that each cluster
of the partition is specialized to a strategy out of the k ones. Members of the same
cluster pursue the same strategy with the same (positive) intensity , and the others
do almost nothing. There are di�erent groups responsible for di�erent strategies (it
is possible, since the number of clusters is equal to the number of strategies). In
view of [12], when there is a remarkable gap between λk and λk+1 these clusters are
loosely connected, but themselves de�ne dense subgraphs. Consequently, neighbors,
or agents with strong connections will follow similar strategies in all the k respects.
In Tables 1,2,3, one rotated eigenvector is concentrated on one cluster, and after suit-
able normalization it shows good agreement with the weighted characteristic vector
obtained in Section 3.3, in terms of the MSE.
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Ev1 0.034 0.058 0.044 0.025 0.058 0.006 0.055 0.041 0.003 0.066 -0.007 0.005 0.019 0.065 0.002

Ev2 -0.022 -0.067 -0.043 0.016 -0.085 0.032 -0.065 0.009 0.035 -0.050 0.016 -0.019 -0.019 -0.086 -0.020

Ev3 0.245 0.188 0.281 0.243 0.266 0.275 0.253 0.269 0.290 0.242 0.226 0.259 0.242 0.272 0.196

Wcv 0.065 0.040 0.081 0.063 0.075 0.073 0.069 0.077 0.081 0.065 0.054 0.069 0.060 0.079 0.040

Table 1: Coordinates of the three rotated leading eigenvectors corresponding to the
�rst cluster. The third one (Ev3) is concentrated on Cluster 1, and the MSE between
its normalized version and the weighted characteristic vector (Wcv) of this cluster
(its non-zero coordinates are in the last row) is 0.0674341.

Ev1 0.263 0.262 0.288 0.190 0.178 0.226 0.201 0.230 0.248

Ev2 -0.105 0.008 -0.111 0.021 -0.087 -0.006 -0.004 0.025 -0.065

Ev3 -0.04 -0.048 -0.033 -0.040 -0.0008 -0.03 -0.016 -0.064 -0.052

Wcv 0.082 0.100 0.103 0.027 0.023 0.032 0.073 0.066 0.068

Ev1 0.232 0.214 0.216 0.295 0.22 0.191 0.21 0.234

Ev2 -0.008 -0.013 0.005 -0.039 -0.047 -0.014 -0.047 -0.039

Ev3 -0.023 -0.013 -0.031 -0.069 0.005 0.022 -0.053 -0.068

Wcv 0.065 0.064 0.106 0.0216 0.046 0.031 0 0.084

Table 2: Coordinates of the three rotated leading eigenvectors corresponding to
Cluster 2. The �rst one (Ev1) is concentrated on Cluster 2, and the MSE between
its normalized version and the weighted characteristic vector (Wcv) of this cluster (its
non-zero coordinates are in the last row, except the last coordinate, instead of which
we have a non-zero coordinate corresponding to a vertex of Cluster 3) is 0.135404.

Ev1 0.066 0.019 0.057 -0.008 0.015 0.037 0.076 0.050 -0.006

Ev2 0.224 0.270 0.205 0.260 0.213 0.268 0.270 0.187 0.299

Ev3 0.045 -0.020 0.011 -0.016 0.026 -0.004 0.006 0.081 0.011

Wcv 0.061 0.079 0.051 0.072 0.032 0.085 0.089 0.036 0.093

Ev1 0.058 0.053 0.139 0.076 0.056 0.077 0.024 0.024 0.003

Ev2 0.190 0.150 0.120 0.122 0.253 0.135 0.172 0.296 0.290

Ev3 0.003 0.029 -0.008 0.009 0.034 0.044 0.015 0.006 0.070

Wcv 0.057 0.011 0.038 0.080 0.023 0.018 0.087 0 0.080

Table 3: Coordinates of the three rotated leading eigenvectors corresponding to
Cluster 3. The second one (Ev2) is concentrated on Cluster 3, and the MSE between
its normalized version and the weighted characteristic vector (Wcv) of this cluster (its
non-zero coordinates are in the last row, except the last coordinate, instead of which
we have a non-zero coordinate corresponding to a vertex of Cluster 2) is 0.129198.

In the case of k = 1 we optimize over the sphere ‖x‖=1, and the above maximum
is 2α − 1 + φλ1, which is positive if and only if φ > 1−2α

λ1
, in view of λ1 > 0 (since

W is a Frobenius-type matrix). Because of 0 < α < 1
2 , this gives a positive lower

bound for φ. Consequently, the above maximum is positive.

When k > 1 is such that λ1 ≥ · · · ≥ λk > 0, then
∑k

`=1(2α− 1 + φλ`) > 0 holds

if φ > k(1−2α)∑k
`=1 λ`

. Therefore, the number of strategies cannot exceed the number of
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positive eigenvalues of W to get a positive optimum. However, when the size of G
is large, it su�ces to select a k such that λk > 0 and it is much `larger' that λk+1.

The utility function can be further generalized to

ui(X) =

k∑
`=1

αs2
i` −

1

2

k∑
`=1

s2
i` +

k∑
`=1

φ`

n∑
j=1

aijsi`sj`, (4.2)

when the potential function becomes

P (X) =
n∑
i=1

ui(X)−
k∑
`=1

φ`
2

n∑
j=1

w
(`)
ij si`sj`

=
1

2

k∑
l=1

xTl [(2α− 1)I + φ`W
(`)]x`,

where W(`) is the edge-weight matrix of the agents under strategy `, ` = 1, . . . , k
(these connections are given, and they may di�er for di�erent strategies). For max-
imizing the sum of the inhomogeneous quadratic forms we introduced an algorithm
in [5]. In particular, whenW(1) = · · · = W(k) = W, i.e., the matrices in the brackets
commute, we select their largest eigenvalues (assuming that φ`'s are di�erent) with
the corresponding eigenvectors.

Another possibility is to take into consideration the vertex degrees in G. Then
the modi�ed utility is

ui(X) =

k∑
`=1

αdis
2
i` −

1

2

k∑
`=1

dis
2
i` + φ

k∑
`=1

n∑
j=1

aijsi`sj`. (4.3)

The simultaneous maximization of ui(X)'s (i = 1, . . . , k) subject to XTDX = Ik is
equivalent to maximizing the following potential function under the same constraint:

P (X) =

n∑
i=1

ui(X)− φ

2

k∑
`=1

n∑
j=1

aijsi`sj`

=
1

2

k∑
`=1

(D1/2x`)
T [(2α− 1)I + φWD](D1/2x`)

=
1

2
tr (D1/2X)T [(2α− 1)I + φWD](D1/2X).

Its maximum subject to XTDX = Ik (ellipsoid) is taken on with the X that maxi-
mizes

tr (D1/2X)T [(2α− 1)I + φWD](D1/2X)
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on the constraint XTDX = Ik. Irrespective whether the matrix in brackets is posi-
tive semide�nite, it is attained by an D−1/2X∗, where the columns of X∗ are pair-
wise orthogonal, unit-norm eigenvectors, corresponding to the k largest eigenvalues
of (2α−1)I+φWD (see Section 2), and the maximum is

∑k
l=1(2α−1 +φλ′l), where

λ′1 ≥ · · · ≥ λ′n are the eigenvalues of WD, and it is attained by the corresponding
eigenvectors u′1, . . . ,u

′
k as columns of X∗. Since the eigenvalues of WD are in the

[-1,1] interval and 0 ≤ 2α − 1 ≤ 1, the eigenvalues of (2α − 1)I + φWD are in the
[−φ− 1, φ] interval.

4.2 When there are substitutes between the agents

The utility function of agent i is now de�ned by

ui(X) =
k∑
`=1

αs2
i` −

1

2

k∑
`=1

s2
i` − δ

k∑
`=1

n∑
j=1

aijsi`sj` (4.4)

with constants 0 < α ≤ 1
2 and δ > 0 to regulate the e�ect of substitutes. The simul-

taneous maximization of ui(X)'s subject to
∑n

i=1 sis
T
i = XTX = Ik is equivalent to

maximizing the following potential function under the same constraint:

P (X) =

n∑
i=1

ui(X) +
δ

2

n∑
i=1

k∑
`=1

n∑
j=1

aijsi`sj`

= −1

2

k∑
`=1

xT` [(1− 2α)I + δW]x`

= −1

2
trXT [(1− 2α)I + δW]X.

Its maximum subject to XTX = Ik is taken on with the same X that gives the
minimum of

trXT [(1− 2α)I + δW]X

on the same constraint. Irrespective of the de�niteness of the matrix in brackets,
the minimum is attained at an X∗ which contains pairwise orthogonal, unit-norm
eigenvectors, corresponding to the k smallest eigenvalues of (1 − 2α)I + δW in its
columns, and the minimum is

∑k
`=1(1− 2α+ δλn−`+1), where λ1 ≥ · · · ≥ λn are the

eigenvalues ofG, and it is attained by the corresponding eigenvectors un, . . . ,un−k+1

as columns of X. These may contain negative coordinates, but they can be approx-
imated by stepwise constant vectors of nonnegative coordinates. The subspace of
these partition-vectors is close to the subspace spanned by un, . . . ,un−k+1 if there is
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a gap between λn−k+1 and λn−k. In this case, the clusters of agents following similar
strategies are obtained by applying the k-means algorithm to the optimum strategy
vectors, row vectors of the optimum X.

In the case of k = 1, this minimum is 1− 2α+ δλ1, which is negative if and only
if δ > 2α−1

λn
, in view of λn < 0 and 0 < α < 1

2 . It means that the above maximum is
positive.

The inequality δ > 2α−1
λn

can be restricted to the range of δ where corner equilibria
are stable. The corresponding 2-partition of the vertices is obtained by the k-means
algorithm applied for the coordinates of u1. In the k > 1 case the same holds with
applying the k-means algorithm with the optimal s∗1, . . . , s

∗
n as row vectors of the

n× k matrix X∗.
When k > 1 is such that λn ≤ · · · ≤ λn−k+1 < 0, then

∑k
`=1(1−2α+δλn−`+1) < 0

holds if δ > k(2α−1)∑k
`=1 λn−`+1

. Therefore, the number of strategies cannot exceed the

number of negative eigenvalues of G to get a positive optimum. However, when the
size of G is large, it su�ces to select a k such that λn−k+1 < 0 and it is much `smaller'
that λn−k.

The potential function can be also generalized to

P (X) =
n∑
i=1

ui(X)−
k∑
`=1

δ`
2

n∑
i=1

n∑
j=1

aijsi`sj`

=
1

2

k∑
`=1

xT` [(2α− 1)I + δlG
(l)]x`

as in Section 4.1.
Since the eigenvectors not always have positive coordinates, we approximate them

by partition vectors. In this way, clusters of agents, following similar strategy are
found. In the substitute case, these clusters have sparse within- and dense between-
cluster connections.

When the similarity matrix depends on the actual strategy, the potential function
can be further generalized to

P (X) =

n∑
i=1

ui(X) +
δ

2

k∑
l=1

n∑
i=1

n∑
j=1

w
(`)
ij si`sj`

=
1

2

k∑
`=1

xT` [(2α− 1)I + δG(l)]x`,

where W (`) is the connection matrix of the agents under strategy ` (` = 1, . . . , k),
and x1, . . . ,xk form an orthonormal set. The solution is given by the compromise
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vectors of the symmetric matrices in brackets. This generalization corresponds to
the real-life situation when the agents have di�erent connections with respect to
di�erent strategies (e.g., for buying di�erent kinds of stocks or planting di�erent
kinds of crops).

5 Discussion

When maximizing the mutual utility of agents in a network of interactions, we con-
sider edge-weighted graphs describing pairwise relations of the agents. We show
how the graph structure determines the optimal strategies with respect to quadratic
objective functions maximized on linear or quadratic constraints. Under simplex
constraints, dominant sets of an edge-weighted graph will give the solution, where
the model parameters are built into the edge-weights. Under quadratic constraints,
the spectrum of the unnormalized or normalized edge-weight matrix decides which
strategy to follow. Large positive eigenvalues favor complementary strategies in as
many respect as the number of the structural positive eigenvalues; while negative
eigenvalues of large absolute value favor substitute strategies in as many respect as
the number of the structural negative eigenvalues. This is also supported by social
network studies, see, e.g., [3, 14]. Note that an eigenvector-based feature organization
is also discussed in [18].
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