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Abstract

The notion of the Laplacian of weighted graphs will be introduced, the eigenvectors belonging
to k consecutive eigen-values of which define optimal k-dimensional Euclidean representation
of the vertices. By means of these spectral techniques some combinatorial problems concerning
minimal (k+ 1)-cuts of weighted graphs can be handled easily with linear algebraic tools. (Here
k is an arbitrary integer between 1 and the number of vertices.) The (k+ 1)-variance of the
optimal k-dimensional representatives is estimated from above by the k smallest positive eigen-
values and by the gap in the spectrum between the kth and (k+1)th positive eigenvalues
in increasing order.

1. Basic notations

Let G=(V, W) be a weighted undirected graph, where V:={v,,...,v,} is the set of
its vertices and W is the weight matrix of the edges. The diagonal entries of the n xn
matrix W are zero, while the nondiagonal entry w; is the weight assigned to the edge
{v;,v;} and w;;=w; =0, i # j. (If the vertices v; and v; are not adjacent, the weight w;; is
zero.) Let d; denote the sum of the weights of the edges incident with the vertex v;.
Suppose that d;>0 (j=1,...,n) and D=diag(d,, ...,d,) be the diagonal matrix with
d/’s in its main diagonal.

We would like to characterize some structural properties of weighted graphs by
means of their spectra and Fuclidean representations, as follows. Let k (1<k<n—1)
be a fixed integer and let the vectors x;,...,x,€ R* satisfy the constraints
Z;.'=1 xjx}=lk and Z:=1 x;=0. The vectors x,, ..., x, are regarded as k-dimensional
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2 M. Bolla, G. Tusnady

representatives of the vertices. Let X:=(x1,...,%,) be the k x n matrix containing the
vectors x,'s as its columns. Let us define the quadratic form

n—1 n
0=y 3 w; | x;—x; ] >=tr XCXT, (1.1)
i=1 j=i+1
where the n x n matrix C is equal to D— W. C is symmetric, singular and positive
semidefinite. We call it the Laplacian of the weighted graph G, while @ is called the
quadratic form belonging to G.
Let us denote by

0=Ao<A < €dyy

the eigenvalues of the Laplacian C. In [4] the following Representation Theorem is
proved: the minimum of @ constrained on XX =1I, and Y- X=0is E?;  Ajand it is
attained for X*=(uy, ..., u,)", where uy, ..., u,€ R" are k pairwise orthonormal eigen-
vectors corresponding to the eigenvalues 4,,...,4; of the matrix C. The column
vectors x¥, ..., x} of any optimal X* are called optimal k-dimensional representatives
of the vertices and then we speak of optimal k-dimensional Euclidean representation of
the weighted graph G.

In [4] the problem is formulated in terms of hypergraphs, but a weighted graph can
always be assigned to a hypergraph. Given a hypergraph H= (¥, E) the entries of the
weight matrix W are the following:

Wij=W;j;= Z S (v;ee).f (vsee) i (1<i<j<n),

e
ecE l l

where || stands for the number of vertices contained by the hyperedge e and £ (vee)
equals to 1 or 0 depending on whether the hyperedge e contains the vertex v or not.

It is well-known that the multiplicity of the zero as an eigenvalue of the Laplacian is
equal to the number of connected components of G. Therefore, in the sequel only
connected weighted graphs are investigated.

The above representation can be extended to weighted graphs, the vertices of which
are weighted too, as follows. Let G be a weighted graph with weight matrix W of the
edges, the vertex v; of which has the weight s; (j=1, covsti)y-and. S=diag(sy; s 5a)
Now the quadratic form Q of (1.1) is minimized subject to the constraints that
¥oui s;x;x; =XSX =1, and E;:l s;x;=0. Since Q can be written as

tr XCXT=tr (XSV2)[S 12 CS~12](XSV)T, (1.2)

the minimum of Q on the above constraint is Z:f: | ®;— where O=kKko<K1 < - SKy-1
are the eigenvalues of the symmetric, singular, positive semidefinite matrix in
brackets — and it is attained for the representation X*=(uy,...,u) S~ '* of the
vertices, where u,,...,u, are k pairwise orthonormal eigenvectors corresponding
to the k smallest positive eigenvalues of the so-called weighted Laplacian Cy=8"12

CS~ 12, With other words the k x n matrix (/s; 1, s/ Snx ) — where the column
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vectors x¥, ..., x¥ of any optimal X* are called optimal k-dimensional representatives
of the vertices — contains the above eigenvectors u,, ..., in its rows.

If the weight matrix § is equal to D, then the matrix Cp is equal to
I,—D Y2WD~ 2 Let us denote by g;’s the eigenvalues of the matrix D~ 2 WD ™1/,
Since for all i the relation —1< ;<1 holds, any eigenvalue x;=1—9,_;—; of Cp is
nonnegative and it is at most 2 (i=0,...,n—1). .

We remark that the graph G can be regarded as the product of two copies of th
probability space (I, o, P), I={1,...,n}, P={p;,...,pn}, Where p;=d;/3_, d; and
W can be normed in such a way that it is a symmetric measure on G. In this case
D~ 12D ~172 defines the operator taking the conditional expectation between the
two probability spaces and ¢’s are like canonical correlations.

2. Consistent colorings

Let G=(V, W) be a weighted graph, and let k be a fixed integer (1 <k<n). Let
P,=(V,,..., V) denote a k-partition of the set of vertices and cp, denote the clustering
(sometimes we shall refer to it as a coloring) defined by Py in the following way:
cp (J)=i, if v;e V.

Definition 2.1. The vector ueR", Z;f:lu( j)=0 is called to be Py-consistent, if it is
constant on the parts of the k-partition Py, ie. u(i)=u(j) whenever cp, (i)=cp,(j)
where u(i) denotes the ith coordinate of the vector u.

Definition 2.2. The vertices of the weighted graph G are said to be consistently k-
colorable, if there exists a k-partition P, such that every P)-consistent vector is an
eigenvector of the Laplacian C of G.

It is easy to see that the Pj-consistent vectors for a given k-partition P, constitute
a (k—1)-dimensional subspace in R” and if G is consistently k-colorable with respect to
P, then the (k— 1)-dimensional subspace spanned by the P,-consistent eigenvectors is
an eigenspace of the Laplacian C belonging to an eigenvalue A with multiplicity k—1.

Theorem 2.3. Let us fix the k-partition P,. G is consistently k-colorable with respect to
the k-partition Py if and only if there exists a constant k such that for all ie{1,2,...,n}
and for each p+#cp, (i)

Z Wi =KHp, (21)

jivjeVy

where n,=|V,|.
In the special case when W is the ordinary adjacency matrix, our theorem means
that for every vertex v; and for each color p (which is different from the color of v;):

Y owy=#{ee={v,v;}, v;EV,} =xn,

JjivjeVp
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holds, i.e. the number of edges connecting v; with vertices of color p is proportional to
the size of ¥, and the coefficient of proportionality (x) is the same for all i and
p#cp, (i)

Proof of Theorem 2.3. Let us fix the k-partition P,. In the sequel we indicate P, in
a coloring only if P, is different from the underlying k-partition.

Sufficiency. Suppose that there exists a constant x such that for each integer
ie{l,...,n} and p+#c(i) the relation

Y wi=kn,
JrvjeVp
holds. Let the vector #ueR” be Py-consistent and put y,:=u(j), if c(j)=p. If c(i)=],
then the ith coordinate of the vector Cu is the following:

[Z wy— 2, Ws;}y:—i Y Wyl

B i#i el =1 p=1je(j)=p
p#*l

k k
=Ky ), Mp—K ), MY, =Kny,
p=1 p=1

p#Fl p#*l
because Z';= 1 1pyp=0. Therefore, u is an eigenvector of the Laplacian C with corres-
ponding eigenvalue nx.

Necessity: Let u be a P,-consistent eigenvector of the Laplacian C. Then there exists
an eigenvalue A with multiplicity k—1 for which

Cu=Ju, 22)

and there are real numbers y4, ..., y, such that 2?:1 ny;=0and u(j)=y;, if cp (j)=i.
Let us fix the integer /. Let us choose an index i such that c(i)=/. Let us introduce the
following notations:

8= Z wij and S,:p:= Z WIJ
jri#i je()=p
With these notations, the equation (2.2) for the ith coordinate of the vector Cu gives

k
(Si=su)yi— Y, SipVp=4y1,

p=1

p#l
whence
k k
Y Sp—A 1= Sudp (2.3)
p=1 p=1
p#l p¥l
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We remark that the equation does not depend on the weights w;;/’s for which c(j)=1.
With the notation

k
=Y s, if p=1,
- a=1 2.4)

Zip- q#p

Sip if ps£l

equation (2.3) becomes

k

Y. Zipyp=0,

p=1
and this holds for every k-tuples y,, ...,y of real numbers such that Et:lnpypzo.
Therefore, for each index i there must exist a constant k; such that z,=x;n,,
(p=1,..., k). Substituting it into (2.4) for p#! one obtains that s;,=x;n,, whence

k k
Y suy=ki Y, ny=x(n—mn).
g=1 g=1

q#l g#l

Again substituting it into (2.4) for p=1 we arrive at k;n=z;=A—k;(n—n,;), whence
A=1x;n. Therefore, k; — consequently s;, — does not depend on i and there exists
a constant x — namely x=A4/n — such that for each p#c(i) the equation
2 y;er, Wij=xnp holds. [

We have also proved that k= A/n, where A is the cigenvalue with multiplicity k—1
belonging to the (k— 1)-dimensional eigenspace spanned by the P,-consistent eigen-
vectors.

Since s;, does not depend on i, hereby we shall denote it by s,. In this way for any
P,-consistent vector u

J=iT =T I wyllh—ulf)?

i=1 j=i+1

k=1

= i [ ) > wffi|(y1_ym)2

1 m=1+1L i:c(i)=I jic(j)=m

|

]
_

k—1

k
= z Wim(yf_ym)z
] m=1+1

]
oy

holds, where w},, is the sum of the weights of the edges connecting the vertices of color
1 with those of color m. By an easy counting argument for /#m the equation
Wi = Kiyhy = (A/n)mn,, also holds.

In the case when G is consistently k-colorable with respect to some k-partition Py,
the corresponding multiple eigenvalue and the eigenspace of the P-consistent vectors
can be obtained by the spectral decomposition of the following ‘reduced” weighted
graph G’ on k vertices, the vertices of which are weighted too: the weight of the vertex
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v} is ny, while the weight of the edge {v{,v},} is wi,,. The entries of the Laplacian C’ of
G’ are as follows:

A
——mn,, if l#m,
, n

Cim=
ln[—én? if I=m,
n

Let us also introduce the following notations: ee R* be the k-dimensional vector of 1’s,
hi=(ng,...,m)T, S:=diag(ny, ..., m).

Let us denote by #ueR" a P,-consistent eigenvector of the weighted graph G with
respect to the k-partition P,=(¥V,, ..., ¥;), | ¥:|=n,. Let A denote the corresponding
multiple eigenvalue. We have seen that the first n, coordinates of u are equal to y,, the
second n; ones to y,, ... while the last n; ones to y,, where Z:;l n;y; =0,

Proposition 2.4. Denoting by y the k-dimensional vector of coordinates y,, ..., Vi, it is an
eigenvector corresponding to the eigenvalue A of the reduced weighted graph G, the
vertices of which are weighted with the weight matrix S=diag(n,, ..., n).

Proof. With the above notations,

C'= —ilth+ﬂ_S=A(SlkhT)
n ]

i :
=S [I"—(ka)(sfh)jsm
1] n

holds. Let us denote the vector in parenthesis by f, || £||2= 1. The eigenvalues of the
k x k matrix in brackets are one 0 with corresponding eigenvector f and the number
1 with multiplicity k— 1, the corresponding eigenspace being orthogonal to the vector
f Let [<k be a fixed integer and ¥Y=(y,, ..., ;) be an [ x k matrix such that YSYT=1,
and Z:‘j1 n;y;=0. Then according to the Representation Theorem, the minimum of
the quadratic form

tr YC'Y = tr (¥SY2)[ L, —ffT](¥YS?)T

on the above constraints is (I—1)A and it is attained when the matrix ¥S'/? contains
| pairwise orthonormal eigenvectors of the matrix L —ffT corresponding to its
I smallest positive eigenvalues. The columns of the matrix ¥ are the representatives of
the vertices of the réduced graph G’.

Let us denote by y,(i) the ith coordinate of the representative of the Ith vertex of G'.
Then for any coordinate i the relation Z:‘:I my,(i)=0 holds; therefore, any P,-
consistent eigenvector of the graph G can be obtained from the eigenvectors of the
reduced weighted graph G’ with the same eigenvalue. [

Spectra and optimal partitions of weighted graphs 7
3. Optimal classifications

Our aim is to classify the vertices of the weighted graph G=(V, W) in such a way
that edges with large weights would connect possibly vertices of the same cluster.
Some combinatorial measures characterizing this structural property are introduced
and related to the spectral characteristics of G.

Let us fix the k-partition P, and let us denote by ¢ the clustering (coloring)
belonging to it.

Definition 3.1. The volume v(P,) of the k-partition P,=(V1,..., ¥,) is defined by
k—1 k
o(P)=2 Y Win
I=1 m=Ii+1
and its weighted volume u(P;) by
k=1 & 1 1
H(Pk}:= Z Z (+)Wl[m>
I=1 m=i+1 \™M fn

where

Win= 3 Y w; (Isl<m<k) and n,=|V,|
ite(i)=1I j:c(j)y=m

The minimal k-cut of the weighted graph G is defined by

= min v(Py), (3.1)
Ped,

while the minimal weighted k-cut by

v :=min u(Py), (3.2)
PeZ

where &, denotes the set of all k-partitions of V.

Definition 3.2. The k-variance of the vectors x,,...,x,e R*~' with respect to the
k-partition P, is defined by

2

SiPuX)=Y ¥

i=1 jie(j)=i

X

3

_ch(r)=i11

L
where n;=| V;|. The k-variance of the vectors x, ..., x, is defined by

$2(X):= min S2(P,, X).
Ped,

Definition 3.3. The cost of the edge e={v;,v;) (i< j) with weight w;; in the Euclidean
representation x, ..., x, of the vertices is defined by K(e):=w;;|lx;—x;| 2.

It is trivial that Z:;lij is the sum of the costs of the edges in an optimal
(k—1)-dimensional Euclidean representation of the weighted graph G. In [4] it is
proved that Zle A;<veyy and if there exists a well-separated k-partition of the
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optimal (k — 1)-dimensional representatives x§, ..., x ¥ of the vertices (the diameters of
the clusters being e<1/(2./n), then vksqzzj: 4, where g=1+./ne/(1— . /ne).
Therefore, the greater the gap between 4,_; and A, is and the better the optimal
(k—1)-dimensional representatives of the vertices can be classified into k clusters, the
greater the difference between the combinatorial measures v, and vy, ¢ is.

Even if there does not exist a well-separated k-partition of the optimal (k—1)-
dimensional representatives x7, ..., x, it can be asked, how the k-variance SZ(X*) of
them depends on the eigenvalues. In order to get some perturbation results, the
following two cases are investigated:

(i) The Laplacian C of the weighted graph G can be written as B+ P, where P is the
Laplacian of the weighted graph formed from G by retaining the bicolored edges with
respect to the coloring P,, while B is the Laplacian of the weighted graph obtained by
retaining the monocolored ones. As the vertices of the latter weighted graph are
consistently k-colorable with respect to the k-partition P, and the matrix B has the
eigenvalue 0 with multiplicity k, the corresponding eigenspace can be spanned by
k pairwise P,-consistent vectors (let us denote them by uy,...,u;) such that all the
coordinates of the Ith vector — being different from those assigned to the vertices of ¥,
—areequal to 0 (/=1, ..., k). Such a matrix B is called to be 0-ideal (here the sum of
the coordinates is not zero). Let us denote by o the smallest positive eigenvalue of the
0-ideal matrix B. It is the minimum of the smallest positive eigenvalues of the weighted
subgraphs induced by the vertices of the parts V7’s of the k-partition P,. Put g:=| P|
and suppose that e< o.

(ii) Let the matrix B be the Laplacian of a weighted graph that is consistently
k-colorable with respect to the k-partition P, and the multiple eigenvalue A>0 is of
multiplicity k— 1. This B is called to be i-ideal. Suppose that B has no more eigenvalues
in the interval (1— g, A+ ). Put P:==C— B and ¢:=| P||. Suppose that ¢<p.

In the case (i) the (k— 1)-dimensional representatives x;’s of the vertices are obtained
from the eigenvectors corresponding to the k—1 smallest positive eigenvalues of the
Laplacian C, while in the case (ii) they are obtained from the eigenvectors correspond-
ing to k—1 eigenvalues x;,...,k;—; ‘near’ to A (the existence of such eigenvalues is
guaranteed by Lemma 4.5).

In both cases let us denote by X the matrix formed from the above (k—1)-
dimensional representatives x,...,x, of the vertices as columns.

Furthermore, in case (ii) let us denote by y._,(P,) the sum of the costs of the
edges in the (k—1)-dimensional Euclidean representation defined by k—1 pair-
wise orthonormal eigenvectors u,,...,u#,—; of B corresponding to the multiple
eigenvalue A (they are all consistent with P,). Similarly, in case (i) let us denote
by 7,(P,) the sum of the costs of the edges in the representation defined by k pair-
wise orthonormal eigenvectors uy,...,u, of B corresponding to the eigenvalue 0
with multiplicity k. It is easy to see that 7,(P,)=u(P) (see [4], the proof of
Theorem 3.5), where P,=(V,,..., ¥;) is the k-partition being investigated. There-
fore rk(Pk);Z;f;ll A; holds trivially for all k-partition P,, consequently vkzxj;ll A;
is also valid.
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With the above notations and assumptions the following theorems are proved. Let
X*=(x%,...,x}) be an optimal (k— 1)-dimensional Euclidean representation of the
vertices of the weighted graph G=(V, W), as it is discussed above (in case (i) X*
contains k—1 pairwise orthogonal eigenvectors corresponding to the eigenvalues
Ki,...,Kx—1). Let P, be the fixed k-partition.

Theorem 3.4. Under assumptions (i),
SRy X<, (3.3)

while under assumptions (ii),

2 % e —82 =
Se(Pe, X*)<(k 1)(9—3)2 (3.4)

holds for the k-variances of the optimal (k— 1)-dimensional representatives x¥,...,x}.

We remark that
£=||PH$H'P= Z Wij=v(Pk)

i, J
c(i)#c(J)
and
2(1 —cos(n/n) uz(Gy) if 0<pp(Gy)<hdr™
Cit 12(Gy) —cppd ™™ if (1/2)d7 < pa(G;),

where ¢;; = 2(cos (n/n;) —cos (2n/n;)), ¢;p =2 cos (n/n;)(1 —cos (n/n;)), dP** =max;.y,d;
and B; is the Laplacian of the induced weighted subgraph G; by the vertex set ¥; (on n;
vertices). B; is just the ith diagonal block of B (see [3, Theorem 3.6]). Therefore, the
‘smaller’ the volume of the k-partition P, and the greater the 2-cut of the monocolored
ones is (this means that the G/s are strongly connected), the better the optimal
k-dimensional representatives of the vertices can be classified into k clusters.

For ordinary graphs this requirement means that there be ‘few’ bicolored edges and
a lot of monocolored ones for possibly each color.

g=min 11(35)2{

Theorem 3.5. Under assumptions (i),

k-1
w(P)— Y 4;<2e./2k \/E (3.9)
i=1 e ‘
while undgr assumptions (ii),
k—1
£
Xe-a(P)= T 1< Qe+ At hu)y/20k= 1) o= (3.6)
i=1 -

holds for the differences between the sum of the costs of the edges and the sum of the
eigenvalues, the eigenvectors corresponding to which define the representation, where
An—1 is the largest eigenvalue of the Laplacian C.
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Proposition 3.6. Let X* be an optimal (k—1)-dimensional representation of the
above weighted graph. Then for the k-variance of the optimal (k— 1)-dimensional
representatives

Y e e
S2 X* gsz P ’X* Sl—._—_
k( ) k( k ) Q(Pk)

holds with any k-partition P.
Notice that the more ‘concise’ the edges within the G/’s are, the greater o(Py) is.
The question naturally arises: in general does the existence of a gap in the spectrum
between A,_; and A itself result in a ‘small’ (k— 1)-variance of the optimal k-
dimensional representatives? This is answered, at least partly, in Section 5.

4. Proof of theorems

Lemma 4.1. Let the n x n symmetric matrix B have the following property. there exists
a k-dimensional subspace F — R" such that xTBx¢(a,b) for all xeF (||x||=1), where
a<b are real numbers (a= — oo or b=c0 is allowed). Then B has at least k eigenvalues
outside the interval (a,b).

Proof. Let us denote by m the number of the eigenvalues of B inside the interval (a, b)
and by H the subspace spanned by the corresponding eigenvectors. Then

k+m=dim(F)+dim(H)<n,

which finishes the proof, since the number of the eigenvalues of B outside (a, b) is equal
ton—mzk O

Corollary 4.2. With the previous notations the following statements also hold:

(a) if there exists a k-dimensional subspace F < R" such that x"Bx=a for all xeF
(Il x||=1) — where a is a real number — then B has at least k eigenvalues that are at
least a. (Hint: apply Lemma 4.1 with b=c0.)

(b) if there exists a k-dimensional subspace F < R" such that x*Bx<b for all xeF
(I x|l =1) — where b is a real number —, then B has at least k eigenvalues being at most
b. (Hint: apply Lemma 4.1 with a= — o0.)

Lemma 4.3. Let the nx n symmetric, positive semidefinite matrix B have the eigenvalue
0 with multiplicity k, and let its other eigenvalues be at least o. Let P be an nxn
positive-semidefinite matrix such that | P| =e. Then the nxn positive-semidefinite
matrix C'= B+ P has at least k eigenvalues that are at most e. Furthermore, denoting by
P1s..., Vi the eigenvectors corresponding to the k smallest eigenvalues of C and decompo-
sing them as ‘

yi=u;+7z;, weF, g LF, (4.1)
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where F is the kernel of B, then for the orthogonal components the relation

"
lzil|?<=¢ (i=1,...,k
I o ( )

holds.

Proof. Let the vector ueF, ||u| =1 be arbitrary. Then, on the one hand,
u"Cu=u"Pu< || P|-|u|*<e (4.2)

As F is a k-dimensional subspace of R", according to Corollary 4.2(b) the matrix
C has at least k eigenvalues not greater then e

On the other hand, any vector yeR" can uniquely be decomposed as y=u+z
where ueF and z L F. Then ’ ’

y'Cy=y"By+y"Py=7"Bz+y"Py=0| z| 2. (4.3)

If we choos.e an orthonormal set yy, ..., y, the members of which are eigenvectors
corresponding to the k smallest eigenvalues (being at most ¢) of C, then according to
formulas (4.2) and (4.3) the inequalities

exyiCyizollul? (i=1,..,k)
hold, which finishes the proof. [
We remark that in the case when there are coincidences among the k smallest

eigenvalues of C, the statement (4.1) holds for any choice of an orthonormal set of the
corresponding eigenvectors.

Lemma 4.4. Let F = R" be a k-dimensional subspace and y, ...,y be an orthonormal
set of vectors in R". They are decomposed as

yi=v,-+z,-, viEF, z,J_F {l=1,,k)

Then there exists an orthonormal set of vectors u,, ..., w, within the subspace F such that

M=

k
”yi_"i”2‘~<~2 Z | 2 ||2-
i=1 3

i=1

[l

Proof. ‘Let us denote by ¥ and U the n x k matrices with column vectors p;’s and a;’s,
respectively, where {u;, ..., u,} is an arbitrary orthonormal set of vectors from F. We
have to show that there exists a k x k orthogonal matrix R such that

IY—-UR|*<24,
where A :=2i.‘=1 | z:|>. Denoting the left-hand side by L(R), we have
L(R)=tr(¥Y— UR)"(Y—UR)
=tr Y"Y+tr RTUTUR-2tr YT UR
=tr Y'Y+tr (UTU)(RR")-2tr Y UR=2(k—tr YT UR).
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On the one hand, L(R) is minimal, if tr ¥T UR is maximal. The following lemma will
be used: let 4 be a kxk matrix and R be a kxk orthogonal one. Then tr AR is
maximal, if AR is symmetric and in this case its maximum is equal to the sum of the
singular values of the matrix A4 (for the proof, see [3, p. 67]). This lemma is applied for
the matrix YT U:

k
min L(R)=2 ¥ (1-s),
i=1

R orthogonal i

where 0<s, <--- <s, are the singular values of the matrix ¥ T U. On the other hand,

A=|Y=-UU"Y|*=tr(Y-UU'Y)"(Y-UU"Y)

k
=tr YTY—tr YVIUUTY=k—|| Y'U|2= Y (1—s2).

i=1
Now it remains only to show that 1 —s;<1—s? (i=1,...,k). But it holds true, since
sissss(Y) s(U)=1,

the greatest singular values of both ¥ and U being equal to 1 (moreover, as their
columns are orthogonal, they have k singular values which are equal to 1). O

Lemma 4.5, Let the n x n symmetric, positive semidefinite matrix B have the eigenvalue
A with multiplicity k, and suppose that its other eigenvalues are outside the interval
(A—0, A+ 0). Let us denote by F the k-dimensional eigenspace corresponding to A. Let
P be n x n symmetric, positive semidefinite matrix such that | P|=e<g. Thenthe nxn
symmetric, positive semidefinite matrix C:= B+ P has at least k eigenvalues k1, ...,x; in
the interval [ .—e,A+¢&] and for the corresponding eigenvectors y,, ...,y the relations

o—¢
hold, where d(y, F) denotes the distance of the vector y from the subspace F.

Proof. We shall prove more: on the conditions of the lemma C has exactly k eigen-
values in the interval [4, A+¢]. Let B have p eigenvalues less than and g eigenvalues
greater than A. Then p+k+g=n. On the one hand — as P is positive semidefinite
— by a perturbation theorem of Rao [10] it follows that the matrix C= B+ P has at
least k + g eigenvalues greater than A, at least g ones greater than A+ g and p ones less
than A—p+e<Ai.

On the other hand we shall show that C has at least p+ k eigenvalues being at most
A+e. For this purpose let us denote by G the (p+ k)-dimensional subspace spanned by
the eigenvectors (uy, ..., #,4+x) of B corresponding to eigenvalues < A. As any geG can
be written as g=2f::‘o:iui — where Zf:foc? =1—,

p+k
g"Bg= 3 a?ulBu; <.

i=1
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Therefore
g'Cg=g"Bg+g"Pg<i+e.

Applying Corollary 4.2(b) we obtain the required statement.

Comparing the above facts it follows that C has exactly k eigenvalues within
[4, A+£].

Let uy,...,u, be pairwise orthonormal eigenvectors of B with eigenvalues
0<4;<-<4,, and let ky,....k be ecigenvalues of C such that |x;—4i|<e,
(j=1,...,k). Let y,,...,y, denote the corresponding eigenvectors. Any of them (we
denote it simply by y with eigenvalue «) can uniquely be decomposed as

=

y=

i

Cilty= Z Cilti + Z Cilly,
1 S i diEA

I

where the constants ¢, ...,c, are chosen appropriately.
Then, on the one hand,

Cy=(B+P)y= ) clu;+Py, 4.4)
i=1
while, on the other hand,

Cy=ky=Y, ciku;. 4.5)
i=1

Comparing equations (4.4) and (4.5) we obtain that
Z ci(k—A;)u;=Py.
i=1

Because of the orthogonality of the vectors u; the Pythagorean theorem can be
applied: Y /_, ¢#(x—2;)*=e?. Since for the indices i’s with 4, =4 the eigenvectors u,s
are elements of the subspace F and for those with 4, +# 4 the vectors u;’s are orthogonal
to F, d*(y,F)=Y ., .,c?. Therefore, in the case of o> ¢ the relation

(0—&)?d*(n,F)=(0—¢)* Y cf< Y clx—4)?<Y cP(k—A) =¢?

AEA it d;# 4 i=1

' holds, which implies our statement. O

Corollary 4.6. Under the assumptions of Lemmas 4.2, 4.3 and 4.5 there exists an
orthonormal set uy, ..., u,eF such that in case (i),

k
€
Z | pi—u: 22k o3
i=1 ¢
while in case (ii),

2 e’
| yi—w]* <2k ——
i=1 (9‘8)2

M=

holds.
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In future we shall denote simply by ¢ the coloring corresponding to the k-partition P;.

Proof of Theorem 3.4. Let the k-partition P, be fixed.

(i) In case (ii) let F<R" be the (k—1)-dimensional subspace of the con-
sistent eigenvectors of the i-ideal matrix B. Let yy,...,», -, denote k—1 pairwise
orthonormal eigenvectors corresponding to the eigenvalues x,, ..., k-, of the Lap-
lacian C= B+ P such that

iKi_j‘l"{E (i=1="'sk_1):

where ¢=|| P|.

Let us choose one of the vectors y;’s and denote it simply by y=(y(1), ...,y(n))7,
where y(j) stands for its jth coordinate. We are looking for the consistent vector #eF
with respect to the k-partition P, such that d(y,u)=d?(y, F). Since the consistent
vector & has n, coordinates equal to t(1), n, coordinates equal to £(2),...,and m;
coordinates equal to t(k), where }:f=1n,-t(i)=0, the following expression is to be
minimized according to t(1),...,t(k):

k
> Y Dy)-uil>
i=1 jie(j)=i
The minimum is attained for the choice

Zj:c(j]=iy(j)

Ry

t(i)= (i=1,...,k).

Let us assign in this way to each y; the consistent vector u;, which realizes its distance from
the subspace F. On the one hand we obtain that ¥;_ d?(y., F) is equal to SZ(Py, X),
where the (k— 1)-dimensional representatives of the vertices are determined by the eigen-
vectors Yy, ..., Vi—1: X=(x1,...,%)=(¥1,-..,¥x—1)". On the other hand, by means of
Lemma 4.5,

82

2 i —
d (th)s(—Q——S)E (i=1,....,k—1).
By summing it for i=1,...,k—1, our proof is finished.

(i) In case (i) let F=R" be the k-dimensional subspace being the kernel of
the O-ideal matrix B. Let p;,...,y. denote k pairwise orthonormal eigen-
vectors corresponding to the k smallest eigenvalues of the Laplacian C=B+ P. As
the eigenvalues of the Laplacian C corresponding to the eigenvectors yi,...,J»:
are at most ¢, Lemma 4.3 can be applied. With the same argument as in case (ii), we
obtain that

dl(y,-,F)sg (i=1,...,k).

By summing it for i=1, ..., k, our proof is complete. [
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Proof of Theorem 3.5. (ii) In case (ii) by the notations of the previous proof, and
furthermore, by setting U:=(uy,...,u_;) and Y:=(py,...,yx_1) we obtain
k-1
1(P)=tr UTCU, while ¥ x;=tr Y'CY.
i=1
Therefore, our estimation is as follows:

tr UTCU—tr Y'CY=[tr UTBU—tr Y"BY]

+[tr UTPU—1tr Y'PY]. (4.6)
The first term in brackets can be estimated from above with
k-1
trUTBU—tr Y'BY =Y {u] Bu;—y By;}
i=1
k—1
= {REB("E—.}_’;')‘!'(”;'—.V:')TBJH}

i

]
- e

i
<Y {IufB|- |u—pill +lw—y: - | B| - | y: ]}
i=1

k~1 k—1

=(A+1B) X =yl <G+ICI) X llw—yp:]

i=1 i=1

k=1
A+ A=) V=1 [ 3 llw—pi?
i=1

Slilade O i1 Z(k—l)&,

where A, =|| C|| and we applied Corollary 4.6. The upper estimation of the second
term is

k—1 k—1
Y {ul Pu—yTPy)=Y {ulP(u;—y)+(u;—y,)" Py;}
i=1

i=1
k—1

<Y Nl 1PI-lw—pl +lw—p: - | P el }
i=1
k—1 k=1
=2 ), lw—ypill<2e/k—1 [ ¥ lw—p)*
i=1 i=1

2
<2 k=1 [2(k—1)——. @.7)
(0—¢)
After summing the two estimates, the required result is obtained.
(i) In case (i) quite similarly the notations U:=(u,,...,u) and ¥:=(y,,...,») are
introduced. Here the first term of (4.6) in brackets can be estimated from above with 0,
as tr UTBU=0 and B is positive-semidefinite. For the estimation of the second term
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the counting argument in (4.7) is applied and by the Corollary 4.6 we obtain that it is

at most
25\/E ZkE,
(o]
which is also the estimation of the whole difference

tr UTCU—tr YTCY=1,(P;)— Zﬂ O

Lemma 4.7. Let X=(xy,...,%,)=(#y,....u,-1)" be a (k—1)-dimensional Euclidean
representation of the vertices of the weighted graph G=(V, W) and Py=(V1,..., Vi) be
any fixed k-partition of the set of vertices. Then the sum of the costs of the monocolored
edges with respect to the k-partition Py is at least o(Py)-S 2(Py, X), where
o(Py):=min%_, ,(B,), the matrix B; being the Laplacian of the weighted subgraph G;
of G induced by V; (which contains edges of the ith color).

Proof. The sum of the costs of the edges is decreased if we sum only for the
monocolored ones in the partition P, and this sum is equal to tr XBX" = 2 1 " ul Bu,.

Let ueR" be an arbitrary vector with || #|| =1 and with }::f=1 u(j)=0, furthermore,
let w'eR™ be its ith section with respect to P;. Then

k k
uTBu= u' Bu Z, ) lu'?= Z A1(B;)-o?(u')

i=1

a*(u')=0(Py)- SE(Py,4)

Ma—

(Pk)

1
In the first inequality we utilized that because of Z;; L u(j)=0 the quadratic forms
u' Byu' are confined to the ith sections of vectors orthogonal to the vector of 1’s. The
notations
. 1 2
o)=Y GMF* ¥ MM)
jre(g)=i n; m:c(m)=i
for the variance of the vector u' and

k
SHPLw)= Y o)
i=1
for the k-variance of the vector u with respect to the k-partition Py are used. The
second inequality follows from the Steiner formula.
Eventually by summing for the vectors u;,...,#-, and utilizing that
S2(Pi, X)=X._ | S3(Py, ), the required result is obtained. O

Proof of Proposition 3.6. Let X* be an optimal (k — 1)-dimensional representation of
the above weighted graph. Then by the Representation Theorem, the sum of the costs
of the edges in this representation is less than A; + -+ A, , so does the sum of the
costs of the monocolored ones. Therefore, Lemma 4.7 can be applied. [
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5. The expanding property of the eigenvalues

Let G=(V,W) be a weighted graph with weight matrix W of the edges and
D=diag(d,,...,d,) of the vertices, where d;=Y . j2iWis (i=1,...,n). Suppose that
i 1EJ s Wi;=1. According to Section 1 the spectrum of thlS welghted graph is
defined by the eigenvalues of the weighted Laplacian Cp.

Theorem 5.1. Let 0=4o<A, <A, < <4,_; denote the eigenvalues of the weighted
Laplacian Cp and let u denote the eigenvector corresponding to A,. Let S3(u) be the
2-variance of the coordinates of u defined by

Aﬂﬂﬂidm cs1?,

Cal

where u; denotes the ith coordinate of the vector u, while c,,€ R and a: is equal to 1 or to 2.
Then S3(u)< A, /A;.

Proof. Because of the preliminary assumption for the sum of the weights

=

d;=1. (5.1)

i=1

According to Section 1 for the coordinates of the eigenvector # the conditions

d,-u,-=0 and Z di-u1-2=l

1 i=1

1=

hold. Now we shall find a vector y with coordinates y;, (i=1,...,n) such that the
conditions

and

Z diu;y;= (5.3)

are met. We are looking for y in the form

yi=|uy—al|-b (i=1,...,n), (5.4)

where a and b are real numbers.

We state that there exist such real numbers a and b for which conditions (5.1) are
fulfilled. Our argument is the following: let us suppose that we have found a. Then by
means of (5.1) and (5.2) we obtain that

n

b=7Y dilui—al (5.5)

=1
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With this choice of b and with the condition (5.3)
Y diug|lu;—al=0
i=1

holds. As the left-hand side is a continuous function of a and it is equal to 1, if
a<min;u; and to — 1, if a > max; u;, by means of the Bolzano—Weierstrass theorem we
obtain that it must have at least one root between min;u; and max;u;. Choosing such
an a and the corresponding b according to (5.5), the coordinates of the vector y are
uniquely determined by (5.4). Put ¢; =a—b and c;=a+b. It is easy to see that

ci—u;, if u;<a
yi=|lu;—a|-b= .

U,—cCs, if u;=d,
therefore

lyel =min {|u;—cy |, [u;—c,|} (5.6)
holds for all i. Let us define by

diyg

=

o2 (y)=

i

I

1

the variance of the coordinates of y. As due to (5.6), o2(y) is one of the terms behind
the infin the expression of S %(u), the relation o2(y)> 8 2(u) always holds true. Since in
the case of o(y)=0 the 2-variance S%(u) is also equal to 0, the statement of the
theorem is automatically true. Therefore, ¢(y)>0 can be supposed. Put z; =y, /o(y),
(i=1,...,n) and let us denote by z the vector of coordinates z;s and by x; the
2-dimensional vector of first coordinate u; and second coordinate z;. Furthermore
denote X the 2 x n matrix with row vectors w and z respectively and X* the 2xn
matrix with row vectors u and v respectively, where v is an eigenvector corresponding
to 4, subject to the usual conditions. Then on the one hand

=z 1
| (5.7)
wruy | U= ()

since from the definition of y; it follows that
|yi—yil<lw—u;l, (%)),

ie. y (as function of w) fulfils the Lipschitz condition. On the other hand, by the
extremal properties of the eigenvalues and by the formulas (1.1) it follows that

A, +22_trX*CX*T<trXCXT_E:11 Tjmiey Wil Xi— %12
;{,1 N MTCH = HTCH Z'::_ll Z:=i+1wij(ui_uf)z
_Z:: E;:i+1 wiL(i—u;)* +(zi—2;)*]

- n—1 n 2
Liot Ljmivy Wiilti—uy)
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2
Zi—Z; 1 1
s1+max(‘ ’)2<1+ s Ly
u;#uj{uiﬁuj) a (J’) SZ(“)

which finishes the proof. [

The theorem implies the following expanding property of the eigenvalues: the
greater the gap between the two smallest positive eigenvalues of G is, the better the
classification into two clusters of the optimal I-dimensional representatives of the
vertices is.

The theorem also implies that on the condition ¥'7_, ¥"_, w;=1 the relation
S3(u)<1 holds, since 1, < A, according to our preliminary assumption. In the case of
Ay =24, there is no use of 1-dimensional Euclidean representation, because the eigen-
vectors corresponding to this multiple eigenvalue can be chosen within a subspace of
at least 2 dimensions. Therefore, the 2-variance in any direction is the same.

For establishing similar relations between the (k+ 1)-variance of an optimal k-
dimensional representation of the vertices of the above weighted graph and the gap of
the spectrum of its weighted Laplacian C,, between the eigenvalues A, and 4, ; we
would like to prove the following conjecture:

Conjecture 5.2. Let 0=2o<A; < - <Ay <Ay << A,—; be the spectrum of the
weighted Laplacian Cp=1,—D ~2WD ™2 of the weighted graph G with weight
matrix W, where ¥|_, Y- wy=1, di=Y'_, ;4;Wy and D=diag (dy,...,d,). Let
x7,...,xyeR¥ be optimal k-dimensional representatives of the vertices satisfying the
conditions ¥;_, dix¥=0 and Y dixfxf =1 Let SZ,,(x¥,...,x¥) denote the
(k+ 1)-variance of the vectors x%,...,x¥. Suppose these vectors form k+1 well-
separated clusters in the k-dimensional Euclidean space. Then

_ﬂ'l+"{'2+“'+xk

2 * %
Sivi(x1,..,x)<k
Ak'*'l

, 1<k<n—1.
For the proof we would need the following

Lemma 5.3, There exists a transformation y;=f(x}) such that the function f satisfies
the Lipschitz condition, ¥;_ diy;=0, Y7  dix¥y;=0 and o?(y):= Yo diyiz
Sf+](xr, "'!x:)'

Our conjecture is that with Lipschitz constant ﬂ such an y can be found. For
some special representations even we have a construction, but in general we are not
sure whether such construction exists.

If the lemma were true, the proof of Conjecture 5.2 would be the following:

Proof of Conjecture 5.2. o(y)>0 can be supposed, otherwise SZ,,(x¥,...,x¥)is also
zero, for which the statement of the theorem is true. Let z;:= y;/o(y), and let the vector
xieR**! be obtained by adding z, to the vector x} as last coordinate. Denote by X’
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the (k+ 1) x n matrix of column vectors x,x5,...,x,. Then by the Representation
Theorem

n—1 n
Mt F L SUXCXT=Y Y wllxi—x;l?
i=1 j=i+1
n—1 n n—1 s
=% T wyller-xf+ Y ¥ wyla—zl?
i=1 j=i+1 bl ARETL
n—1 n
<Yy X wijhlxi*—x;‘llz
i=1 j=it1
+T S wylar—st 2
I i
o(¥) Sy S !

k
=( 1+@)(11+'“+Ak),

where in the second equality we applied the Pythagorean theorem and the inequality

is due to the Lipschitz condition with constant ﬁ From this inequality the required
result

Ag+--+4
SZoy(xt, . xH <o)<k ——=
Ags1

is immediately obtained. [J
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