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Abstract: A causal vector autoregressive (CVAR) model is introduced for weakly stationary multivari-
ate processes, combining a recursive directed graphical model for the contemporaneous components
and a vector autoregressive model longitudinally. Block Cholesky decomposition with varying block
sizes is used to solve the model equations and estimate the path coefficients along a directed acyclic
graph (DAG). If the DAG is decomposable, i.e., the zeros form a reducible zero pattern (RZP) in its
adjacency matrix, then covariance selection is applied that assigns zeros to the corresponding path
coefficients. Real-life applications are also considered, where for the optimal order p ≥ 1 of the fitted
CVAR(p) model, order selection is performed with various information criteria.

Keywords: structural vector autoregression; causality along a DAG; block Cholesky decomposition;
covariance selection; order selection
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1. Introduction

The purpose of the present paper is to connect graphical modeling tools and time
series models together via path coefficient estimation. In statistics, the path analysis was
established by the geneticist Wright (1934) about a century ago, but he used complicated
entrywise calculations with partial correlations. Taking these partial correlations of a
pair of variables in a multidimensional data set conditioned on another set of variables
makes things overtly complicated, as the conditioning set changes in the steps. A bit
later, in econometrics, structural equation modeling (SEM) was developed; the prominent
author Haavelmo (1943) obtained the Nobel price for it later. The maximum likelihood
estimation (MLE) of the parameters in the Gaussian case was elaborated by Joreskog
(1977). At the same time, Ref. Wold (1985), the inventor of partial least squares regres-
sion (PLS), used matrix calculations, and Ref. Kiiveri et al. (1984) already used block
matrix decompositions when dividing their variables into endogenous and exogenous ones.
However, none of these authors applied steadily algorithms of block LDL (variant of the
Cholesky) decomposition alone, without using partial correlations. Furthermore, they did
not consider time series.

Here, we give a rigorous block matrix approach of these problems that originated
in statistics and time series analysis. Furthermore, we enhance the usual and structural
vector autoregressive (VAR and SVAR) models, discussed e.g., in Deistler and Scherrer
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(2019) and Deistler and Scherrer (2022), with a causal component that has an effect between
the coordinates contemporaneously. Therefore, we call our causal vector autoregressive
model CVAR. Joint effects between the contemporaneous components are also considered
in SVAR models of Keating (1996); Lütkepohl (2005); and Kilian and Lütkepohl (2017),
but just recursive ordering of the variables, and no specific structure of the underlying
directed graph is investigated. Though in Wold (1960) a causal chain model is introduced
with an exogenous and a lagged endogenous variable, Gaussian Markov processes and
usual regression estimates are used in the context of econometric problems. This research
is also inspired by the paper Wermuth (1980), where recursive ordering of the variables is
crucial, without using any time component.

Ref. Eichler (2006) introduces causality as a fundamental tool for the empirical
investigations of dynamic interactions in multivariate time series. He also discusses the
differences between the structural and Granger causality. The former one appears in
the SVAR models (see Geweke (1984)), whereas the latter one first appears in Wiener
(1956), then in Granger (1969), and is sometimes called Wiener–Granger causality. Without
causality between the contemporaneous components, our model in the Gaussian case also
resembles the one of Eichler (2012), where the error term (shock) can have correlated
components. Our higher order recursive VAR model can be transformed into a model like
this, but the price is losing the recursive structure. The VAR model of Brillinger (1996) has a
similar structure as ours with uncorrelated error terms; but no further benefits of recursive
models, such as RZP, induced by the underlying DAG, are discussed. Ref. Sims (1980)
investigates the use of different types of structural equations and autoregressive models
in macroeconomics, without suggesting numerical algorithms. However, historically, this
survey paper was among the first ones which pointed out the difference between the
existing macroeconomic models so far and distinguished endogenous and exogenous
variables. The method of the most recent paper Bazinas and Nielsen (2022) is based on the
reduced form system and is constructed by the conditional distribution of two endogenous
variables, given a catalyst or multiple catalysts; lagged effects are assessed, without having
a longer time series, and stationarity is not assumed.

Throughout the paper, second order processes are considered that can be assumed
to asymptotically follow multivariate Gaussian distribution. In Section 2, the different
types of VAR models are compared, and a novel CVAR model is introduced, combining
a recursive graphical model contemporaneously and a VAR(p) model longitudinally. In
Section 3, the models are described in details, together with introducing algorithms for
the parameter estimation. In Section 3.1, the unrestricted CVAR(p) model is introduced,
while in Section 3.2, the restricted cases are treated, with some prescribed zeros in the
path coefficients. Relation to covariance selection and decomposability is discussed too. In
Section 4, application to real life data is presented together with information criteria for
order selection (optimal choice of p). The results and estimation schemes are summarized
in Section 5; finally, in Section 6, conclusions and further perspectives are posed. The
proofs of the theorems and the detailed description of the algorithms are to be found in
Appendix A, while the pseudocodes in Appendix B. To illustrate the CVAR model and
related algorithms, there are supporting Python files and notebooks uploaded, together
with some additional tables and figures. These are included in the Supplementary Material.

2. Materials and Methods

First, the different purpose VAR(p) models for the d-dimensional, weakly stationary
process {Xt} are enlisted and compared. The first two models are known in the literature,
whereas the last two are our contributions, for which block matrix decomposition based
algorithms are introduced in Section 3, and they are illustrated in Section 4 on real life data.

• Reduced form VAR(p) model: for given integer p ≥ 1, it is

Xt + M1Xt−1 + · · ·+ MpXt−p = Vt, t = p + 1, p + 2, . . . , (1)
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where Vt is white noise, it is uncorrelated with Xt−1, . . . , Xt−p, it has zero expectation
and covariance matrix Σ (not necessarily diagonal, but positive definite), and the ma-
trices Mj satisfy the stability conditions (see Deistler and Scherrer (2019)). (Sometimes,
Xt is isolated on the left-hand side.) Vt is called innovation, i.e., the error term of the
(added value to the) best one-step ahead linear prediction of Xt with its past, which (in
the case of a VAR(p) model) can be carried out with the p-lag long past Xt−1, . . . , Xt−p.
Here, the ordering of the components of Xt does not matter: if it is changed (with some
permutation of {1, . . . , d}), then clearly the rows of the matrices Mjs and, furthermore,
the rows and columns of Σ are permuted accordingly.

• Structural form SVAR(p) model: for given integer p ≥ 1, it is

AXt + B1Xt−1 + · · ·+ BpXt−p = Ut, t = p + 1, p + 2, . . . , (2)

where the white noise term Ut is uncorrelated with Xt−1, . . . , Xt−p, and it has zero
expectation with uncorrelated components, i.e., with positive definite, diagonal covari-
ance matrix ∆. A is a d× d upper triangular matrix with 1s along its main diagonal,
whereas B1, . . . , Bp are d× d matrices; see also Lütkepohl (2005). The components of
Ut are called structural shocks, and they are mutually uncorrelated and assigned to the
individual variables.
Here, the ordering of the components of Xt does matter: if it is changed (with some
permutation of {1, . . . , d}), then the matrices A, Bj and ∆ cannot be obtained in a
simple way; they profoundly change under the given permutation.
However, there is a one-to-one correspondence between the reduced and structural
model; since A is invertible, from Equation (2), Equation (1) can be obtained (and
vice versa):

Xt + A−1B1Xt−1 + · · ·+ A−1BpXt−p = A−1Ut, t = p + 1, p + 2, . . . ,

where Mj = A−1Bj, Vt = A−1Ut, and Σ = A−1∆AT−1; further, |Σ| = |∆| as |A| = 1.
• Causal CVAR(p) unrestricted model: it also obeys Equation (2), but here the ordering

of the components follows a causal ordering, given e.g., by an expert’s knowledge.
This is a recursive ordering along a “complete” DAG, where the permutation (labeling)
of the graph nodes (assigned to the components of Xt) is such that Xt,i can be caused
by Xt,j whenever i < j, which means a j → i directed edge. Here, the causal effects
are meant contemporaneously, and reflected by the upper triangular structure of the
matrix A.
It is important that, in any ordering of the jointly Gaussian variables, a Bayesian
network (in other words, a Gaussian directed graphical model) can be constructed, in
which every node (variable) is regressed linearly with the variables corresponding to
higher label nodes. The partial regression coefficients behave like path coefficients,
also used in SEM. If the DAG is complete, then there are no zero constraints imposed
on the partial regression coefficients. Here, building the DAG just aims at finding a
sensible ordering of the variables.

• Causal CVAR(p) restricted model: here, an incomplete DAG is built, based on par-
tial correlations.
First, we build an undirected graph: do not connect i and j if the partial correlation
coefficients of Xi and Xj, eliminating the effect of the other variables is 0 (theoretically),
or less than a threshold (practically). Such an undirected graphical model is called
Markov random field (MRF). It is known (see Rao (1973) and Lauritzen (2004)) that
partial correlations can be calculated from the concentration matrix (inverse of the
covariance matrix). However, here the upper left block of the inverse of the large block
matrix, containing the first p autocovariance matrices, is used. If this undirected graph
is triangulated, then in a convenient (so-called perfect) ordering of the nodes, the
zeros of the adjacency matrix form an RZP. We can find such a (not necessarily unique)
ordering of the nodes with the maximal cardinality search (MCS) algorithm, together
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with cliques and separators of a so-called junction tree (JT); see Lauritzen (2004),
Koller and Friedman (2009), and Bolla et al. (2019). In this ordering (labeling) of the
nodes, a DAG can also be constructed, which is Markov equivalent to the undirected
one (it has no so-called sink V configuration); for further details, see Section 3.2.
Having an RZP in the CVAR restricted model, we use the incomplete DAG for es-
timation. With the covariance selection method of Dempster (1972), the starting
concentration matrix is re-estimated by imposing zero constraints for its entries in the
RZP positions (symmetrically). By the theory (see, e.g., Bolla et al. (2019)), this will
result in zero entries of A in the no directed edge positions.

Note that the unrestricted CVAR model can use an incomplete DAG as well, where
the labeling of its nodes follows the perfect labeling of the undirected graph; still, the
parameter matrices A and Bjs are “full” in the sense that no zeros of A are guaranteed in
the no-edge positions of the graph. Their entries are just considered as path coefficients
of the contemporaneous and lagged effects, respectively. On the contrary, in the restricted
CVAR model, action is carried out for introducing zero entries in A in the no-edge positions.
If the desired zeros form an RZP, the covariance selection has a closed form (see Lauritzen
(2004)). In the lack of an RZP, the covariance selection still works, but it needs an infinite
(convergent) iteration, called iterative proportional scaling (IPS), see Lauritzen (2004)
and Bolla et al. (2019). Other possibility is to moralize the DAG (connect parents that are not
connected and thus eliminate the sink Vs), and work with the so-obtained undirected graph.

Then, both in the unrestricted and restricted CVAR(p) models, an order selection is
initiated to choose the optimal p, based on information criteria, such as AIC, BIC, AICC, and
HQ, where only the number of parameters differs in the two cases. Actually, in the restricted
case, the product-moments are calculated only within the cliques, and since separators
are subsets of them, we can reduce the computational complexity of our algorithm that is
spectacular when the number of nodes is “large”.

3. Results
3.1. The Unrestricted Causal VAR(p) Model

The directed Gaussian graphical model of Wermuth (1980) does not consider time
development; it is, in fact, a CVAR(0) model. In addition, note that at this point, the
ordering of the jointly Gaussian variables is not relevant, since in any recursive ordering
of them (encoded in A), a Gaussian directed graphical model (in other words, a Gaussian
Bayesian network) can be constructed, where every variable is regressed linearly with the
higher label ones.

To illustrate the p > 0 case, first we introduce the unrestricted CVAR(1) model. This
has a special interest, as can be used for longitudinal data spanning a short time interval
or adapted to the situation when Xt−1 represents the exogenous, and Xt the endogenous
variables in their components.

Let {Xt} be a d-dimensional, weakly stationary process with real valued components of
zero expectation and covariance matrix function C(h), h = 0,±1,±2, . . . ; C(−h) = CT(h).
All deterministic and random vectors are column vectors and so C(h) = EXtXT

t+h does not
depend on t, by weak stationarity. The CVAR(1) model equation is

AXt + BXt−1 = Ut, t = 1, 2, . . . , (3)

where A is a d × d upper triangular matrix with 1s along its main diagonal, B is a
d× d matrix; furthermore, the white noise random vector Ut is uncorrelated with (in
the Gaussian case, independent of) Xt−1, has zero expectation, and covariance matrix
∆ = diag(δ1, . . . , δd).

Let C2 denote the covariance matrix of the stacked random vector (XT
t , XT

t−1)
T which,

in block matrix form, is as follows:

C2 =

(
C(0) CT(1)
C(1) C(0)

)
. (4)
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It is symmetric and positive definite if the process is of full rank regular (which means that
its spectral density matrix is of full rank, see Bolla and Szabados (2021)) that is assumed in
the sequel. It is well known that the inverse of C2, the so-called concentration matrix K, has
the block-matrix form

K =

(
C−1(1|0) −C−1(1|0)CT(1)C−1(0)

−C−1(0)C(1)C−1(1|0) C−1(0) + C−1(0)C(1)C−1(1|0)CT(1)C−1(0)

)
,

where C(1|0) = C(0)− CT(1)C−1(0)C(1) is the conditional covariance matrix C(t|t− 1)
of the distribution of Xt, given Xt−1; by weak stationarity, it does not depend on t either;
therefore, it is denoted by C(1|0). In addition, C2 is positive definite if and only if both C(0)
and C(1|0) are positive definite.

Observe that C(1|0) = A−1∆A−1T is the covariance matrix of the innovation
Vt = A−1Ut. Therefore, the left upper block of K contains its inverse, which is AT∆−1 A.

Theorem 1. The parameter matrices A, B, and ∆ of model Equation (3) can be obtained by the block
LDL decomposition of the (positive definite) concentration matrix K (inverse of the covariance matrix
C2 in Equation (4)) of the 2d-dimensional Gaussian random vector (XT

t , XT
t−1)

T . If K = LDLT is
this (unique) decomposition with block-triangular matrix L and block-diagonal matrix D, then they
have the form

L =

(
AT Od×d
BT Id×d

)
, D =

(
∆−1 Od×d

Od×d C−1(0)

)
, (5)

where the d× d upper triangular matrix A with 1s along its main diagonal, the d× d matrix B,
and the diagonal matrix ∆ of model Equation (3) can be retrieved from them.

The proof of this theorem together with the detailed description of the algorithm is to
be found in Appendices A.1 and A.2 of Appendix A.

The above model naturally generalizes to the following recursive CVAR(p) model: for
given integer p ≥ 1,

AXt + B1Xt−1 + · · ·+ BpXt−p = Ut, t = p + 1, p + 2, . . . , (6)

where the white noise term Ut is uncorrelated with Xt−1, . . . , Xt−p, it has zero expectation
and covariance matrix ∆ = diag(δ1, . . . , δd). A is a d× d upper triangular matrix with 1s
along its main diagonal; whereas, B1, . . . , Bp are d× d matrices.

Here, we have to perform the block Cholesky decomposition of the inverse covariance
matrix of (XT

t , XT
t−1, . . . , XT

t−p)
T , i.e., the inverse of the matrix

Cp+1 =


C(0) CT(1) CT(2) · · · CT(p)
C(1) C(0) CT(1) · · · CT(p− 1)
C(2) C(1) C(0) · · · CT(p− 2)
...

...
...

. . .
...

C(p) C(p− 1) C(p− 2) · · · C(0)

. (7)

This is a symmetric, positive definite block Toeplitz matrix with (p + 1)× (p + 1) blocks
which are d× d matrices. Again, CT(h) = C(−h), and it is well known that the inverse
matrix C−1

p+1 has the following block-matrix form:

• Upper left block: C−1(p|0, . . . , p− 1);
• Upper right block: −C−1(p|0, . . . , p− 1)CT(1, . . . , p)C−1

p ;
• Lower left block: −C−1

p C(1, . . . , p)C−1(p|0, . . . , p− 1);
• Lower right block: C−1

p + C−1
p C(1, . . . , p)C−1(p|0, . . . , p− 1)CT(1, . . . , p)C−1

p ,

where C(p|0, . . . , p− 1) = C(0)− CT(1, . . . , p)C−1
p C(1, . . . , p) is the conditional covariance

matrix C(t|t− 1, . . . , t− p) of the distribution of Xt given Xt−1, . . . , Xt−p; due to stationarity,
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it does not depend on t either; therefore, it is denoted by C(p|0, . . . , p− 1). Furthermore,
CT(1, . . . , p) = (CT(1), . . . , CT(p)) is a d × pd and C(1, . . . , p) is a pd × d matrix. In ad-
dition, Cp+1 is positive definite if and only if both Cp and C(p|0, . . . , p− 1) are positive
definite.

Theorem 2. The parameter matrices A, B1, . . . , Bp and ∆ of model Equation (6) can be obtained
by the block LDL decomposition of the (positive definite) concentration matrix K (inverse of the
covariance matrix Cp+1 in Equation (7)) of the (p + 1)d-dimensional Gaussian random vector
(XT

t , XT
t−1, . . . , XT

t−p)
T . If K = LDLT is this (unique) decomposition with block-triangular matrix

L and block-diagonal matrix D, then they have the form

L =

(
AT Od×pd
BT Ipd×pd

)
, D =

(
∆−1 Od×pd

Opd×d C−1
p ,

)
(8)

where the d× d upper triangular matrix A with 1s along its main diagonal, the d× pd matrix
B = (B1 . . . Bp) (transpose of BT , partitioned into blocks) and the diagonal matrix ∆ of model
Equation (6) can be retrieved from them.

The proof of this theorem together with the detailed description of the algorithm is to
be found in Appendices A.3 and A.4 of Appendix A.

3.2. The Restricted Causal VAR(p) Model

First, we again consider the p = 1 case. Assume that we have a causal ordering of
the coordinates X1, . . . , Xd of X such that Xj can be the cause of Xi whenever i < j. We can
think of Xis as the nodes of a graph in a directed graphical model (Bayesian network) and
their labeling corresponds to a topological ordering of the nodes in the underlying DAG.
Thus, i < j can imply a j → i edge, and then we say that Xj is a parent (cause) of Xi. (Xi
can have multiple parents, maximum di ones.) For example, when asset prices or relative
returns of different assets or currencies (on the same day) influence each other in a certain
(recursive) order. Now, restricted cases are analyzed, when only certain arrows (causes) are
present, but the DAG is connected. In particular, only certain asset prices influence some
others on a DAG contemporaneously, but not all possible directed edges are present. In
this case, a covariance selection technique can be initiated to re-estimate the covariance
matrix so that the partial regression coefficients in the no-edge positions are zeros.

Our DAG is sometimes given by an expert’s knowledge, but usually it is built from an
undirected graph, when we also require that the so-constructed DAG be Markov equivalent
to its undirected skeleton. Then, the DAG must not contain a sink V configuration. Under
sink V configuration, a triplet j → h ← i is understood, where i is not connected by j
(h < i < j); see Figure 1.

j

i =2
2

j =3

1

h =1

Figure 1. Triplet sink V.

Here, we include a short description on the relation between directed and undirected
graphical models, with emphases on the Gaussian case, based on Lauritzen (2004)
and Bolla et al. (2019). Directed and undirected models have many properties in common,
and under some conditions, there are important correspondences between them.

Let X ∼ Nd(µ, Σ) be a d-variate non-degenerate Gaussian random vector with ex-
pectation µ and positive definite, symmetric d× d covariance matrix Σ. The also positive
definite, symmetric matrix Σ−1 of entries σij is called a concentration matrix, it appears
in the joint density, and its zero entries indicate conditional independences between two
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components of X, given the remaining ones. Mostly, the variables are already centered, so
µ = 0 is assumed.

Let us form an undirected graph G on the node-set V = {1, . . . , d}, where V corre-
sponds to the components of X, and the edges are drawn according to the rule

i ∼ j⇔ σij 6= 0, i 6= j. (9)

This is called an undirected Gaussian graphical model, which is a special Markov Random
Field (MRF). To establish conditional independence statements, we use the following facts.

Proposition 1. Let X = (X1, . . . , Xd)
T ∼ Nd(0, Σ) be a random vector, and let V := {1, . . . , d}

denote the index set of the variables, d ≥ 3. Assume that Σ is positive definite. Then,

rXiXj |XV\{i,j}
=
−σij
√

σiiσjj
i 6= j,

where rXiXj |XV\{i,j}
denotes the partial correlation coefficient between Xi and Xj after eliminating

the effect of the remaining variables XV\{i,j}. Furthermore,

σii = 1/(Var(Xi|XV\{i}), i = 1, . . . , d

is the reciprocal of the conditional (residual) variance of Xi, given the other variables XV\{i}.

Definition 1. Let X ∼ Nd(0, Σ) be a random vector with Σ positive definite. Consider the
regression plane

E(Xi|XV\{i} = xV\{i}) = ∑
j∈V\{i}

β ji·V\{i}xj, j ∈ V \ {i},

where xj’s are the coordinates of xV\{i}. Then, we call the coefficient β ji·V\{i} the partial regression
coefficient of Xj when regressing Xi with XV\{i}, j ∈ V \ {i}.

Proposition 2.

β ji·V\{i} = −
σij

σii , j ∈ V \ {i}.

Corollary 1. An important consequence of Propositions 1 and 2 is that

β ji·V\{i} = rXiXj |XV\{i,j}

√
σjj

σii = rXiXj |XV\{i,j}

√
Var(Xi|XV\{i})

Var(Xj|XV\{j})
, j ∈ V \ {i}.

(The formula is analogous to the one of unconditioned regression.) Thus, only the
variables Xj’s, whose partial correlation with Xi (after eliminating the effect of the remaining
variables) is not 0, enter into the regression of Xi with the other variables.

To form the edges, instead of Equation (9), for i 6= j, we have to test the follow-
ing statistical hypothesis, and draw an edge if we can reject H0 with a “small enough”
significance:

H0 : rXiXj |XV\{i,j}
= 0,

i.e., Xi and Xj are conditionally independent conditioned on the remaining variables.
Equivalently, H0 means that βij|V\{i} = 0, β ji|V\{j} = 0, or simply, σij = σji = 0 (Σ > 0
is assumed).
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To test H0 in some format, several exact tests are known that are usually based on
likelihood ratio tests. The following test uses the empirical partial correlation coefficient,
denoted by r̂XiXj |XV\{i,j}

, and the following statistic is based on it:

B = 1− (r̂XiXj |XV\{i,j}
)2 =

|SV\{i,j}| · |SV |
|SV\{i}| · |SV\{j}|

,

where S is the sample size (n) times the empirical covariance matrix of the variables in the
subscript (its entries are the product-moments).

It can be proven that, under H0, the test statistic

t =
√

n− d ·
√

1
B
− 1 =

√
n− d ·

r̂XiXj |XV\{i,j}√
1− (r̂XiXj |XV\{i,j}

)2

is distributed as Student’s t with n− d degrees of freedom. Therefore, we reject H0 for large
values of |t|, or equivalently, for large values of r̂XiXj |XV\{i,j}

.
In the directed model (Bayesian network), the nodes of the graph G correspond to

random variables X1, . . . , Xd, whereas the directed edges to causal dependences between
them. In the case of a DAG G with node-set V = {1, . . . , d}, there are no directed cycles,
and therefore, there exists a recursive ordering (labeling) of the nodes such that, for every
directed edge j→ i, the relation i < j holds.

Let par(i) ⊂ {i + 1, . . . , d} denote the set of the parents of i and, for any A ⊂ V, we
use the notation xA = {xi : i ∈ A} and XA = {Xi : i ∈ A}. To draw the edges, the directed
pairwise Markov property is used: for i < j, there is no j→ i directed edge, whenever Xi and
Xj are conditionally independent, given X par(i). With notation,

Xi ⊥⊥ Xj|X par(i) for j ∈ {i + 1, . . . , d} \ par(i), i = 1, . . . , d− 1.

In the case of a non-degenerate Gaussian distribution, by the Hammersley–Clifford
theorem, the following undirected factorization property is also equivalent to the undirected
pairwise Markov property (9) that defines the graph. It means the factorization of the joint
density of the components of X, for any state configuration x = (x1, . . . , xd) as follows:

f (x) =
1
Z ∏

C∈C
ΨC(xC),

where Z > 0 is a normalizing constant, and the non-negative compatibility functions ΨCs are
assigned to the cliques of G. Under clique, we understand a maximal complete subgraph.
(Note that, in graph theory, it is sometimes called a maximal clique.) The above factoriza-
tion is far from unique, but in special (so-called decomposable) models, the forthcoming
Equation (10) gives an explicit formula for the compatibility functions.

In addition, even if the underlying graph is undirected, a decomposable structure of
it gives a (not necessarily unique) so-called perfect ordering of the nodes, in which order
directed edges can be drawn. Conversely, a decomposable directed graph (with no sink V
configurations) can be made undirected by disregarding the orientation of the edges.

Decomposable graphs have a special interest with regard to exact MLE. There are sev-
eral equivalent properties of a decomposable graph, based on Wermuth (1980); Lauritzen
(2004); Bolla et al. (2019):

• G is triangulated (with other words, chordal), i.e., every cycle in G of a length of at least
four has a chord.

• G has a perfect numbering of its nodes such that, in this labeling, ne(i) ∩ {i + 1, . . . , d}
is a complete subgraph, where ne(i) is the set of neighbors of i, for i = 1, . . . , d. It is
also called single node elimination ordering (see Wainwright (2015)), and obtainable
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with the maximal cardinality search (MCS) algorithm of Tarjan and Yannakakis (1984);
see also Koller and Friedman (2009).

• G has the following running intersection property: we can number the cliques of it to
form a so-called perfect sequence C1, . . . , Ck where each combination of the subgraphs
induced by Hj−1 = C1 ∪ · · · ∪ Cj−1 and Cj is a decomposition (j = 2, . . . , k), i.e., the
necessarily complete subgraph Sj = Hj−1 ∩ Cj is a separator. More precisely, Sj is a
node cutset between the disjoint node subsets Hj−1 \ Sj and Rj = Cj \ Sj = Hj \ Hj−1.
This sequence of cliques is also called a junction tree (JT).
Here, any clique Cj is the disjoint union of Rj (called residual), the nodes of which are
not contained in any Ci, i < j and of Sj (called separator) with the following property:
there is an i∗ ∈ {1, . . . , j− 1} such that

Sj = Cj ∩ (∪j−1
i=1Ci) = Cj ∩ Ci∗ .

This (not necessarily unique) Ci∗ is called parent clique of Cj. Here, S1 = ∅ and R1 = C1.
Furthermore, if such an ordering is possible, a version may be found in which any
prescribed set is the first one. Note that the junction tree is indeed a tree with nodes
C1, . . . , Ck and one less edge that are the separators S2, . . . , Sk.

• There is a labeling of the nodes such that the adjacency matrix contains a reducible zero
pattern (RZP). It means that there is an index set I ⊂ {(i, j) : 1 ≤ i < j ≤ d} which is
reducible in the sense that, for each (i, j) ∈ I and h = 1, . . . , i− 1, we have (h, i) ∈ I or
(h, j) ∈ I or both.
Indeed, this convenient labeling is a perfect numbering of the nodes.

• The following Markov chain property also holds: f (xRj | xC1∪···∪Cj−1) = f (xRj | xSj).
Therefore, if we have a perfect sequence C1, . . . , Ck of the cliques with separators
S1 = ∅, S2, . . . , Sk, then, for any state configuration x, we have the following factorized
form of the density:

f (x) =
∏k

j=1 f (xCj)

∏k
j=2 f (xSj)

=
k

∏
i=1

f (xRj |xSj). (10)

To find the structure, where one of the equivalent criteria of decomposability holds,
we can use the MCS method of Tarjan and Yannakakis (1984) and Koller and Friedman
(2009). The simple MCS gives label d to an arbitrary node. Then, the nodes are labeled

consecutively, from d down to 1, choosing as the next to label a node with a maximum
number of previously labeled neighbors and breaking ties arbitrarily. (Note that Lauritzen
(2004) labels the nodes conversely.) The MCS ordering is far from unique, and this simple
version is not always capable of finding the JT structure behind a triangulated graph in
one run, but another run is needed. There are also variants of this algorithm which are
applicable to a non-triangulated graph too, and capable of triangulating it with adding a
minimum number of edges.

In the unrestricted model, no restrictions for the upper-diagonal entries of A were
made. In practice, we have a sample and all the autocovariance matrices are estimated, and
the resulting A, B matrices are calculated with them. Usually, a statistical hypothesis testing
advances this procedure, during which it can be found that certain partial correlations
(closely related to the entries of K) do not significantly differ from zero. Then, we naturally
want to introduce zeros for the corresponding entries of A. For this, the method of covari-
ance selection of Dempster (1972) was elaborated; see also Lauritzen (2004) and Wermuth
(1980). First, we give a more general definition of the notion of an RZP.

Definition 2. Let M be a symmetric or an upper triangular matrix of real entries. We say that M
has a reducible zero pattern (RZP) with respect to the index set I ⊂ {(i, j) : 1 ≤ i < j ≤ d} if,
for each (i, j) ∈ I and h = 1, . . . , i− 1, we have (h, i) ∈ I or (h, j) ∈ I or both.
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In view of this, we can find relation between the zeros of A in the CVAR(1) model and
those of the inverse covariance matrix.

Proposition 3. If the upper triangular matrix A of model Equation (3) has an RZP with respect to
the index set I, then the upper left d× d block of K = C−1

2 has an RZP with respect to I. Conversely,
if K has an RZP with respect to the index set I, then it is inherited to A.

Proof. In the forward direction, the proof follows from Equation (A4) of Appendix A.2 in
Appendix A. Indeed, in the presence of an index set I, giving an RZP in A, for 1 ≤ j < i ≤ d:
if lij = aji = 0, then kij = 0, since either `ih = ahi = 0 or `jh = ahj = 0 (or both) for
h = 1, . . . , j− 1, which are the intrinsic entries of the summation in Equation (A4).

In the backward direction, if kij = 0, then lij = aji = 0 too because of the Markov
equivalence of the DAG and its undirected skeleton in the decomposable case. The pres-
ence of the RZP guarantees decomposability (see the equivalences to decomposability).
Furthermore, by the nested structure of the block LDL decomposition, the entry lij is a
partial regression coefficients that is zero at the same time as the corresponding partial
correlation coefficient and the entry kij of K (see Proposition 1 and Corollary 1).

Note that, in both directions, the other matrix (K or A) may have additional zeros.
Consequently, if we have causal relations between the contemporaneous components of
Xt, and the so-constructed DAG has an RZP, then this RZP is inherited by the left upper
block of K, which is C−1(1|0). Therefore, we further improve the covariance selection
model Dempster (1972), by introducing zero entries into the sample conditional covariance
matrix. Actually, fixing the zero entries in the left upper block of K, we re-estimate the
matrix C2.

In the possession of a sample, there are exact MLEs developed for this purpose, for an
i.i.d. sample (see Bolla et al. (2019), Lauritzen (2004)). Note that here we do not have an
i.i.d. sample, but a serially correlated sample. However, by ergodicity, for “large” n, this
method also works and gives an asymptotic MLE, akin to the product-moment estimates.

For estimation purposes, we use the empirical partial correlation coefficients, and
based on them, the above exact test to check whether they significantly differ from 0 or
not. In Theorem 5.3 of Lauritzen (2004)), it is proved that, based on an i.i.d. sample, under
the covariance selection model, the MLE of the mean vector is the sample mean X̄, and
the restricted covariance matrix Σ∗ = (σ∗ij) can be estimated as follows. The entries in the
edge-positions are estimated as in the saturated model (no restrictions):

σ̂∗ij =
1
n

sij, {i, j} ∈ E, (11)

where S = (sij) = ∑n
`=1(X` − X̄)(X` − X̄)T is the usual product-moment estimate. The

other entries (in the no-edge positions) of Σ∗ are free, but satisfy the model conditions:
after taking the inverse K of Σ∗ with these undetermined entries, we obtain the same
number of equations for them from kij = 0 whenever {i, j} /∈ E. To do so, there are
numerical algorithms at our disposal, for instance, the iterative proportional scaling (IPS),
see Lauritzen (2004), p. 134, where an infinite iteration is needed because, in general, there
is no explicit solution for the MLE. However, the fixed point of this iteration gives a unique
positive definite matrix K̂.

In the decomposable case, there is no need of running the IPS, but an explicit estimate
can be given as follows. Recall that, if the Gaussian graphical model is decomposable (its
concentration graph G is decomposable), then the cliques, together with their separators
(with possible multiplicities), form a JT structure. Denote C as the set of the cliques and S
the set of the separators in G. Then, direct density estimates, using (10), are available. In
particular, the MLE of K can be calculated based on the product-moment estimates applied
for subsets of the variables, corresponding to the cliques and separators.
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Let n be the size of the sample for the underlying d-variate normal distribution, and
assume that n > d. For the clique C ∈ C, let [SC]

V denote n times the empirical covariance
matrix corresponding to the variables {Xi : i ∈ C} complemented with zero entries to
have a d× d (symmetric, positive semidefinite) matrix. Likewise, for the separator S ∈ S ,
let [SS]

V denote n times the empirical covariance matrix corresponding to the variables
{Xi : i ∈ S} complemented with zero entries to have an d × d (symmetric, positive
semidefinite) matrix. Then, the MLE of the mean vector is the sample average (as usual),
while that of the concentration matrix is

K̂ = n

{
∑

C∈C
[S−1

C ]V − ∑
S∈S

[S−1
S ]V

}
, (12)

see Proposition 5.9 of Lauritzen (2004). This proposition states that the above MLE exists
with probability one if and only if n is greater than the maximum clique size.

However, here we use a serially correlated sample as follows. Assume that the cliques
of the node set {1, . . . , d} of Xt are C1, . . . , Ck, to which a last clique is added, formed by
the components Xt−1,1, . . . , Xt−1,d of Xt−1. If C1, . . . , Ck form a JT in this ordering, the joint
density of Xt and Xt−1 factorizes like

f (xt, xt−1) = f (xt−1)
k

∏
j=1

f (xt,Rj | xt,Sj , xt−1).

For covariance selection, we include the lag 1 variables Xt−1,1, . . . , Xt−1,d too. There-
fore, the new cliques and separators are

C′j := Cj ∪ {Xt−1,1, . . . , Xt−1,d}, j = 1, . . . , k

and
S′j := Sj ∪ {Xt−1,1, . . . , Xt−1,d}, j = 2, . . . , k.

Having this, we are able to re-estimate the 2d × 2d K, inverse of C2 in (4), for our
VAR(1) model as follows:

K̂ = (n− 1)

{
k

∑
j=1

[S−1
C′j

]2d −
k

∑
j=2

[S−1
S′j

]2d

}
, (13)

where the matrix SC′ is the product-moment estimate based on the n− 1 element serially
correlated sample with the following variables:

(Xt,i : i ∈ C and Xt−1,1, . . . , Xt−1,d), t = 2, . . . , n;

furthermore, [MC′ ]
2d denotes the 2d× 2d matrix comprising the entries of the larger 2d× 2d

matrix M in the |C′| × |C′| block corresponding to C′, and otherwise zeros. By the properties
of the LDL decomposition, these zeros go into zeros of A.

In the financial example of Section 4, the cliques and separators of the forthcoming
Equation (14) are used. There the estimate of K is as follows:
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K̂ =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 k̂33

{3,4,5,6,7,8} k̂34
{3,4,5,6,7,8} k̂35

{3,4,5,6,7,8} k̂36
{3,4,5,6,7,8} k̂37

{3,4,5,6,7,8} k̂38
{3,4,5,6,7,8}

0 0 k̂43
{3,4,5,6,7,8} k̂44

{3,4,5,6,7,8} k̂45
{3,4,5,6,7,8} k̂46

{3,4,5,6,7,8} k̂47
{3,4,5,6,7,8} k̂48

{3,4,5,6,7,8}

0 0 k̂53
{3,4,5,6,7,8} k̂54

{3,4,5,6,7,8} k̂55
{3,4,5,6,7,8} k̂56

{3,4,5,6,7,8} k̂57
{3,4,5,6,7,8} k̂58

{3,4,5,6,7,8}

0 0 k̂63
{3,4,5,6,7,8} k̂64

{3,4,5,6,7,8} k̂65
{3,4,5,6,7,8} k̂66

{3,4,5,6,7,8} k̂67
{3,4,5,6,7,8} k̂68

{3,4,5,6,7,8}

0 0 k̂73
{3,4,5,6,7,8} k̂74

{3,4,5,6,7,8} k̂75
{3,4,5,6,7,8} k̂76

{3,4,5,6,7,8} k̂77
{3,4,5,6,7,8} k̂78

{3,4,5,6,7,8}

0 0 k̂83
{3,4,5,6,7,8} k̂84

{3,4,5,6,7,8} k̂85
{3,4,5,6,7,8} k̂86

{3,4,5,6,7,8} k̂87
{3,4,5,6,7,8} k̂88

{3,4,5,6,7,8}



+



0 0 0 0 0 0 0 0
0 k̂22

{2,3,5,6,7} k̂23
{2,3,5,6,7} 0 k̂25

{2,3,5,6,7} k̂26
{2,3,5,6,7} k̂27

{2,3,5,6,7} 0

0 k̂32
{2,3,5,6,7} k̂33

{2,3,5,6,7} 0 k̂35
{2,3,5,6,7} k̂36

{2,3,5,6,7} k̂37
{2,3,5,6,7} 0

0 0 0 0 0 0 0 0
0 k̂52

{2,3,5,6,7} k̂53
{2,3,5,6,7} 0 k̂55

{2,3,5,6,7} k̂56
{2,3,5,6,7} k̂57

{2,3,5,6,7} 0

0 k̂62
{2,3,5,6,7} k̂63

{2,3,5,6,7} 0 k̂65
{2,3,5,6,7} k̂66

{2,3,5,6,7} k̂67
{2,3,5,6,7} 0

0 k̂72
{2,3,5,6,7} k̂73

{2,3,5,6,7} 0 k̂75
{2,3,5,6,7} k̂76

{2,3,5,6,7} k̂77
{2,3,5,6,7} 0

0 0 0 0 0 0 0 0



+



k̂11
{1,4,5} 0 0 k̂14

{1,4,5} k̂15
{1,4,5} 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

k̂41
{1,4,5} 0 0 k̂44

{1,4,5} k̂45
{1,4,5} 0 0 0

k̂51
{1,4,5} 0 0 k̂54

{1,4,5} k̂55
{1,4,5} 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



−



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 k̂33

{3,5,6,7} 0 k̂35
{3,5,6,7} k̂36

{3,5,6,7} k̂37
{3,5,6,7} 0

0 0 0 0 0 0 0 0
0 0 k̂53

{3,5,6,7} 0 k̂55
{3,5,6,7} k̂56

{3,5,6,7} k̂57
{3,5,6,7} 0

0 0 k̂63
{3,5,6,7} 0 k̂65

{3,5,6,7} k̂66
{3,5,6,7} k̂67

{3,5,6,7} 0

0 0 k̂73
{3,5,6,7} 0 k̂75

{3,5,6,7} k̂76
{3,5,6,7} k̂77

{3,5,6,7} 0
0 0 0 0 0 0 0 0



−



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 k̂44

{4,5} k̂45
{4,5} 0 0 0

0 0 0 k̂54
{4,5} k̂55

{4,5} 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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Restricted cases in the p > 1 scenario can be treated similarly. Here, too, the existence
of an RZP in the DAG on d nodes is equivalent to the existence of an RZP in the left upper
d× d corner of the concentration matrix C−1

p+1. From the model equations, it is obvious that

Xt,i = −
d

∑
j=i+1

aijXt,j −
p

∑
h=1

d

∑
j=1

bh,ijXt−h,j −Ut,i,

where Xt,i is the ith coordinate of Xt. By weak stationarity, it follows that the entries of the
matrices A and Bh = (bh,ij)

p
i,j=1 are partial regression coefficients as follows:

aij = −βXt,iXt,j ·{Xt,i+1,...,Xt,d ,Xt−1,1,...,Xt−1,d ,...,Xt−p,1,...,Xt−p,d}, 1 ≤ i < j ≤ d;

bh,ij = −βXt,iXt+h,j ·{Xt,i+1,...,Xt,d ,Xt−1,1,...,Xt−1,d ,...,Xt−p,1,...,Xt−p,d},

1 ≤ i < j ≤ d, h = 1, . . . , d.

Since the conditioning set changes from equation to equation, it is easier to use the block
LDL decompositions here, without the exact meaning of the coefficients.

Considering the components of Xt, Xt−1, . . . , Xt−p as nodes of the expanded graph, the
joint density of Xt, Xt−1, . . . , Xt−p factorizes like

f (xt, xt−1, . . . , xt−p) = f (xt−1, . . . , xt−p) f (xt | xt−1, . . . , xt−p)

= f (xt−1, . . . , xt−p) ·
d

∏
i=1

f (xt,i | xt, par(i), xt−1, . . . , xt−p).

Now, assume that the cliques of the node set {1, . . . , d} of Xt are C1, . . . , Ck, and they
form a JT with residuals R1, . . . , Rk and separators S1, . . . , Sk (with the understanding that
S1 = ∅ and R1 = C1). Enhancing the preceding density with this, we obtain the following fac-
torization:

f (xt, xt−1, . . . , xt−p) = f (xt−1, . . . , xt−p) ·
k

∏
j=1

f (xt,Rj | xt,Sj , xt−1, . . . , xt−p).

Covariance selection can be carried out similarly as in the p = 1 case, but here zero
entries of the left upper d× d block of C−1

p+1 provide the zero entries of A. For this purpose,
the n− p element sample entries are used with the following coordinates:(

Xt,i : i ∈ C and Xt−1,1, . . . , Xt−1,d, . . . , Xt−p,1, . . . , Xt−p,d

)
,

for t = p + 1, . . . , n when we calculate the product-moment estimate SC′ with C′ = C ∪
{Xt−1, . . . , Xt−p}. For more details, see the explanation after Equation (13) and Section 4.

Again, here the covariance selection is carried out based only on a serially correlated
and not an independent sample. However, when n is “large”, then ergodicity issues (see,
e.g., Bolla and Szabados (2021)) give rise to this relaxation of the original algorithm. In
addition, by the theory of Brockwell and Davis (1991) (p. 424), it is guaranteed that the
Yule–Walker equations have a stable stationary solution to the VAR(p) model, whenever
the starting covariance matrix of (p + 1)× (p + 1) blocks is positive definite. However,
we assume this in our theorems. In this case, the empirical versions are also positive
definite (almost surely as n→ ∞), and the covariance selection also gives a positive definite
estimate. Thus, the estimated parameter matrices provide a stable VAR model in view of
the standard theory and ergodicity if n is “large”.

4. Applications with Order Selection
4.1. Financial Data

We used the data communicated in the paper Akbilgic et al. (2014) on daily relative
returns of eight different asset prices, spanning 534 days. The multivariate time series was
found to be stationary and nearly Gaussian.
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First, we applied the unrestricted CVAR(p) model. We constructed a DAG by making
the undirected graph on eight nodes directed. The undirected graph was constructed
by testing statistical hypotheses for the partial correlations of the pairs of the variables
conditioned on all the others. As the test statistic is increasing in the absolute value of the
partial correlation in question, a threshold 0.04 for the latter one was used that corresponds
to significance level α = 0.008851 of the partial correlation test. Table 1 contains the partial
correlations based on C−1(0).

Table 1. Partial correlation coefficients from C−1(0). Entries marked by asterisk are less than 0.04
in absolute value (i.e., they correspond to no-edge positions in the graph), and the corresponding
significance is α = 0.008851.

NIK EU ISE EM BVSP DAX FTSE SP

NIK 0.016 * 0.035 * 0.522 −0.260 −0.019 * −0.076 0.024 *
EU 0.016 * 0.217 0.034 * 0.067 0.687 0.747 0.018 *
ISE 0.035 * 0.217 0.358 −0.157 −0.077 −0.059 0.034 *
EM 0.522 0.034 * 0.358 0.546 0.048 0.086 −0.184

BVSP −0.260 0.067 −0.157 0.546 −0.093 −0.045 0.533
DAX −0.019 * 0.687 −0.077 0.048 −0.093 −0.203 0.191
FTSE −0.076 0.747 −0.059 0.086 −0.045 −0.203 0.057

SP 0.024 * 0.018 * 0.034 * −0.184 0.533 0.191 0.057

Since the graph was triangulated, with the MCS algorithm, we were able to (not
necessarily uniquely) label the nodes so that the adjacency matrix of this undirected graph
had an RZP:

1 : NIK (stock market return index of Japan),

2 : EU (MSCI European index),

3 : ISE (Istanbul stock exchange national 100 index)

4 : EM (MSCI emerging markets index),

5 : BVSP (stock market return index of Brazil),

6 : DAX (stock market return index of Germany),

7 : FTSE (stock market return index of UK),

8 : SP (Standard & Poor’s 500 return index).

If this is considered as the topological labeling of the DAG, where directed edges
point from a higher label node to a lower label one, then the so-obtained directed graph is
Markov equivalent to its undirected skeleton; see Figure 2a,b. However, the RZP is used
only in the restricted case; in the unrestricted case, only the DAG ordering of the variables
is used.

NIK

EU

ISE

EM

BVSP

DAX

FTSE

SP

(a) MRF fitted to the financial dataset.
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(b) DAG oriented in the MCS ordering.

Figure 2. Graphical models fitted to the financial dataset.
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We ran the VAR(p) algorithm with p = 1, 2, 3, 4, 5 and found that the A matrices do not
change much with increasing p, akin to B1. The B2, . . . , B5 matrices have relatively “small”
entries. Consequently, contemporaneous effects and one-day lags are the most important.
This is also supported by the forthcoming order selection investigations. For the p = 1 and
p = 2 cases, see Tables 2–6, respectively. The p = 3, 4, 5 cases are represented by tables in
the Supplementary Material.

Then, we considered the restricted CVAR(1) model. Here, we want to introduce
structural zeros into the matrix A. Now, the matrix C−1(1|0), the left upper 8× 8 corner of
C−1

2 is used for covariance selection. Figure 2b shows this DAG with the significant path
coefficients above the arrows, based on Table 7.

Table 2. A matrix for the unrestricted Financial VAR(1) model (rounded to 4 decimals).

NIK EU ISE EM BVSP DAX FTSE SP

NIK 1 0.0264 0.0042 −0.8902 0.2030 0.0170 0.0781 −0.0336
EU 0 1 −0.0418 −0.0146 −0.0239 −0.3746 −0.5255 −0.0033
ISE 0 0 1 −0.9518 0.1613 −0.1658 −0.3129 −0.1413
EM 0 0 0 1 −0.3507 −0.1182 −0.2464 0.1077

BVSP 0 0 0 0 1 −0.0129 −0.2782 −0.6375
DAX 0 0 0 0 0 1 −0.8102 −0.2336
FTSE 0 0 0 0 0 0 1 −0.6100

SP 0 0 0 0 0 0 0 1

Table 3. B matrix for the unrestricted Financial VAR(1) model (rounded to 4 decimals).

NIK−1 EU−1 ISE−1 EM−1 BVSP−1 DAX−1 FTSE−1 SP−1

NIK 0.1845 −0.1685 −0.0874 0.0852 0.0635 0.0205 −0.1236 −0.2798
EU −0.0131 0.1219 −0.0044 0.0291 −0.0124 −0.0393 −0.0979 0.0011
ISE 0.0677 0.2811 −0.0657 0.2473 −0.2940 −0.0543 0.0098 −0.1442
EM −0.0016 −0.0569 −0.0159 0.1076 −0.0917 −0.0945 0.0875 −0.1071

BVSP −0.0140 0.0704 0.0142 −0.1046 0.1397 −0.1497 0.1188 −0.0812
DAX −0.0034 0.2021 −0.0342 −0.0044 −0.0352 −0.0476 −0.0670 −0.0673
FTSE 0.0293 −0.0168 −0.0109 0.0420 −0.1129 0.2141 0.0805 −0.2641

SP 0.0417 0.2603 −0.0261 0.0112 −0.0026 −0.0709 −0.2850 0.1240

Table 4. A matrix for the unrestricted Financial VAR(2) model (rounded to 4 decimals).

NIK EU ISE EM BVSP DAX FTSE SP

NIK 1 −0.0114 0.0103 −0.8822 0.1995 0.0233 0.0856 −0.0214
EU 0 1 −0.0426 −0.0110 −0.0240 −0.3745 −0.5137 −0.0128
ISE 0 0 1 −0.9788 0.1701 −0.1669 −0.3139 −0.1361
EM 0 0 0 1 −0.3450 −0.1154 −0.2375 0.0922

BVSP 0 0 0 0 1 −0.0047 −0.2655 −0.6601
DAX 0 0 0 0 0 1 −0.8120 −0.2339
FTSE 0 0 0 0 0 0 1 −0.6320

SP 0 0 0 0 0 0 0 1

Table 5. B1 matrix for the unrestricted Financial VAR(2) model (rounded to 4 decimals).

NIK−1 EU−1 ISE−1 EM−1 BVSP−1 DAX−1 FTSE−1 SP−1

NIK 0.2063 −0.1826 −0.1106 0.1063 0.0731 0.0187 −0.1502 −0.2580
EU −0.0037 0.1364 −0.0010 0.0232 −0.0150 −0.0371 −0.0996 −0.0107
ISE 0.0409 0.2476 −0.0771 0.2274 −0.2772 −0.0447 0.0331 −0.1284
EM 0.0489 −0.0200 −0.0030 0.1360 −0.1150 −0.0996 0.0468 −0.1162

BVSP −0.0066 0.0931 0.0261 −0.1091 0.1312 −0.1573 0.1161 −0.0935
DAX −0.0123 0.2146 −0.0319 0.0073 −0.0406 −0.0536 −0.0727 −0.0694
FTSE 0.0852 0.0019 0.0275 0.0145 −0.1117 0.2377 0.1035 −0.3427

SP 0.0530 0.2759 −0.0565 −0.0033 0.0024 −0.0945 −0.3106 0.1789
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The ordering of the variables is the same as in the unrestricted case, but the RZP is a
bit different. The decomposable structure has the following cliques and separators:

C1 = {BVSP, DAX, EM, FTSE, ISE, SP} = {3, 4, 5, 6, 7, 8}
C2 = {BVSP, DAX, EU, FTSE, ISE} = {2, 3, 5, 6, 7}
C3 = {BVSP, EM, NIK} = {1, 4, 5}
S2 = {BVSP, DAX, FTSE, ISE} = {3, 5, 6, 7}
S3 = {BVSP, EM} = {4, 5},

(14)

where the parent clique of both C2 and C3 is C1. Note that the set of nodes in the second
braces is the same, but they follow increasing labels so that they better see the JT structure.
The 16× 16 matrix K̂ is estimated by covariance selection, using the lag 1 variables too; see
it in a table in the Supplementary Material.

Table 6. B2 matrix for the unrestricted Financial VAR(2) model (rounded to 4 decimals).

NIK−2 EU−2 ISE−2 EM−2 BVSP−2 DAX−2 FTSE−2 SP−2

NIK −0.0402 −0.1695 −0.0410 0.0156 0.0998 −0.0406 0.1367 −0.0091
EU 0.0017 0.0771 −0.0065 0.0054 0.0037 0.0192 −0.0762 −0.0394
ISE −0.0142 −0.1725 −0.0276 −0.0088 0.0389 0.1167 0.0826 0.0357
EM −0.0054 0.0650 −0.0322 0.1155 −0.0695 −0.0959 −0.0162 −0.0270

BVSP −0.0423 0.0332 −0.0449 0.2878 −0.0717 −0.0221 −0.0381 −0.0120
DAX −0.0372 0.0177 0.0130 0.0658 −0.0360 −0.0108 −0.0202 0.0059
FTSE 0.0491 0.3107 −0.0820 0.0693 0.0299 0.0153 −0.0840 −0.3038

SP 0.0447 −0.0628 0.0804 −0.1824 0.0785 0.0133 −0.1775 0.1284

The matrices A and B were estimated via the algorithm for the LDL decomposition of
K̂. Here, the zeros of the left upper 8× 8 block of K̂ will necessarily result in the zeros of A
in the same positions. The upper-diagonal entries of A and the entries of B are considered
as path coefficients which represent the contemporaneous and 1-day lagged effect of the
assets to the others, respectively; see Tables 7 and 8.

Table 7. A matrix for the restricted Financial VAR(1) model (rounded to 4 decimal places).

NIK EU ISE EM BVSP DAX FTSE SP

NIK 1 0 0 −0.8193 0.2080 0 0 0
EU 0 1 −0.0421 0 −0.0269 −0.3782 −0.5297 0
ISE 0 0 1 −0.9386 0.1653 −0.1675 −0.3161 −0.1477
EM 0 0 0 1 −0.3419 −0.1184 −0.2464 0.0997

BVSP 0 0 0 0 1 −0.0130 −0.2729 −0.6423
DAX 0 0 0 0 0 1 −0.8102 −0.2336
FTSE 0 0 0 0 0 0 1 −0.6104

SP 0 0 0 0 0 0 0 1

Table 8. B matrix for the restricted Financial VAR(1) model (rounded to 4 decimal places).

NIK−1 EU−1 ISE−1 EM−1 BVSP−1 DAX−1 FTSE−1 SP−1

NIK 0.1811 −0.1797 −0.0856 0.0842 0.0739 −0.0058 −0.1146 −0.2662
EU −0.0131 0.1213 −0.0046 0.0304 −0.0130 −0.0415 −0.0969 0.0002
ISE 0.0676 0.2814 −0.0658 0.2483 −0.2941 −0.0567 0.0120 −0.1472
EM −0.0016 −0.0567 −0.0158 0.1067 −0.0908 −0.0951 0.0890 −0.1085

BVSP −0.0139 0.0704 0.0142 −0.1041 0.1391 −0.1488 0.1195 −0.0828
DAX −0.0034 0.2019 −0.0342 −0.0046 −0.0353 −0.0474 −0.0669 −0.0672
FTSE 0.0292 −0.0171 −0.0109 0.0419 −0.1130 0.2142 0.0807 −0.2642

SP 0.0417 0.2608 −0.0261 0.0115 −0.0026 −0.0713 −0.2853 0.1239
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In the VAR(2) situation, the graph, constructed by C−1(2|1, 0), is the same, has the
same JT with 3 cliques, and the same RZP as based on C−1(1|0). It is in accordance
with our former observation that the lag of 2 or more days’ effects of the assets to the
others is negligible compared to the 1-day lag effect (the forthcoming order selection also
supports this).

Here, the 24× 24 matrix K̂ was estimated by adapting Equation (13) to the 3d× 3d
situation, by using both the lag 1 and lag 2 variables for covariance selection. This is to be
found in the Supplementary Material. The estimated A, B1, and B2 matrices are shown in
Tables 9–11.

Table 9. A matrix for the restricted Financial VAR(2) model (rounded to 4 decimals).

NIK EU ISE EM BVSP DAX FTSE SP

NIK 1 0 0 −0.8191 0.2076 0 0 0
EU 0 1 −0.0423 0 −0.0293 −0.3811 −0.5192 0
ISE 0 0 1 −0.9662 0.1790 −0.1713 −0.3112 −0.1470
EM 0 0 0 1 −0.3361 −0.1153 −0.2372 0.0835

BVSP 0 0 0 0 1 −0.0069 −0.2544 −0.6664
DAX 0 0 0 0 0 1 −0.8128 −0.2336
FTSE 0 0 0 0 0 0 1 −0.6319

SP 0 0 0 0 0 0 0 1

Table 10. B1 matrix for the restricted Financial VAR(2) model (rounded to 4 decimals).

NIK−1 EU−1 ISE−1 EM−1 BVSP−1 DAX−1 FTSE−1 SP−1

NIK 0.2009 −0.1869 −0.1098 0.1089 0.0824 −0.0079 −0.1493 −0.2428
EU −0.0038 0.1387 −0.0013 0.0260 −0.0153 −0.0410 −0.1027 −0.0086
ISE 0.0353 0.2865 −0.0750 0.2479 −0.2741 −0.0639 0.0101 −0.1418
EM 0.0494 −0.0218 −0.0027 0.1338 −0.1144 −0.0990 0.0500 −0.1177

BVSP −0.0107 0.1202 0.0276 −0.0947 0.1327 −0.1674 0.0987 −0.1030
DAX −0.0110 0.2072 −0.0322 0.0034 −0.0412 −0.0503 −0.0677 −0.0675
FTSE 0.0824 0.0176 0.0281 0.0224 −0.1104 0.2309 0.0928 −0.3463

SP 0.0506 0.2898 −0.0560 0.0040 0.0037 −0.1010 −0.3199 0.1760

Table 11. B2 matrix for the restricted Financial VAR(2) model (rounded to 4 decimals).

NIK−2 EU−2 ISE−2 EM−2 BVSP−2 DAX−2 FTSE−2 SP−2

NIK −0.0455 −0.1847 −0.0391 0.0264 0.0906 −0.0486 0.1427 0.0089
EU 0.0017 0.0755 −0.0058 0.0047 0.0033 0.0179 −0.0765 −0.0370
ISE −0.0161 −0.1634 −0.0290 −0.0021 0.0352 0.1113 0.0821 0.0313
EM −0.0056 0.0659 −0.0330 0.1189 −0.0701 −0.0959 −0.0167 −0.0283

BVSP −0.0430 0.0415 −0.0456 0.2906 −0.0729 −0.0258 −0.0389 −0.0168
DAX −0.0369 0.0163 0.0130 0.0656 −0.0356 −0.0100 −0.0203 0.0064
FTSE 0.0485 0.3142 −0.0820 0.0716 0.0290 0.0128 −0.0845 −0.3054

SP 0.0442 −0.0606 0.0805 −0.1825 0.0778 0.0117 −0.1773 0.1281

Summarizing, in the p = 1 and p = 2 cases, when we took into consideration the lag 1
and 2 variables, respectively, in the graph building, we obtained the same graph with the
same threshold for the partial correlation coefficients as in the CVAR(0) case.

To find the optimal order p, information criteria are suggested; see e.g., Box et al.
(2015); Brockwell and Davis (1991). Here, the following criteria will be used: the AIC
(Akaike Information Criterion), the AICC (bias corrected version of the AIC), the BIC
(Bayesian information criterion), and the HQ (Hannan and Quinn’s criterion). Each criterion
can be decomposed into two terms: an information term that quantifies the information
brought by the model (via the likelihood) and a penalization term that penalizes too “large”
number of parameters, in order to avoid over-fitting. It can be proven that the AIC has a
positive probability of overspecification and the BIC is strongly consistent, but sometimes
it underspecifies the true model. The explicit forms of AIC, BIC, and HQ, which are to be
minimized with respect to p, are as follows:
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where ∆̂ is the estimated error covariance matrix ∆.
The AICC (Akaike Information Criterion Corrected) is a bias-corrected version of

Akaike’s AIC, which is an estimate of the Kullback–Leibler index of the fitted model
relative to the true model and needs further explanation. Here,

AICC(p) = −2 ln L(Â, B̂1, . . . , B̂p, ∆̂) + penalty(p),

where the first term is −2 times the log-likelihood function, evaluated at the parameter
estimates of Theorems 1 and 2, whereas the second term penalizes the computational
complexity. The model parameters A, B1, . . . , Bp, and ∆ are estimated by the block Cholesky
decomposition of the estimated inverse covariance matrix C−1

p+1 of the Gaussian random

vector (XT
t , XT

t−1, . . . , XT
t−p)

T ; see Algorithms of Appendices A.2 and A.4. This is a moment
estimation, but since our underlying distribution is multivariate Gaussian, which belongs
to the exponential family, asymptotically, it is also an MLE (for “large” n) that satisfies the
moment matching equations, see Wainwright and Jordan (2008). Of course, the matrices
Â, B̂1, . . . , B̂p, and ∆̂ also depend on p, but for simplicity, we do not denote this dependence.
More exactly,

L(Â, B̂1, . . . , B̂p, ∆̂) = (2π)−
(n−p)d

2 |∆̂|−
n−p

2 e−
1
2 ∑n

t=p+1 UT
t ∆̂−1Ut

= (2π)−
(n−p)d

2 (
d

∏
j=1

δ̂j)
− n−p

2 e−
1
2 ∑n

t=p+1 ∑d
j=1(U

2
tj/δ̂j),

where
Ut = Â(Xt − X̂t),

and
X̂t = −Â−1B̂1Xt−1 − · · · − Â−1B̂pXt−p,

for t = p + 1, . . . , n.
In the unrestricted model, the complexity term (see Brockwell and Davis (1991)) is

2
[

pd2 + (d
2)
]
(n− p)d

(n− p)d− pd2 − (d
2)− 1

.

Therefore,

AICC(p) = (n− p)d ln(2π) + (n− p) ln |∆̂|+
n

∑
t=p+1

UT∆̂−1Ut +
2
[

pd2 + (d
2)
]
(n− p)d

(n− p)d− pd2 − (d
2)− 1

= (n− p)d ln(2π) + (n− p)
d

∑
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ln δ̂j +
n

∑
t=p+1

d

∑
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U2
tj

δ̂j
+

2
[

pd2 + (d
2)
]
(n− p)d

(n− p)d− pd2 − (d
2)− 1

.

In the restricted model, the penalization term depends on the cardinalities of the
cliques C1, . . . , Ck that are the same for all p. The penalization terms for the four criteria are
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penaltyAIC(p) =
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The cliques are usually of “small” sizes that can reduce computational complexity, in partic-
ular, when the number of variables d is much “larger” than the clique sizes. Furthermore,
the separators are intersections of the cliques, so the number of product-moments calculated
within them can be subtracted.

All of these criteria are tested, for both the restricted and unrestricted CVAR(p) models,
using the financial data above for p = 1, 2, . . . , 9. The results for the unrestricted case are
shown in Table 12.

Table 12. Order selection criteria for the unrestricted Financial CVAR(p) model, bold-face values
represent minimum of each criterion.

p AIC AICC BIC HQ

1 −76.81 −33,222.68 −76.07 −76.52
2 −76.85 −33,173.98 −75.60 −76.36
3 −76.84 −33,095.75 −75.08 −76.15
4 −76.83 −33,011.98 −74.55 −75.94
5 −76.77 −32,893.23 −73.97 −75.67
6 −76.69 −32,766.33 −73.37 −75.39
7 −76.58 −32,612.38 −72.74 −75.08
8 −76.48 −32,457.38 −72.11 −74.77
9 −76.41 −32,316.33 −71.52 −74.49

Observe that, in the unrestricted case, AIC reaches the minimum for p = 2, whereas
AICC, BIC, and HQ for p = 1. This is in accordance with our previous experience that the
parameter matrices did not change much after the first or second day.

In the restricted case (see Table 13), except for the AIC, every criterion suggests that the
best model is obtained with p = 1. Thus, the parameter matrices did not change much after
the first day, except for AIC, which seems to overspecify the model and was the lowest on
the 4th day, i.e., the last workday after the first workday. In addition, these criteria showed
only a minuscule decrease in the restricted case; probably because the clique sizes were not
significantly smaller than d.

Table 13. Order selection criteria for the restricted Financial CVAR(p) model; bold-face values
represent the minimum of each criterion.

p AIC AICC BIC HQ

1 −76.87 −33,239.11 −76.19 −76.60
2 −76.91 −33,190.27 −75.71 −76.44
3 −76.93 −33,129.67 −75.22 −76.26
4 −77.00 −33084.90 −74.77 −76.13
5 −76.94 −32,969.37 −74.19 −75.86
6 −76.92 −32,869.31 −73.65 −75.64
7 −76.81 −32,718.36 −73.02 −75.33
8 −76.80 −32,612.63 −72.49 −75.11
9 −76.78 −32,495.56 −71.94 −74.88
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Componentwise predictions of Xt with RMSEs and figures are shown in the Supple-
mentary Material.

4.2. IMR (Infant Mortality Rate) Longitudinal Data

Here, we used the longitudinal data of six indicators (components of Xt), spanning
21 years (1995–2015) from the World Bank in the case of Egypt:

1 : IMR (Infant mortality rate),

2 : MMR (Maternal mortality ratio),

3 : HepB (Hepatitis-B immunization),

4 : GDP (Gross domestic per capita),

5 : OPExp (Out-of-pocket health expenditure as % of HExp),

6 : HExp (Current health expenditure as % of GDP).

(15)

For more details about these indicators, see Abdelkhalek and Bolla (2020). Through the
CVAR(p) model, we show the contemporaneous and lagged time effects between the
components. Since the sample size is small, we investigate only the CVAR(1) model in the
unrestricted and restricted situations. Furthermore, the variables are measured on different
scales; thus, we use the autocorrelations which are the autocovariances of the standardized
variables. We distinguish between two working hypotheses with respect to two different
ordering of the variables given by an expert:

• Case 1: {IMR, MMR, HepB, OPExp, HExp, GDP}.
• Case 2: {IMR, MMR, HepB, GDP, OPExp, HExp}.

In the unrestricted CVAR(1) model, both orderings work, but we present only Case
1. (The estimated matrices A and B are mostly the same in both cases, but the entries are
interchanged with respect to the ordering of the variables.) The entries of matrix A (see
Table 14) represent the contemporaneous effects (path coefficients) between the components
at time t. The MMR has the largest contemporaneous inverse causal effect on the IMR,
i.e., an increase in the MMR caused a decrease in the IMR by 1.13. Matrix B (see Table 15),
on the other hand, indicates the path coefficients of the one time lag causal effect of Xt−1
on the current Xt components. An increase in the IMR at a one-year time lag caused an
increase in the IMR at the current time by 0.29. All other path coefficients in the matrices
A, B can be explained likewise.

Table 14. A matrix for the IMR unrestricted VAR(1) model of Case 1 (rounded to 4 decimals).

IMR MMR HepB OPExp HExp GDP

IMR 1.0 −1.1259 −0.0161 0.0003 0.0176 −0.1348
MMR 0.0 1.0000 0.3594 0.0492 −0.0684 0.7135
HepB 0.0 0.0000 1.0000 −0.1626 0.2510 −0.8196

OPExp 0.0 0.0000 0.0000 1.0000 −0.6876 −0.4229
HExp 0.0 0.0000 0.0000 0.0000 1.0000 0.6749
GDP 0.0 0.0000 0.0000 0.0000 0.0000 1.0000

In the restricted CVAR(1) model, the graph structure is important. We consider only
Case 2 that provides the RZP and corresponds to the ordering of (15). Note that the so-
obtained DAG is Markov equivalent to its undirected skeleton. The decomposable structure
of the JT has two cliques and only one separator as follows:

C1 = {IMR, MMR, HepB3, GDP, HExp} = {1, 2, 3, 4, 6},
C2 = {OPExp, HExp} = {5, 6},
S2 = {HExp} = {6}.
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In this case, the n − 1 element sample including lag 1 variables is used to estimate the
12× 12 matrix K̂ with covariance selection, see Equation (13). Then, the LDL algorithm was
applied to the so-obtained K̂ (shown in the Supplementary Material) to estimate the model
parameters A, B. Unlike the unrestricted model, here there are prescribed zero entries in K̂
and A. Specifically, the zeros of the left upper 6× 6 corner of K̂ will necessarily result in the
zeros of the estimated matrix A in the same positions. Similarly to the unrestricted situation,
the non-zero upper-diagonal entries of A (see Table 16) represent the path coefficients of
the contemporaneous causal effects of Xt, while the entries of the matrix B (see Table 17)
represent the one time lag causal effects of the Xt−1 components on the Xt components.

Table 15. B matrix for the IMR unrestricted VAR(1) model of Case 1 (rounded to 4 decimals).

IMR-1 MMR-1 HepB-1 OPExp-1 HExp-1 GDP-1

IMR 0.2986 −0.3589 −0.0076 0.0042 −0.0115 −0.0639
MMR −0.0149 −0.7469 −0.2358 0.0540 0.0193 −0.5577
HepB 13.0541 −15.7658 −1.1915 −0.3506 0.2170 −1.7902

OPExp 7.1616 −8.0906 −0.2994 −0.1038 −0.0215 −0.7720
HExp 1.6861 −2.9922 −0.4650 −0.1566 −0.0681 −1.0913
GDP −11.0674 13.2182 0.3254 0.3204 −0.3099 1.2129

Table 16. A matrix for the IMR restricted VAR(1) model of Case 2 (rounded to 4 decimals).

IMR MMR HepB GDP OPExp HExp

IMR 1.0 0.0736 0.0052 0.0111 0.0 0.0040
MMR 0.0 1.0000 0.0237 0.1180 0.0 −0.0116
HepB 0.0 0.0000 1.0000 −0.3418 0.0 0.0236
GDP 0.0 0.0000 0.0000 1.0000 0.0 −0.0035

OPExp 0.0 0.0000 0.0000 0.0000 1.0 −0.7854
HExp 0.0 0.0000 0.0000 0.0000 0.0 1.0000

Table 17. B matrix for the IMR restricted VAR(1) model of Case 2 (rounded to 4 decimals).

IMR-1 MMR-1 HepB-1 GDP-1 OPExp-1 HExp-1

IMR −0.9198 −0.0592 −0.0021 0.0053 −0.0013 −0.0049
MMR −1.0175 0.2511 −0.0002 0.0607 −0.0047 0.0039
HepB 3.6850 -4.4606 −0.9058 −0.4230 −0.0811 −0.0950
GDP 0.5849 −0.4453 0.0640 −0.8573 0.0896 0.1086

OPExp 3.6432 −3.7486 −0.1413 −0.4380 0.0273 −0.0926
HExp 1.9561 −3.4687 −0.5221 −0.6302 −0.2298 −0.1171

5. Discussion

The main contribution of our paper is the introduction of causality in VAR models by
using graphical modeling tools. SVAR models are known in the literature, but there the
inclusion of the upper triangular matrix A rather facilitates an alternative solution for the
Yule–Walker equations, and not the causal ordering of the contemporaneous effects.

Our unrestricted CVAR model does this job, where the recursive ordering of the
variables follows a DAG ordering in the directed graphical model contemporaneously, and
the entries of A are treated like path coefficients of SEM. In addition, the white noise process
Ut of structural shocks (see Equation (6)) is obtained from the process Vt of innovations in
the reduced form (see Equation (1)) and has an econometric interpretation. The structural
shocks are mutually uncorrelated, and they are assigned to the individual variables. They
also represent unanticipated changes in the observed econometric variables. However, they
are not just orthogonalized innovations, but here the labeling of the nodes and the graph
skeleton behind the matrix A also matters.
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In the unrestricted case, the following estimation scheme is used. The DAG is built
partly by expert knowledge and partly by starting with an undirected Gaussian graphical
model, using known algorithms (e.g., MCS) to find a triangulated graph and a (not neces-
sarily unique) perfect labeling of the nodes, in which ordering the directed and undirected
models are Markov equivalent to each other (there are no sink V configurations in the
DAG). However, here the Markov equivalence is not important: even if the undirected
graph is not triangulated, and the DAG contains sink Vs, the DAG ordering (given, e.g., by
an expert) can be used to estimate the A and B matrices, which are full in the sense that
no zero constraints for their entries are assumed at the beginning. After having the DAG
ordering, we apply the block LDL decomposition for the estimated block matrix C2 or Cp+1,
and retrieve the estimated parameter matrices by Theorem 1 or Theorem 2.

It is the restricted CVAR model, where zero constraints for the entries of A (in the
given DAG ordering) are made. For this purpose, we re-estimate the covariance matrix
(the big block matrix, the size of which depends on the order p of the model) such that
the entries in the left upper block of its inverse are zeros in the no-edge positions. For
this, there is the method of covariance selection at our disposal, which works for Gaussian
variables even if the prescribed zeros in the inverse covariance matrix do not have the RZP
(RZP is just the property of decomposable models). In this case, our algorithm first applies
algorithms (e.g., MCS) to find the JT structure of the graph (which is equivalent to having
an RZP). The estimation scheme is enhanced with covariance selection, for which there are
closed form estimates in the decomposable case. Actually, we use an improved version
of the covariance selection that needs higher order autocovariances too and relaxes the
independence of the sample entries which are only serially correlated. This is supported by
ergodicity issues if n is “large”. Note that, in the lack of an RZP, the covariance selection
still works, but it needs the infinite iteration (IPS).

Since the necessary product-moment estimates include only variables belonging to
the cliques and separators, and the separators are intersections of the cliques, this fact
can reduce the computational complexity of the restricted CVAR model compared to the
unrestricted one. The information criteria, applied to select the optimal order p, also take
into consideration the number of relevant parameters to be estimated.

6. Conclusions and Further Perspectives

Our algorithm is also applicable to longitudinal data instead of time series. The p = 0
case resolves the problem posed in Wermuth (1980), and the p = 1 case is also applicable
to solve a SEM with endogenous and exogenous variables.

As a further perspective, lagged causalities could also be introduced, with some upper
triangular matrices B. For example, if the previous time observations influence the present
time ones, and the order of causalities is the same as that of the contemporaneous ones,
then B1 is also upper triangular. This problem can be solved by running the block Cholesky
decomposition with 2d singleton blocks and treating only the other blocks “en block”.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/econometrics11010007/s1. For illustrating the CVAR model and
related algorithms, there are supporting Python and notebook files uploaded, together with some
additional tables and figures: CVAR.py, CVAR_example.ipynb, CVARtables.pdf, CVARfigures.pdf.
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Abbreviations
The following abbreviations are used in this manuscript:

VAR Vector AutoRegression
SVAR Structural Vector AutoRegression
CVAR Causal Vector AutoRegression
SEM Structural Equation Modeling
DAG Directed Acyclic Graph
JT Junction Tree
MCS Maximal Cardinality Search
IPS Iterative Proportional Scaling
RZP Reducible Zero Pattern
MRF Markov Random Field
AIC Akaike Information Criterion
AICC Akaike Information Criterion Corrected
BIC Bayesian Information Criterion
HQ Hannan and Quinn’s criterion
MLE Maximum Likelihood Estimate
PLS Partial Least Squares regression
RMSE Root Mean Square Error
IMR Infant Mortality Rate
LDL variant of the Cholesky decomposition for a symmetric, positive semidefinite matrix

as L (lower triangular)×D (diagonal)×LT

Appendix A. Proofs of the Main Theorems

Appendix A.1. Proof of Theorem 1

First of all, note that the block Cholesky decomposition applies to K partitioned
symmetrically into (d+ 1)× (d+ 1) blocks of sizes 1, . . . , 1, d, where the number of singleton
blocks (of size 1) is d. (In the p = 0 case, all the blocks are singletons, so the standard LDL
decomposition is applicable.) Therefore, in the main diagonal of the resulting L, we have
number d of 1s and Id×d (the d× d identity matrix), see the forthcoming Equation (A3). In
other words, the last d rows (and columns) are treated “en block”; this is why here indeed
the block LDL (variant of the block Cholesky) decomposition is applicable.

Let us compute the inverse of the matrix LDLT with block matrices L and D par-
titioned as in Equation (5). For the time being, we only assume that A is a d× d upper
triangular matrix with 1s along its main diagonal, B is d× d, and the diagonal matrix ∆ has
positive diagonal entries. We will use the computation rule of the inverse of a symmetrically
partitioned block matrix Rózsa (1991), which is applicable due to the fact that |A| = 1, so
the matrix A is invertible:

https://archive.ics.uci.edu/ml/datasets/ISTANBUL+STOCK+EXCHANGE
https://archive.ics.uci.edu/ml/datasets/ISTANBUL+STOCK+EXCHANGE
https://data.worldbank.org/indicator
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(LDLT)−1 =

(
A B

Od×d Id×d

)−1(
∆−1 Od×d

Od×d C−1(0)

)−1(AT Od×d
BT Id×d

)−1

=

(
A−1 −A−1B

Od×d Id×d

)(
∆ Od×d

Od×d C(0)

)(
(AT)−1 Od×d

−BT(AT)−1 Id×d

)
=

(
A−1∆(A−1)T + A−1BC(0)BT(A−1)T −A−1BC(0)

−C(0)BT(AT)−1 C(0)

)
.

Now, we are going to prove that the above matrix equals C2 if and only if A, B, ∆ satisfy the
model equations. Comparing the blocks to those of (4), the right bottom block is C(0) in
both expressions. Comparing the left bottom blocks, we obtain −C(0)BT(AT)−1 = C(1),
and so BT = −C−1(0)C(1)AT and B = −ACT(1)C−1(0) should hold for B. It is in
accordance with the model equation. Indeed, (3) is equivalent to

BXt−1 = −AXt + Ut,

which, after multiplying with XT
t−1 from the right and taking expectations into considera-

tion, yields BC(0) = −ACT(1) that in turn provides

B = −ACT(1)C−1(0). (A1)

By symmetry, the same applies to the right upper block. As for the left upper block,

A−1∆(AT)−1 + A−1BC(0)BT(AT)−1 = C(0)

should hold. Multiplying this equation with A from the left and with AT from the right,
we obtain the equivalent equation

∆ = AC(0)AT − BC(0)BT . (A2)

This is in accordance with Equation (3), which implies

E(AXt + BXt−1)(AXt + BXt−1)
T = AC(0)AT + ACT(1)BT + BC(1)AT + BC(0)BT = ∆.

Combining this with Equation (A1), we obtain

∆ = AC(0)AT + ACT(1)BT + BC(1)AT + BC(0)BT

= AC(0)AT − ACT(1)C−1(0)C(1)AT − ACT(1)C−1(0)C(1)AT

+ ACT(1)C−1(0)C(0)C−1(0)C(1)AT

= AC(0)AT − ACT(1)C−1(0)C(1)AT = AC(0)AT − BC(0)BT ,

which also satisfies (A2).
Summarizing, we have proved that, under the model equations, (LDLT)−1 = C2,

or equivalently, LDLT = K indeed holds. In view of the uniqueness of the block LDL
decomposition (under positive definiteness of the involved matrices), this finishes the proof.

Appendix A.2. Algorithm for the Block LDL Decomposition of Appendix A.1

By the preliminary assumptions, K and so D are positive definite; therefore, ∆ has
positive diagonal entries. To apply the protocol of the block Cholesky decomposition, which
gives the theoretically guaranteed unique solution, it is worth writing the above matrices
according to the blocks as follows. The matrix L has the partitioned form
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L =



1 0 0 . . . 0 0 . . . 0
`21 1 0 . . . 0 0 . . . 0
`31 `32 1 . . . 0 0 . . . 0
...

...
...

...
... 0 . . . 0

`d1 `d2 . . . `d,d−1 1 0 . . . 0

`d+1,1 `d+1,2
... `d+1,d−1 `d+1,d Id×d


, (A3)

where the 2d× 2d lower triangular matrix L is also lower triangular with respect to its
blocks which are partly scalars, partly vectors, and partly matrices as follows:

`ij =


aji, j = 1, . . . , d− 1; i = j + 1, . . . , d;
1 i = j = 1, . . . , d;
0 i = 1, . . . , d; j = i + 1, . . . , 2d;

Furthermore, the vectors `d+1,j are d× 1 for j = 1, . . . , d, and comprise the column vectors
of the d× d matrix BT . The matrix in the bottom right block is the d× d identity Id×d, and
above it, the zero entries can be arranged into the d× d zero matrix Od×d.

The 2d× 2d block-diagonal matrix D in partitioned form is

D =



δ−1
1 0 0 . . . 0 0 . . . 0
0 δ−1

2 0 . . . 0 0 . . . 0
0 0 δ−1

3 . . . 0 0 . . . 0
...

...
...

...
... 0 . . . 0

0 0 0 0 δ−1
d 0 . . . 0

0 0
... 0 0 C−1(0)


,

where the d× 1 vectors 0 comprise Od×d in the left bottom, and the entries comprise the
inverse of the d× d positive definite matrix C(0) in the right bottom block. We perform
the following multiplications of block matrices, also using formulas Golub and Van Loan
(2012); Rózsa (1991) for their inverses and the algorithm proposed in Nocedal and Wright
(1999) to obtain the recursion of the block LDL decomposition that goes on as follows:

• Outer cycle (column-wise). For j = 1, . . . , d: δ−1
j = k jj − ∑

j−1
h=1 `jhδ−1

h `jh (with the

reservation that δ−1
1 = k11);

• Inner cycle (row-wise). For i = j + 1, . . . , d:

`ij =

(
kij −

j−1

∑
h=1

`ihδ−1
h `jh

)
δj (A4)

and

`d+1,j =

(
kd+1,j −

j−1

∑
h=1

`d+1,hδ−1
h `jh

)
δj

(with the reservation that, in the j = 1 case, the summand is zero), where kd+1,j for
j = 1, . . . , d is d× 1 vector in the bottom left block of K.

Note that the last step of the outer cycle, when j = d + 1, formally would be

C−1(0) = Kd+1,d+1 −
d

∑
h=1

`d+1,hδ−1
h `T

d+1,h = Kd+1,d+1 −
d

∑
h=1

δ−1
h `d+1,h`

T
d+1,h,

where `d+1,h for h = 1, . . . , d are d× 1 vectors, and Kd+1,d+1 is the bottom right d× d block
of the 2d× 2d concentration matrix K, but it need not be performed as it is in accordance
with Theorem 1. Then, no inner cycle follows and the recursion ends in one run.
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It is obvious that the above decomposition has a nested structure, so, for the first
d rows of L, only its previous rows or preceding entries in the same row enter into the
calculation, as if we performed the standard LDL decomposition of K. Therefore, `ij = aji
for j = 1, . . . , d− 1, i = j + 1, . . . , d that are the partial regression coefficients akin to those
offered by the standard LDL decomposition K = L̃D̃L̃T , so the first d rows of L̃ and L are
the same, and the first d rows of D̃ and D are the same too.

When the process terminates after finding the first d rows of L, we consider the blocks
“en block” and obtain the matrix B = (`d+1,1, . . . , `d+1,d)

T .

Appendix A.3. Proof of Theorem 2

Note that here the block Cholesky decomposition applies to K partitioned symmetrically
into (d+ 1)× (d+ 1) blocks of sizes 1, . . . , 1, pd with number d of singleton blocks. (Therefore,
in the main diagonal of L, we have number d of 1s and Ipd×pd.) The d × pd matrix B, a
transpose of BT, will contain the coefficient matrices of Equation (6) in its blocks, like

B = (B1 . . . Bp).

The proof goes on similarly as in Appendix A.1. However, for completeness and being
able to formulate the algorithm, we discuss it herein. Let us compute the inverse of the
matrix LDLT with block matrices L and D partitioned as in Equation (8). For the time
being, we only assume that A is a d× d upper triangular matrix with 1s along its main
diagonal, B is d× pd, and the diagonal matrix ∆ has positive diagonal entries. We can
again use the computation rule of the inverse of symmetrically partitioned block matrices,
since the matrix A is invertible.

(LDLT)−1 =

(
A B

Opd×d Ipd×pd

)−1
(

∆−1 Od×pd
Opd×pd C−1

p

)−1(
AT Od×pd
BT Ipd×pd

)−1

=

(
A−1 −A−1B

Opd×d Ipd×pd

)(
∆ Od×pd

Opd×d Cp

)(
(AT)−1 Od×pd

−BT(AT)−1 Ipd×pd

)
=

(
A−1∆(A−1)T + A−1BCpBT(A−1)T −A−1BCp

−CpBT(AT)−1 Cp

)
.

Now, we are going to prove that the above matrix equals Cp+1 if and only if A, B, ∆ satisfy
the model equations. Comparing the blocks to those of (7), the right bottom block is
Cp in both expressions. Comparing the left bottom blocks, we obtain −CpBT(AT)−1 =
C(1, . . . , p), and so, BT = −C−1

p C(1, . . . , p)AT and B = −ACT(1, . . . , p)C−1
p should hold

for B. It is in accordance with the model equation: indeed, (6) is equivalent to

B1Xt−1 + · · ·+ BpXt−p = −AXt + Ut,

which, after multiplying with XT
t−1, . . . , XT

t−p from the right and taking expectation, in
concise form yields BCp = −ACT(1, . . . , p) that in turn provides

B = −ACT(1, . . . , p)C−1
p . (A5)

By symmetry, it also applies to the right upper block. As for the left upper block,

A−1∆(AT)−1 + A−1BCpBT(AT)−1 = C(0)

should hold. Multiplying this equation with A from the left and with AT from the right,
we obtain the equivalent equation

∆ = AC(0)AT − BCpBT . (A6)
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This is in accordance with Equation (6) that implies

E(AXt + B1Xt−1 + · · ·+ BpXt−p)(AXt + B1Xt−1 + · · ·+ BpXt−p)
T

= AC(0)AT + ACT(1, . . . , p)BT + BC(1, . . . , p)AT + BCpBT = ∆.

Combining this with Equation (A5), we have

∆ = AC(0)AT + ACT(1, . . . , p)BT + BC(1, . . . , p)AT + BCpBT

= AC(0)AT − ACT(1, . . . , p)C−1
p C(1, . . . , p)AT − ACT(1, . . . , p)C−1

p C(1, . . . , p)AT

+ ACT(1, . . . , p)C−1
p CpC

−1
p C(1, . . . , p)AT

= AC(0)AT − ACT(1, . . . , p)C−1
p C(1, . . . , p)AT = AC(0)AT − BCpBT ,

which also satisfies (A6).
Summarizing, we have proved that, under the model equations, (LDLT)−1 = Cp+1,

or equivalently, LDLT = K indeed holds. In view of the uniqueness of the block LDL
decomposition (under positive definiteness of the involved matrices), this finishes the proof.

Appendix A.4. Algorithm for the Block LDL Decomposition of Appendix A.3

Again, the protocol of the block Cholesky decomposition is applied to the involved
matrices in block partitioned form. Here,

L =



1 0 0 . . . 0 0 . . . 0
`21 1 0 . . . 0 0 . . . 0
`31 `32 1 . . . 0 0 . . . 0
...

...
...

...
... 0 . . . 0

`d1 `d2 . . . `d,d−1 1 0 . . . 0

`d+1,1 `d+1,2
... `d+1,d−1 `d+1,d Ipd×pd


,

where the (p + 1)d × (p + 1)d lower triangular matrix L is also lower triangular with
respect to its blocks which are partly scalars, partly vectors, and partly matrices as follows:

`ij =


aji, j = 1, . . . , d− 1; i = j + 1, . . . , d;
1 i = j = 1, . . . , d;
0 i = 1, . . . , d; j = i + 1, . . . , (p + 1)d.

Furthermore, the vectors `d+1,j are pd× 1 for j = 1, . . . , d, and comprise the column vectors
of the pd× d matrix BT . The matrix in the bottom right block is the pd× pd identity, and
above it, the zero entries can be arranged into the d× pd zero matrix.

The (p + 1)d× (p + 1)d block-diagonal matrix D in partitioned form is

D =



δ−1
1 0 0 . . . 0 0 . . . 0
0 δ−1

2 0 . . . 0 0 . . . 0
0 0 δ−1

3 . . . 0 0 . . . 0
...

...
...

...
... 0 . . . 0

0 0 0 0 δ−1
d 0 . . . 0

0 0
... 0 0 C−1

p


,

where the pd× 1 vectors 0 comprise Opd×d in the left bottom, and the matrix C−1
p stands in

the right bottom block. With multiplication rules of block matrices and their inverses, the
recursion of the block LDL decomposition goes on as follows:

• Outer cycle (column-wise). For j = 1, . . . , d: δ−1
j = k jj − ∑

j−1
h=1 `jhδ−1

h `jh (with the

reservation that δ−1
1 = k11);
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• Inner cycle (row-wise). For i = j + 1, . . . , d:

`ij =

(
kij −

j−1

∑
h=1

`ihδ−1
h `jh

)
δj

and

`d+1,j =

(
kd+1,j −

j−1

∑
h=1

`d+1,hδ−1
h `jh

)
δj

(with the reservation that, in the j = 1 case, the summand is zero), where kd+1,j for
j = 1, . . . , d are pd× 1 vectors in the bottom left block of K.

The recursion ends in one run.
The above decomposition is again a nested one, so for the first d rows of L, only its

previous rows or preceding entries in the same row enter into the calculation, as if we
performed the usual LDL decomposition of K. Therefore, `ij = aji for j = 1, . . . , d − 1,
i = j + 1, . . . , d that are the negatives of the partial regression coefficients akin to those
offered by the standard LDL decomposition K = L̃D̃L̃T , so the first d rows of L̃ and L are
the same, and the first d rows of D̃ and D are the same too. When the process terminates,
we consider the blocks “en block” and obtain the pd× d matrix BT = (`d+1,1, . . . , `d+1,d).

Appendix B. Pseudocodes

In practice, the n× d data matrix D = (X1, . . . , Xn)T is given, where Xt is a serially cor-
related sample of the underlying d-dimensional stacked random vector X = (X1, . . . , Xd)

T

at time t ∈ {1, . . . , n}, n > d. To construct a CVAR model, the first step is to construct an
undirected graph G and a causal ordering of its nodes (the d observed variables). The algo-
rithm below is a general procedure for this step. Notice that we only consider triangulated
(thus decomposable) graphs in this section.1

Algorithm A1 will fail if the specified threshold r∗ does not lead to a triangulated graph.
Therefore, it is recommended that users manually inspect the initial partial correlations
(step 3) and repeat the graph construction step (step 4) with various reasonable thresholds.
If there is an expert’s advice on the causal structure (in the form of a causal ordering or a
junction tree) of the variables in a dataset, the users may also skip Algorithm A1 and build
a CVAR model directly using the following algorithms.

Algorithm A1: Constructing an undirected graph and a causal ordering of variables
Input : D, n× d data matrix

p, order of the CVAR model
r∗, threshold for the partial correlation statistical test

Output : undirected graph G and its perfect ordering
1 Compute the block Toeplitz matrix Cp+1 as in Equation (7), by using the

autocovariance matrices C(h) for h = 0.1, . . . , p.
2 Compute the concentration matrix K = C−1

p+1 = (σij).

3 Compute the partial correlation coefficient rij for Xi and Xj conditioned on all
other variables up to lag p. By Proposition 1,

rij =
−σij
√

σiiσjj
(1 ≤ i < j ≤ d).

4 Construct an undirected graph G = (V, E) based on the partial correlations such
that V = {1, . . . , d} and E = {(i, j) : i < j, rij ≥ r∗}.

5 If G is triangulated, proceed to the next step; otherwise, terminate with an
appropriate warning (then, choose another r∗).

6 Apply MCS (Maximal Cardinality Search) on G to obtain a perfect elimination
ordering (see Algorithm 9.3 of Koller and Friedman (2009)).
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Last but not least, to find the optimal order p for the CVAR model (i.e., order selection),
we recommend repeating Algorithm A2 or A3 for different ps (e.g., for p = 1, . . . , 10)
and then comparing various information criteria of the resulting models (as illustrated in
Section 4).

Algorithm A2: Constructing an unrestricted CVAR model
Input : D: n× d data matrix or the existing K from Algorithm A1

p: order of the CVAR model
(i1, . . . , id), causal ordering of the d observed variables.

Output : parameter matrices A, B1, . . . , Bp
1 Reorder the columns of D according to the causal ordering.
2 Compute the concentration matrix K for the reordered D (or, reorder the rows and

columns of the existing K from Algorithm A1).
3 Run Appendix A.4 with (K, p) to obtain the parameter matrices A, B1, . . . , Bp for

the unrestricted CVAR(p) model.

Algorithm A3: Constructing a restricted CVAR model
Input : D: n× d data matrix

p: order of the CVAR model
G, (undirected) chordal graph for observed variables
(i1, . . . , id), causal ordering of observed variables.

Output : parameter matrices Â, B̂1, . . . , B̂p
1 Re-label the nodes in G according to the causal ordering.
2 Build a JT (junction tree) based on G and the causal (i.e., perfect elimination)

ordering using a JT algorithm (e.g., NetworkX.junction_tree(G)
in Hagberg et al. (2008)).

3 Apply covariance selection (as in Equation (13)) to obtain a re-estimated
concentration matrix K̂ using the JT from step 2.

4 Run Appendix A.4 with (K̂, p) to obtain the parameter matrices Â, B̂1, . . . , B̂p for
the restricted CVAR(p) model.

Notes
1 Please see the main text for suggestions on graphs that are not triangulated when moralization and running the IPS algorithm

is needed. The default r∗ threshold is usually set according to a significance level (e.g., α = 0.05) for the partial correlation test.
This can be changed based on the sample size and the effect size.
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