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You are assumed to learn only the most important notions, theorems, and
methods, not the proofs. Some sections (e.g., those related to hypergraphs) can
be skipped, it will be noted after the section title.

1 Graph based matrices and spectra
Graph spectra are used for about 50 years to recover the structure of graphs.
Different kinds of spectra are capable of finding multiway cuts corresponding
to different optimization criteria. While eigenvalues give estimates for the ob-
jective functions of the discrete optimization problems, eigenvectors are used to
find clusters of vertices which approximately solve the problems. These methods
are reminiscent of some classical methods of Multivariate Statistical Analysis.
Throughout this chapter, methods of Principal Component Analysis and Cor-
respondence Analysis are used to solve quadratic placement tasks on weighted
graphs and contingency tables. As a result, we get low rank representation of
the graph’s vertices or rows and columns of the contingency table by means
of linear methods so that the representation somehow favors our classification
criteria. Non-linearities are treated by mapping the data into a feature space
(reproducing kernel Hilbert space).

Then minimum ratio- or normalized multiway cut problems are discussed
together with modularity cuts. Since the optima of the corresponding objective
functions are taken on partition vectors corresponding to the hidden clusters,
they are related to Laplacian, normalized Laplacian, or modularity spectra,
whereas the precision of the estimates depends on the distance between the
subspaces spanned by the corresponding eigenvectors and partition vectors. By
an Analysis of Variance argument, this distance is the sum of the inner variances
of the underlying clusters, the objective function of the k-means clustering.
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2 Quadratic placement problems for edge-weighted
graphs

In Multivariate Statistical Analysis, Principal Component Analysis and Factor
Analysis are crucial methods for reducing the dimensionality of the data via rep-
resenting them by a smaller number of independent factors. The representation
also gives rise to clustering the data in the factor space. Given an n×n positive
definite covariance matrix C of a random vector, the principal components are
determined successively, and they are the maximum variance normalized linear
combinations of the components of the underlying random vector conditioned
on the uncorrelatedness (in the Gaussian case, independence) of them.

Now, our data matrix corresponds to a graph. First, let G = (V,E) be a
simple graph on the vertex-set V and edge-set E with |V | = n and |E| ≤

(
n
2

)
.

Thus, the |E| × n data matrix B has 0-1 entries, the rows correspond to the
edges, the columns to the vertices, and bij is 1 or 0 depending on whether the
edge i contains the vertex j as an endpoint or not. The Gram-matrix C = BTB
is the non-centralized covariance matrix based on the data matrixB, and is both
positive definite (provided there are no multiple edges) and a Frobenius type
matrix with nonnegative entries to which the Frobenius Theorem is applicable.
Sometimes the matrix C is called signess Laplacian and its eigenspaces are used
to compare cospectral graphs. It is easy to see that C = D+A, whereA = (aij)
is the usual adjacency matrix of G (it is symmetric and aij is 1 or 0 depending on
whether vertices i and j are connected or not; aii = 0, i = 1, . . . , n), while D is
the so-called degree-matrix, i.e. diagonal matrix, containing the vertex degrees
in its main diagonal. A being a Frobenius-type matrix, its maximum absolute
value eigenvalue is positive, and it is at most the maximum vertex-degree, and
apart from the trivial case – when there are no edges at all – it is indefinite, as
the sum of its eigenvalues, i.e. the trace of A, is zero.

Instead of the positive definite matrix C, for optimization purposes, as will
be derived below, the Laplacian matrix L = D −A is more suitable, which is
positive semidefinite, having always a zero eigenvalue, since the row sums are
zeros. This L is sometimes called combinatorial or difference Laplacian, whereas
we will introduce the so-called normalized Laplacian, LD too. If our graph is
regular, then D = dI (where d is the common degree of the vertices and I is
the identity matrix) and the eigenvalues of C and L are obtained from those of
A by adding d to them or subtracting them from d, respectively.

There are too many matrices around, not speaking about the modularity
and normalized modularity matrices, latter one closely related to the normal-
ized Laplacian, akin to the so-called transition probability matrix D−1A, or
I − D−1A which is sometimes called random walk Laplacian (this matrix is
not symmetric, still it has real eigenvalues). Our purpose is to clarify in which
situation which of these matrices is the best applicable. The whole story simpli-
fies if we use edge-weighted graphs, and all these matrices come into existence
naturally, while solving some optimization problems.

2.1 Representation of edge-weighted graphs
From now on, we will use the more general framework of an edge-weighted
graph. A simple graph is a special case of it with 0-1 weights. Let G = (V,W )
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be a graph on n vertices, where V = {1, . . . , n} and the n×n symmetric matrix
W has nonnegative real entries and zero diagonal. Here wij is the similarity
between vertices i and j, where 0 similarity means no connection (edge) at all.
If G is a simple graph, W is its adjacency matrix. Since W is symmetric, the
weight of the edge between two vertices does not depend on its direction, i.e.
our graph is undirected. In this book, we will mostly treat undirected graphs.

Let the row-sums of W be

di =

n∑
j=1

wij , i = 1, . . . , n

which are called generalized vertex-degrees and collected in the main diagonal
of the diagonal degree-matrix D = diag(d), where d = (d1, . . . , dn)T is the
so-called degree-vector.

For a given integer 1 ≤ k ≤ n we are looking for k-dimensional represen-
tatives r1, . . . , rn ∈ Rk of the vertices such that they minimize the objective
function

Qk =
∑
i<j

wij‖ri − rj‖2 ≥ 0 (1)

subject to
n∑
i=1

rir
T
i = Ik (2)

where Ik is the k × k identity matrix. When minimized, the objective function
Qk favors k-dimensional placement of the vertices such that vertices connected
with large-weight edges are forced to be close to each other.

Let us put both the objective function and the constraint in a more favorable
form. Denote by X the n×k matrix of rows rT1 , . . . , rTn . Let x1, . . . ,xk ∈ Rn be
the columns of X, for which fact we use the notation X = (x1, . . . ,xk). Because
of the constraint (2), the columns of X form an orthonormal system, hence, X
is a suborthogonal matrix. Therefore, the constraint (2) can be formulated as
XTX = Ik. With this notation, the objective function (1) is rewritten in the
symmetrized form

Qk =
1

2

n∑
i=1

n∑
j=1

wij‖ri − rj‖2 =

n∑
i=1

di‖ri‖2 −
n∑
i=1

n∑
j=1

wijr
T
i rj

=

k∑
`=1

xT` (D −W )x` = tr[XT (D −W )X].

(3)

Definition 1 The matrix L = D−W is called the Laplacian corresponding to
the edge-weighted graph G = (V,W ).

For simple graphs, we get back the usual definition of the Laplacian. About
the physical meaning of it, see papers [16, 25, 43, 24].

The Laplacian is always positive semidefinite that can easily be seen from
the Q1 ≥ 0 relation, and it always has a zero eigenvalue, since its rows sum
up to zero. It can be shown, that the multiplicity of 0 as an eigenvalue of L is
equal to the number of connected components of G = (V,W ), i.e. the maximum
number of disjoint subsets of V such that there are no edges connecting vertices
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of distinct subsets (where no edge means an edge with zero weight). In terms of
W , the number of connected components of G is the maximum number of the
diagonal blocks which can be achieved by the same permutation of the rows and
columns of W . For simple graphs, the proof is in [61], among others, and it is
analogous for the edge-weighted case. Consequently, if G is connected, then 0 is
a single eigenvalue with corresponding unit-norm eigenvector u0 = 1√

n
1, where

1 denotes the all 1’s vector. In the sequel, we will assume that G is connected
(or equivalently, W is irreducible).

Theorem 1 (Representation theorem for edge-weighted graphs) Let G =
(V,W ) be a connected edge-weighted graph with Laplacian matrix L. Let 0 =
λ0 < λ1 ≤ · · · ≤ λn−1 be the eigenvalues of L with corresponding unit-norm
eigenvectors u0,u1, . . . ,un−1. Let k < n be a positive integer such that λk−1 <
λk. Then the minimum of (1) subject to (2) is

k−1∑
i=0

λi =

k−1∑
i=1

λi

and it is attained with the optimum representatives r∗1, . . . , r
∗
n the transposes of

which are row vectors of X∗ = (u0,u1, . . . ,uk−1).

Proof 1 Using (3), our objective function is

Qk = tr[XTLX]

and it is to be minimized under XTX = Ik. Then a linear algebra theorem
guarantees that the solution is the required one.

Definition 2 The vectors r∗1, . . . , r∗n giving the optimum in Theorem 1 are called
optimal k-dimensional representatives of the vertices, while the eigenvectors
u0,u1, . . . ,uk−1 of L are called vector components taking part in the optimal
k-dimensional representation.

We remark the following.

• The dimension k does not play an important role here, the vector compo-
nents can be included one after the other up to a k such that λk−1 < λk.

• We remark that the eigenvectors can be arbitrarily chosen in the eigenspaces
corresponding to possible multiple eigenvalues, under the orthogonality
conditions. Further, the representatives can as well be rotated in Rk. In-
deed, nor the objective function, neither the constraint is changed if we
use Rri’s instead of ri’s, or equivalently, XR instead of X, where R is
an arbitrary k × k orthogonal matrix.

• Since the eigenvector u0 has equal coordinates, the same first coordinates
of the vertex representatives do not play an important role in the repre-
sentation, especially when the representatives are used for clustering pur-
poses. Therefore, u0 can be omitted, and an optimum (k−1)-dimensional
representation is performed based on the eigenvectors u1, . . . ,uk−1.

• For the time being, we assumed that W has zero diagonal. We can as
well see that in the presence of possible loops (some or all diagonal entries
of W are positive) the objective function and the Laplacian remains the
same, hence, Theorem 1 is applicable to this situation too.
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2.2 Representation of hypergraphs
[This section can be skipped.]

For hypergraphs, the minimum placement problem is formulated in terms
of the representatives of vertices and hyperedges, but it will turn out that we
can always assign an edge-weighted graph to our hypergraph so that the two
quadratic placement problems are equivalent in terms of the vertices.

Let H = (V,E) be a hypergraph with vertex-set V = {v1 . . . vn} and edge-
set E = {e1 . . . em}. H is uniquely defined by its m×n incidence matrix B (0-1
data matrix) such that bij = I(vj ∈ ei), where I(vj ∈ ei) is 1 if the vertex vj is
contained in the hyperedge ei, and zero otherwise.

For a fixed integer k ( 1 ≤ k ≤ n ), we are looking for k-dimensional repre-
sentatives r1, . . . , rn of the vertices and q1, . . . ,qm of the edges subject to

n∑
i=1

rir
T
i = Ik (4)

so that the following sum of the costs of edges in this representation is minimized:

Qk =

m∑
i=1

C(ei), (5)

where the cost of the edge ei is

C(ei) =

n∑
j=1

bij‖rj − qi‖2.

The construction of the above objective function forces the representatives
of the vertices to be close to those of the hyperedges they are contained in, while
the constraint keeps them in a distance. As a compromise, the representatives of
the vertices which are together in many hyperedges will be close to each other.

To minimize the objective function (5), let r̄(e) denote the barycenter of the
vertex-representatives contained in the hyperedge e:

r̄(e) =
1

|e|

n∑
j=1

I(vj ∈ e)rj .

Let X and Y denote the n × k and m × k matrices containing the vertex-
and edge-representatives as row vectors, respectively. Further, let Dv and De

be the n × n and m ×m vertex- and edge-valence matrices: they are diagonal
matrices, with diagonal entries that are the column- and row-sums of the in-
cidence matrix B, respectively. Assume that De is not singular (there are no
empty hyperedges).

With this notation, C(e) is decreased by means of the Steiner’s inequality:

C(e) ≥
n∑
j=1

I(vj ∈ e)‖rj − r̄(e)‖2, e ∈ E. (6)

The right-hand side only depends on the incidence relations I(vj ∈ e) and on
the representatives of the vertices comprising the row vectors of the matrix X.
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Denoting the right-hand side of (6) by Q(e,X), with an easy calculation we get
the following formula for it:

Q(e,X) =
1

2|e|

n∑
i=1

n∑
j=1

I(vi ∈ e)I(vj ∈ e)‖ri − rj‖2, e ∈ E. (7)

With the notation Q(X) =
∑
e∈E Q(e,X), the inequality Qk ≥ Q(X) holds

with any representation X of the vertices. But Q(X) can be rewritten like we
did with weighted graphs:

Q(X) =

n∑
i=1

n∑
j=1

[
1

2

∑
e∈E
I(vi ∈ e)I(vj ∈ e)

1

|e|

]
‖ri − rj‖2 =

1

2

n∑
i=1

n∑
j=1

`ijr
T
i rj ,

where

`ij =

{
−I(vi ∈ e)I(vj ∈ e) 1

|e| if i 6= j

dvi − I(vi ∈ e) 1
|e| if i = j,

(8)

where dvi is the ith diagonal entry of the diagonal matrix Dv.
It is easy to see that the n× n matrix of the entries `ij is Dv −BTD−1e B.

Definition 3 The matrix L̃ = Dv −BTD−1e B is called Laplacian of the hy-
pergraph H.

For simple graphs, the above L̃ is one-half of the usual Laplacian L, as each
edge has valence 2. Further, to any hypergraph H = (V,E) an edge-weighted
graph G = (V,W ) can be assigned such that between their Laplacians the
relation L̃ = 1

2L holds, in the following manner:

wij =

{ ∑
e∈E I(vi ∈ e)I(vj ∈ e) 1

|e| if i 6= j

0 if i = j.
(9)

Therefore, L̃ is positive semidefinite, and the multiplicity of 0 as an eigenvalue
of H is equal to the number of its connected components. The connected com-
ponents of a hypergraph are spanned by disjoint subsets of its vertices such that
there are no hyperedges containing vertices from more than one component.
If vertices of the distinct components are colored with different colors, there
are only monocolored hyperedges. H is connected if it has only one connected
component. In the sequel, only connected hypergraphs will be considered.

Theorem 2 (Representation theorem for hypergraphs) Let H = (V,E)
be a connected hypergraph with Laplacian matrix L̃. Let 0 = λ0 < λ1 ≤
· · · ≤ λn−1 be the eigenvalues of L̃ with corresponding unit-norm eigenvectors
u0,u1, . . . ,un−1. Let k < n be a positive integer such that λk−1 < λk. Then the
minimum of the cost function (5) subject to (4) is

k−1∑
j=0

λj =

k−1∑
j=1

λj

and it is attained with the optimum representatives r∗1, . . . , r
∗
n of the vertices,

the transposes of which are row vectors of X∗ = (u0,u1, . . . ,uk−1). Further,
the optimum representatives of the edges are row vectors of the matrix

Y ∗ = D−1e BX∗.
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Proof 2 It is easy to see that

Q(X) = tr[XT L̃X]

and it is to be minimized subject to XTX = Ik. We again use the linear algebra
fact of ?? and the following easy observation: the relation (6) implies that the
optimum representative of an edge e is the barycenter of the representatives of
its vertices.

From the defining formula (8) of the Laplacian, it can easily be seen that
the loop-edges (|e| = 1) do not give any contribution to it. Akin to weighted
graphs, (k− 1)-dimensional representatives will as well do after eliminating the
first (trivial) coordinate.

We first defined the Laplacian of hypergraphs in a binary clustering problem,
see [17]. We remark that [27] treats a similar problem in the framework of
bipartite graphs, also related to contingency tables.

2.3 Examples for spectra and representation of simple
graphs

[For your information, but you need not know these spectra by heart.]
Here we give some examples for the smallest Laplacian eigenvalues and the

representation based on the corresponding eigenvectors in a straightforward di-
mension of basic simple graphs. Their adjacency matrix A can as well be
considered as a 0-1 weight matrix of an edge-weighted graph, and they are also
hypergraphs with all edge-valences two. The reader can find many examples for
adjacency spectra in [16, 25, 35] and [39]. In most of our examples the under-
lying graph is nearly regular, therefore there is an asymptotic relation between
their Laplacian and adjacency spectra, at least for large n.

Note that neither the adjacency nor the Laplacian spectrum is affected by
the labeling of the vertices, in other words, isomorphic graphs have the same
spectrum. However, the converse is not true: there are graphs with the same
spectrum, though they are not isomorphic (e.g. [25] discussed such cospectral
graphs in details). This is not surprising, since it is the SD (spectrum and
eigenvectors or eigenspaces together) which uniquely characterizes a symmetric
matrix, and not the spectrum itself. However, [37] found a class of graphs that
is characterized by the Laplacian spectrum. For example, it can be shown that
almost all trees are cospectral, see also [44].

(a) The adjacency matrix A of the complete graph Cn on n vertices is com-
prised of entries aij = 1 for i 6= j and aii = 0 for i = 1, . . . , n. Conse-
quently, its corresponding Laplacian is L = (n − 1)In −A and tr(L) =
n(n− 1). For symmetry reasons, the spectrum of L is nothing else but

λ0 = 0, λ1 = · · · = λn−1 =
n(n− 1)

n− 1
= n.

The unique eigendirection corresponding to the eigenvalue zero is desig-
nated by the vector 1, while the eigenspace corresponding to the multiple
eigenvalue n is 1⊥, the orthogonal complementary subspace of 1 in Rn.
Since there is only one positive eigenvalue (with multiplicity n− 1), here
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only the trivial one- or the n-dimensional representation of Cn makes
sense. The one-dimensional representatives of the vertices are the same
points, whereas the n-dimensional representatives form a simplex on n
vertices in the (n − 1)-dimensional hyperplane 1⊥ of Rn. These are, in
fact, zero- and (n− 1)-dimensional representations, because of the trivial
first eigenvector 1.

(b) The adjacency matrix A of the path graph Pn on n vertices is a tridiagonal
matrix with zero diagonal and all 1’s above and below the diagonal entries.
Here the vertices are labeled in their natural succession. It is proved
in [25, 39] that the adjacency spectrum of A consists of the numbers

2 cos
iπ

n+ 1
, i = 1, . . . , n.

The Laplacian spectrum of Pn (see circulant matrices) consists of the
eigenvalues

λi = 4 sin2 iπ

2n
= 2(1− cos

iπ

n
), i = 0, 1, . . . , n− 1.

Hence, the smallest positive Laplacian eigencalue of Pn is λ1 = 2(1−cos πn ).
For odd n (say, n = 2`+1), disregarding of the trivial dimension, the one-
dimensional representatives of the vertices, i.e. the coordinates of u1, are
the numbers

xj =

√
2

n
sin j

π

n
, j = −`, . . . ,−1, 0, 1, . . . , ` (10)

forming a path, where the distances between representatives of neighboring
vertices follow the sine rhythm of (10).

(c) The 2-dimensional m × n grid Gm,n is the Cartesian product (in other
words, direct sum) of Pm and Pn, hence its adjacency eigenvalues (see [25])
are the numbers

αi,j = 2 cos
iπ

m+ 1
+ 2 cos

jπ

n+ 1
, i = 1, . . . ,m; j = 1, . . . , n.

With the considerations of [30], a similar result holds for he Laplacian
eigenvalues of the Cartesian product of the simple graphs G1 and G2:
they are equal to all possible sums of eigenvalues of the two factors. Since
Gm,n is the Cartesian product of Pm and Pn, the Laplacian eigenvalues
of the m× n grid are

λi,j = 4 sin2 iπ

2m
+ 4 sin2 iπ

2n
= 2(1− cos

iπ

m
) + 2(1− cos

iπ

n
),

i = 0, 1, . . . ,m− 1; j = 0, . . . , n− 1.

More generally, denote by Gridd,` the d-dimensional cubic grid (d ≥ 2 is
an integer) with n = (2` + 1)d vertices, where the vertices are character-
ized by d-tuples of integers −`, . . . ,−1, 0, 1, . . . , ` such that two vertices
are adjacent if and only if their d-tuples differ in exactly one coordinate.
Grid2,` = G2`+1,2`+1 and Gridd,` is the Cartesian product of d copies
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of P2`+1. Using these facts, the adjacency eigenvalues of Gridd,` are the
numbers

2

d∑
j=1

cos
ijπ

2`+ 2
, i1, . . . , id = 1, . . . , 2`+ 1.

In [39], the adjacency spectrum of the d-dimensional hypercube is also de-
rived via Cartesian products. With similar considerations, the Laplacian
eigenvalues of Gridd,` are

λi1,...,id = 4

d∑
j=1

sin2 ijπ

2(2`+ 1)
= 2

d∑
j=1

(1− cos
ijπ

2`+ 1
)

i1, . . . , id = 0, . . . , 2`.

(11)

The smallest positive Laplacian eigenvalue of the d-dimensional cubic grid
on n = (2` + 1)d vertices is a λ with all but one subscripts 0, and the
non-zero subscript is 1 in (11). As there are d choices for the non-zero
index, the smallest positive eigenvalue is

4 sin2 π

2(2`+ 1)
= 2(1− cos

π

2`+ 1
)

with multiplicity d. The d-dimensional representatives of the vertices (af-
ter leaving out the trivial dimension) form a grid in a d-dimensional hyper-
plane of Rn, its center of gravity being the origin, whereas the distances
between the representatives of adjacent vertices follow the sine rhythm
of (10).

(d) Let Kn1,...,nk
be the complete k-partite graph, where n =

∑k
i=1 ni is the

number of its vertices. Let V1, . . . , Vk denote the non-empty, disjoint,
independent sets of the vertices (called clusters), where |Vi| = ni (i =
1, . . . , k).

Proposition 1 The Laplacian spectrum of Kn1,...,nk
consists of a single

0, the numbers n−ni with multiplicity ni−1 (i = 1, . . . , k) and the number
n with multiplicity k−1. Further, in the (k−1)-dimensional representation
of the vertices via any orthonormal set of k−1 eigenvectors corresponding
to the largest eigenvalue n, the representatives of vertices of the same
cluster coincide.

Proof 3 Choose a labeling of the vertices such that the first n1 vertices
are contained in V1, the next n2 ones in V2, etc. Since the complete
multipartite graph is connected, 0 is a single eigenvalue with eigendirection
1. The adjacency matrix A of Kn1,...,nk

is a symmetric block matrix of
k × k blocks, where the diagonal blocks are all zeros, and the off-diagonal
ones have all 1 entries. The diagonal degree-matrix is D = D1⊕· · ·⊕Dk,
where Di = (n − ni)Ini

. The eigenvalue–eigenvector equation for the
Laplacian L = D −A of Kn1,...,nk

yields the system of equations

(n− ni)xj −
∑
`/∈Vi

x` = λxj , j ∈ Vi; i = 1, . . . , k (12)
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where λ is an eigenvalue of L with corresponding eigenvector x = (x1, . . . , xn)T .

It is easy to see that with λ = n, the system (12) simplifies to

nixj +
∑
`/∈Vi

x` = 0, j ∈ Vi, i = 1, . . . , k

which is solved by any piecewise constant vector x on the partition (V1, . . . , Vk)
such that it is orthogonal to the 1 ∈ Rn vector at the same time. Indeed, let
xj = yi for j ∈ Vi and because of the orthogonality condition, the numbers
y1, . . . , yk satisfy

∑k
i=1 niyi = 0. The subspace of Rn spanned by these x’s

is of dimension k − 1. Therefore, the multiplicity of the eigenvalue n is
k−1, and the (k−1)-dimensional representatives of the vertices – with vec-
tor components that form an orthonormal system within this eigenspace –
yield k distinct points such that vertices of the same cluster are represented
with the same point.

One can also verify that for any i ∈ {1, . . . , k}, substituting n− ni for λ,
the system (12) becomes: ∑

`/∈Vi

x` = 0,

which is solved by any x such that xj = 0 whenever j /∈ Vi. For j ∈ Vi,
we select the coordinates of x such that x be orthogonal to the 1 vector.
This condition results in the restriction

∑
j∈Vi

xj = 0 for the non-zero
coordinates of x. This restriction also ensures the orthogonality to the
piecewise constant vectors in the eigenspace corresponding to the eigen-
value n. Trivially, the subspace of such x’s is of dimension n − ni, and
hence, the multiplicity of the eigenvalue n− ni is ni − 1, for i = 1, . . . , k.

(e) Let Sd denote the star graph on n = d + 1 vertices. In fact, the star
graph is a complete 2-partite graph, namely, Sd = K1,d. Applying the
result of (d), its spectrum consists of a single 0, the number n − d =
1 (with multiplicity d − 1) and the single eigenvalue n. Making a d-
dimensional representation, based on the d smallest Laplacian eigenvalues,
the representatives of the d endpoints form the vertices of a simplex in the
(d−1)-dimensional eigenspace corresponding to the eigenvalue 1, but they
are not connected to each other, they are merely connected to the single
vertex of degree d, the representative of which is the origin (the center
of gravity of the simplex). This kind of representation is reminiscent of
graph drawing and imitates the physical picture of the graph. However,
a 1-dimensional representation is also possible based on the eigenvector
corresponding to the largest single eigenvalue. In this structure-revealing
representation, the representatives form two points on the real number
line: one corresponds to the endpoints, and the other to the middle point.

(f) Let Sd,` denote the subdivision graph of Sd, where each of the edges of Sd
is divided into ` parts. We call Sd,` spider graph with d feet of ` sections.
The number of its vertices is n = d`+ 1. The Laplacian spectrum inherits
features of that of the path and the star. Namely, the smallest positive
Laplacian eigenvalue of Sd,` is of multiplicity d−1 and equal to 1−cos π

2`+1 .
The optimal d-dimensional (in fact, (d−1)-dimensional) representation of
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the spider is that of (e), where the feet of the spider are divided according
to the sine rhythm of (10).

We remark that the star graph is the only tree with smallest positive eigen-
value 1. Indeed, [41] and [42] independently proved that for a tree T , λ1(T ) ≤ 1,
with equality if and only if T is a star.

Proposition 1 illustrates that in case of empty clusters, the representation,
based on eigenvectors corresponding to eigenvalues in the top of the Laplacian
spectrum, is able to reveal this so-called anti-community cluster structure. This
is also true for clusters (subsets) of vertices with sparse intra- and dense inter-
cluster edge-densities (we will define these notions more precisely later. For
example, hub authorities are of this type. Another example is a game of strategic
substitutes, where an increase in other players’ actions leads to relatively lower
payoffs under higher actions of a given player. In strategic interaction games the
agents are vertices of a graph and only agents connected with an edge influence
each other’s actions.

Analogously to the derivation of the Representation Theorem (Theorem 1),
now the maximum of the quadratic form Qk = XTLX subject to XTX = Ik is
looked for, and hence, representatives of vertices connected with few, low-weight
edges are stressed to be close to each other. As an easy linear algebra fact, the
maximum is the sum of the k largest Laplacian eigenvalues and it is attained
with an X∗ containing the corresponding unit-norm eigenvectors in its columns.

Later we will study more general cluster structures such that clusters are not
necessarily dense or sparse subsets of the network, but rather homogeneous ones,
as far as the intra- and inter-cluster relations of the vertices are concerned. In
other words, vertices of the same cluster behave similarly with respect to each
other and to vertices of any other cluster, like synopses of the brain. These
types of clusters can be recovered via representation based on eigenvectors cor-
responding to some structural eigenvalues of the normalized modularity matrix
to be introduced in the next lesson. The so-called structure-revealing represen-
tation of Example (e) is also of this flavor. Bottom Laplacian eigenvalues and
eigenvectors are mainly advisable for graph drawing purposes, for a detailed
description see [40]. Even in case of Laplacian spectra of chemical graphs we
may select not necessarily consecutive eigenvalues together with eigenvectors for
spacial representation of molecules, see [50] for details.

3 Estimating multiway cuts via spectral relax-
ation

Clusters (in other words, modules or communities) of graphs are typical (strongly
or loosely connected) subsets of vertices that can be identified, for example,
with social groups or interacting enzymes in social or metabolic networks, re-
spectively; they form special partition classes of the vertices. To measure the
performance of a clustering, different kinds of multiway cuts are introduced and
estimated by means of Laplacian spectra. The key motif of these estimations
is that minima and maxima of the quadratic placement problems of Section 2
are attained on some appropriate eigenspaces of the Laplacian, while optimal
multiway cuts are special values of the same quadratic objective function re-
alized by piecewise constant vectors. Hence, the optimization problem, formu-
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lated in terms of the Laplacian eigenvectors, is the continuous relaxation of the
underlying maximum or minimum multiway cut problem. The objective func-
tions defined on the partitions of the vertices are sometimes called modularities,
see [45, 47].

3.1 Maximum, minimum, and ratio cuts of edge-weighted
graphs

In the sequel, we will use the general framework of an edge-weighted graph
introduced in Chapter 1. Let G = (V,W ) be an edge-weighted graph on n
vertices with weight matrix W and generalized degrees d1, . . . , dn. For a fixed
integer 1 ≤ k ≤ n, let Pk = (V1, . . . , Vk) be a k-partition of the vertices, where
the disjoint, non-empty vertex subsets V1, . . . , Vk will be referred to as clusters or
modules. The number of k-partitions is kn, or the Stirling’s partition number{
n
k

}
if there are no empty clusters, see [39]. Let Pk denote the set of all k-

partitions. Optimization over Pk is usually NP-complete, except some special
classes of graphs.

To illustrate the relaxation technique, first we perform an easy estimation
in the simplest case of k = 2. To this end, we introduce some definitions.

Definition 4 The weighted cut between the non-empty vertex-subsets U, T ⊂ V
of the edge-weighted graph G = (V,W ) is

w(U, T ) =
∑
i∈U

∑
j∈T

wij .

Note that w(U, T ) is the sum of the weights of edges connecting vertices of U
and T . For now, U and T are not necessary disjoint subsets, though, in the
sequel we will mainly use this notion for disjoint cluster pairs of a partition of
V .

The so-called maximum cut problem looks for the maximum of the above
weighted cut over 2-partitions of the vertices.

Definition 5 The maximum cut of the edge-weighted graph G = (V,W ) is

maxcut(G) = max
U⊂V

w(U,U), (13)

where U is the complement of U in V .

The following statement is due to [?].

Proposition 2 Let 0 = λ0 < λ1 ≤ · · · ≤ λn−1 denote the eigenvalues of the
Laplacian L of the connected edge-weighted graph G = (V,W ) on n vertices.
Then

maxcut(G) ≤ n

4
λn−1.

Proof 4 Simple linear algebra guarantees that

λn−1 = max
‖x‖=1

xTLx. (14)
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Due to Equation (3), it follows that

xTLx = Q1 =
∑
i<j

wij(ri − rj)2 (15)

where the coordinates of the vector x = (r1, . . . , rn)T are considered as one-
dimensional representatives of the vertices.

Let U∗ be the subset of V giving the maximum in (13). With it, let us define
the following 1-dimensional representation of the vertices:

ri =

{
n− |U∗| if i ∈ U∗
−|U∗| if i ∈ U∗. (16)

Let us normalize the vector x of coordinates ri’s. Because of

‖x‖2 =

n∑
i=1

r2i = |U∗|(n− |U∗|)2 + (n− |U∗|)|U∗|2 = |U∗|(n− |U∗|)n,

the so obtained unit-norm vector x̃ will have coordinates r̃i = ri√
|U∗|(n−|U∗|)n

.

With this special vector, we will go below the maximum in (14), that is

λn−1 ≥ x̃TLx̃ =
∑
i<j

wij(r̃i − r̃j)2 = w(U∗, U∗)
(n− |U∗|+ |U∗|)2

|U∗|(n− |U∗|)n
,

where we also used (15). Therefore, utilizing that w(U∗, U∗) = maxcut(G),

maxcut(G) ≤ |U
∗|(n− |U∗|)

n
λn−1 ≤

n

4
λn−1.

We remark the following.

• Observe that the role of U∗ and U∗ is symmetric in the proof. The last
estimation suggests that the upper bound for the maximum cut can be
sharp for balanced partition of V , i.e. when U∗ and U∗ nearly have the
same cardinality. If one looks for the maximum in (13) under the condition
that the clusters of the 2-partition are of equal sizes, we get the maximum
bisection problem which makes sense, of course, for even n.

• The proof also gives us a hint how to find the optimal U∗: the eigenvector
un−1 should be close to a piecewise constant vector over an appropriate
2-partition of the vertices. Later on, in this section, we will prove that it
can be achieved by the 2-partition which is the output of the k-means algo-
rithm with 2 clusters applied for the coordinates of the vector un−1. With
this spectral relaxation, the maximum cut can be approached in polyno-
mial time for finding the largest eigenvalue and corresponding eigenvector
of the Laplacian matrix. However, the exact solution of the maximum
cut problem is NP-complete, even for simple graphs, called the maximum
bipartite subgraph problem. Though, for some special classes of graphs,
it is polynomially solvable (for example, for planar graphs).

The minimum cut of an edge-weighted graph is defined analogously, and for
simple graphs, it is the edge-connectivity of [30]. The solution is often given
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by an uneven 2-partition, for example, if there is an almost isolated vertex
connected to few other vertices, it may form a cluster itself. To prevent this
situation and rather find real-life loosely connected clusters, we require some
balancing for the cluster sizes. For this purpose, we define the minimum cut
and ratio cut for not only 2 clusters, but for any k-partition of the vertices and
minimize it over the set of k-partitions. Roughly speaking, the minimum k-way
cut minimizes the sum of the weights of intersecting edges (between the clusters),
whereas the ratio cut (see e.g. [6, 17, 34]) in addition, penalizes partitions with
very unequal cluster sizes.

Definition 6 Let G = (V,W ) be an edge-weighted graph and Pk = (V1, . . . , Vk)
a k-partition of its vertices. The k-way cut of G corresponding to the k-partition
Pk is

cut(Pk, G) =

k−1∑
a=1

k∑
b=a+1

w(Va, Vb)

and the minimum k-way cut of G is

mincutk(G) = min
Pk∈Pk

cut(Pk, G). (17)

Definition 7 Let G = (V,W ) be an edge-weighted graph and Pk = (V1, . . . , Vk)
a k-partition of its vertices. The k-way ratio cut of G corresponding to the k-
partition Pk is

g(Pk, G) =

k−1∑
a=1

k∑
b=a+1

(
1

|Va|
+

1

|Vb|

)
w(Va, Vb) =

k∑
a=1

w(Va, V a)

|Va|

and the minimum k-way ratio cut of G is

gk(G) = min
Pk∈Pk

g(Pk, G).

The equivalent form in the formula of g(Pk, G) is obtained by an easy calculation.

Proposition 3 Let 0 = λ0 < λ1 ≤ · · · ≤ λn−1 denote the eigenvalues of the
Laplacian L of the connected edge-weighted graph G = (V,W ) on n vertices.
Then

mincut2(G) ≥ n− 1

n
λ1. (18)

Proof 5 We will use a similar relaxation technique as in the Proof of Proposi-
tion 2. Here simple linear algebra guarantees that

λ1 = min
‖x‖=1

xT 1=0

xTLx. (19)

Let us recall that due to Equation (3), the relation

xTLx = Q1 =
∑
i<j

wij(ri − rj)2

holds with the coordinates of the vector x = (r1, . . . , rn)T which are considered
as one-dimensional representatives of the vertices.
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Let U∗ be the subset of V giving the minimum in (17) for k = 2. With it,
we define the same representation (16) of the vertices as in the Proof of Propo-
sition 2 and we use the same normalization, so that the vector x̃ = (r̃1, . . . , r̃n)
satisfies ‖x̃‖ = 1 and x̃T1 = 0, thanks to

∑n
i=1 r̃i = 0. With this special vector,

we will go above the minimum in (19), that is

λ1 ≤ x̃TLx̃ =
∑
i<j

wij(r̃i − r̃j)2 = w(U∗, U∗)
(n− |U∗|+ |U∗|)2

|U∗|(n− |U∗|)n
.

Therefore, utilizing that w(U∗, U∗) = mincut2(G),

mincut2(G) ≥ |U
∗|(n− |U∗|)

n
λ1 ≥

n− 1

n
λ1.

A number of comments are in order.

• For a simple graph G, [30] called the quantity mincut2(G) the edge-
connectivity of G, because it is equal to the minimum number of edges
that should be removed to make G disconnected. He used the notation
e(G) for the edge-connectivity of the simple graph G, and v(G) for its
vertex-connectivity (minimum how many vertices should be removed to
make G disconnected). In his papers [29, 30], the author proved that
v(G) ≤ e(G), and for any graph G on n vertices, that differs from the
complete graph Cn, the relation

λ1 ≤ v(G) ≤ e(G) (20)

holds, which gives a sharper estimate for λ1 by e(G) than Inequality (18).
However, for the complete graph Cn, equality holds in (18). Indeed, on
the one hand, Example (a) of Section 2.3 shows that λ1(Cn) = n, and on
the other hand, e(Cn) = n − 1, since the minimum cut is realized by a
2-partition consisting of a single vertex and all the other vertices.

• [30] also provided two lower estimates for λ1 by e(G):

λ1 ≥ 2e(G)(1− cos
π

n
) (21)

and
λ1 ≥ C1e(G)− C2dmax, (22)

where C1 = 2(cos πn−cos 2π
n ), C2 = 2 cos πn (1−cos πn ), and dmax = maxi di

is the maximum vertex degree. Compared to (20), this estimation makes
sense in the n ≥ 3 case. The bound of (22) is better than that of (21) if
and only if e(G) ≥ 1

2dmax. The two estimates are equal and sharp for the
path graph Pn with e(G) = 1 and λ1 = 2(1 − cos πn ), see Example (b) of
Section 2.3. The path graph can be split into two clusters by removing
any of its edges, however, we would not state that it has two underlying
clusters. The ratio cut of Pn is minimized by removing the middle edge (for
even n) or one of the middle edges (for odd n), thus, providing balanced
clusters. Note that Pn is a tree, and hence, a sparse graph, that is not
expected to have a remarkable cluster structure, unlike the dense graphs,
incarnating a statistical sample.
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• Because of this two-sided relation between λ1 and e(G), the smallest
positive Laplacian eigenvalue of a connected graph is able to detect the
strength of its connectivity; therefore, Fiedler called λ1 the algebraic con-
nectivity of G, and denoted it by a(G). This relation between e(G) and
a(G) was also recovered by [35]. Graphs with ’large’ algebraic connec-
tivity play an important role in communication networks, since the infor-
mation goes through them very quickly. The so-called concentrators and
expanders are graphs with high connectivity properties, see [3, 5, 12, 24].

• The proof of Proposition 3 gives us the following hint how to find the
optimal U∗: the eigenvector u1 should be close to a piecewise constant
vector over an appropriate 2-partition of the vertices. Note that because
of its orthogonality to the vector 1, the vector u1 consists of both positive
and negative coordinates, and [36] separated the two clusters according
to the signs. In the sequel, we will use the k-means algorithm for this
purpose, in a more general setup. Note that the vector u1 is frequently
called Fiedler-vector.

To find the minima of the above multiway cuts over k-partitions is NP-
complete. However, spectral techniques working in polynomial time are at
our disposal. How accurately these minima can be approximated by means
of spectral clustering depends on, how close the partition vectors can get to the
eigenvectors corresponding to the k smallest Laplacian or normalized Laplacian
eigenvalues. The measure of the closeness of the involved subspaces is the k-
variance and it is minimized by the k-means algorithm. More precisely, we will
apply the k-means algorithm for the optimal representatives of the vertices. For
this purpose, instead of partitions, we will use partition vectors.

The k-partition Pk is uniquely determined by the n × k balanced par-
tition matrix Zk = (z1, . . . , zk), where the a-th balanced k-partition vector
za = (z1a, . . . , zna)T is the following:

zia =

{
1√
|Va|

if i ∈ Va
0 otherwise.

(23)

The matrix Zk is trivially suborthogonal, and the set of balanced k-partition
matrices is denoted by ZBk . With the special representation in which the repre-
sentatives r̃1, . . . , r̃n ∈ Rk are row vectors of ZBk , the ratio cut of G = (V,W )
corresponding to the k-partition Pk (see Definition 7) can be rewritten as

g(Pk, G) =

n−1∑
i=1

n∑
j=i+1

wij‖r̃i − r̃j‖2 =

k∑
a=1

zTaLza = tr(ZT
k LZk). (24)

We want to minimize it over balanced k-partition matrices Zk ∈ ZBk .
Assume that G is connected. Let 0 = λ0 < λ1 ≤ · · · ≤ λn−1 denote the

eigenvalues of its Laplacian matrix L with corresponding unit-norm, pairwise
orthogonal eigenvectors u0,u1, . . . ,un−1. Namely, u0 = 1√

n
1.

Theorem 3 For the minimum k-way ratio cut of the edge-wighted graph G =
(V,W ) the lower estimate

gk(G) ≥
k−1∑
i=1

λi

16



holds.

Proof 6 The discrete problem is relaxed to a continuous one. Let r1, . . . , rn
denote k-dimensional representatives of the vertices. Let X be the n× k matrix
with these representatives as row-vectors. The Representation theorem for edge-
weighted graphs (see Theorem 1) states that

min
XTX=Ik

n−1∑
i=1

n∑
j=i+1

wij‖ri − rj‖2 = min
XTX=Ik

tr(XTLX) =

k−1∑
i=0

λi,

and equality is attained with X = (u0, . . . ,uk−1).
As a balanced k-partition matrix is a special suborthogonal matrix,

gk(G) = min
Zk∈ZB

k

tr(ZT
k LZk) ≥

k−1∑
i=0

λi (25)

and equality can be attained only in the k = 1 trivial case, otherwise the eigen-
vectors ui (i = 1, . . . , k − 1) cannot be partition vectors, since their coordinates
sum to 0 because of the orthogonality to the u0 vector.

In the case of k = 2, in view of Theorem 3, g2(G) is bounded from below
by λ1, akin to the edge-connectivity of [30]. The proof also suggests that the
quality of the above estimation depends on, how close the k bottom eigenvectors
are to partition vectors. Concerning this issue and the optimum choice of k, we
have the following considerations.

Let us recall the method of the k-means clustering. Given the points
x1, . . . ,xn ∈ Rd and an integer 1 < k < n, we are looking for the k-partition
of the index set {1, . . . , n} (or equivalently, the clustering of the points into
k disjoint non-empty subsets) which minimizes the following k-variance of the
points over all possible k-partitions Pk = (C1, . . . , Ck):

S2
k(x1, . . . ,xn) = min

Pk

S2
k(Pk;x1, . . . ,xn) = min

Pk

k∑
a=1

∑
j∈Ca

‖xj − ca‖2 (26)

where ca = 1
|Ca|

∑
j∈Ca

xj is the center of cluster a (a = 1, . . . , k).
In general, d ≤ k, and they are much less than n. To find the global minimum

is NP-complete, but the iteration of the k-means algorithm is capable to find a
local minimum in polynomial time. Moreover, if S2

k+1 is ‘much less’ than S2
k,

then even the global minimum is obtained in polynomial time with a PTAS
(Polynomial Time Approximating Scheme). The vectors c1, . . . , ck are usually
referred to as the centroids of the clusters, and in a more abstract formulation of
the above optimization task, they are also looked for. Roughly speaking, starting
with an initial clustering, the iteration of the simple k-means algorithm consists
of the following two alternating steps. In the first step, fixing the clustering
of the points, it finds the cluster centers (they will be the barycenters by the
Steiner’s theorem). In the second one, the algorithm relocates the points in such
a way that it assigns a point to the cluster, the center of which is the closest to
it (in case of ambiguity the algorithm chooses the smallest index such cluster).
If there exists a well-separated k-clustering of the points (even the largest intra-
cluster distance is smaller than the smallest inter-cluster one) the convergence
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of the algorithm to the global minimum is proved, with a convenient starting.
The algorithm runs faster if the separation between the clusters increases and
an overall running time of O(kn) can be guaranteed.

Sometimes the points x1, . . . ,xn are endowed with the positive weights
d1, . . . , dn, where without loss of generality

∑n
i=1 di = 1 can be assumed. In

such cases the weighted k-variance of the points

S̃2
k(x1, . . . ,xn) = min

Pk

S̃2
k(Pk;x1, . . . ,xn) = min

Pk

k∑
a=1

∑
j∈Ca

dj‖xj − ca‖2 (27)

is considered, where ca = 1∑
j∈Ca

dj

∑
j∈Ca

djxj is the weighted center of cluster
a (a = 1, . . . , k). The above algorithm can be easily adapted to this situation.
Note that S̃2

k(x1, . . . ,xn) corresponds to the k-variance with respect to the dis-
tribution d1, . . . , dn. In this contexts, S2

k(x1, . . . ,xn) is the special case when
this law is uniform. Likewise, instead of L2-distances, other kind of distance
functions in the objective function may be used.

A well-known drawback of the k-means clustering is that the clusters need to
be convex in order to achieve satisfactory results. That is, the k-means algorithm
forms spherical clusters whether or not the underlying data distribution obeys
this form. Otherwise, our data can be mapped into a feature space and we
apply k-means clustering for the mapped data which already have this spherical
structure (see reproducing kernel Hilbert spaces in the next lesson).

Now let us denote by S2
k(Pk;X∗) the k-variance of the optimal vertex rep-

resentatives comprising row vectors of X∗ = (u0, . . . ,uk−1) in the clustering
Pk of the vertices. Let y1, . . .yk denote an orthonormal set of eigenvectors
corresponding to the k smallest eigenvalues of the Laplacian L. Consider the
squared distances between yi’s and F , where F is the subspace spanned by
partition vectors of (23). Then

S2
k(Pk;X∗) =

k∑
i=1

dist2(yi, F ).

Indeed, dist2(yi, F ) is the minimum squared distance between yi and F . In
view of the Steiner’s theorem, the minimum is attained with the piecewise
constant vector of coordinates having at most k different values c1i, . . . , cki
over the sets V1, . . . , Vk of the underlying k-partition. Namely, if i ∈ Va,
then the ith coordinate of the distance-minimizing piecewise constant vector
is cai = 1

|Va|
∑
j∈Va

yji, yielding

dist2(yi, F ) =

k∑
a=1

∑
j∈Va

(yji − cai)2,

where yji is the jth coordinate of the vector yi. By summing it for i = 1, . . . , k

and rearranging the finite summation,
∑k
i=1 dist2(yi, F ) equals S2

k(Pk;X∗) with
cluster centers ca = (ca1, . . . , cak), a = 1, . . . , k.

Therefore, the k-variance also minimizes the distance between the eigen-
subspaces spanned by the eigenvectors corresponding to the k smallest Laplacian
eigenvalues and that of the partition vectors. Here the number of clusters is the
same as the dimension of the representatives.
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3.2 Multiway cuts of hypergraphs
[It can be skipped.]

For hypergraphs, different kinds of multiway cuts can be defined. By Equa-
tion (9), to any hypergraph H = (V,E) an edge-weighted graph G = (V,W )
can be assigned such that the Laplacian of H is half of the Laplacian of G.
Accordingly, minimum multiway cuts and ratio cuts are defined for H such that
they can be directly related to the same quantities of G. Since the formula
of (9) takes into consideration the cardinalities of the hyperedges, the mini-
mum multiway and ratio cuts of a hypergraph depend on these cardinalities.
Therefore, a cardinality-free version of them, as well as a version which takes
into consideration how many vertices of the individual clusters a cut-hyperedge
contains, will also be introduced. We will discuss relations between these cuts
and the Laplacian spectrum of H.

Definition 8 Let H = (V,E) be a hypergraph and Pk = (V1, . . . , Vk) a k-
partition of its vertices. The k-way cut of H corresponding to the k-partition
Pk is

cut(Pk, H) =
∑
e∈E

1

|e|

k−1∑
a=1

k∑
b=a+1

|e ∩ Va| · |e ∩ Vb|

and the minimum k-way cut of H is

mincutk(H) = min
Pk∈Pk

cut(Pk, H). (28)

Definition 9 Let H = (V,E) be a hypergraph and Pk = (V1, . . . , Vk) a k-
partition of its vertices. The k-way ratio cut of H corresponding to the k-
partition Pk is

g(Pk, H) =
∑
e∈E

1

|e|

k−1∑
a=1

k∑
b=a+1

(
1

|Va|
+

1

|Vb|

)
|e ∩ Va| · |e ∩ Vb|

and the minimum k-way ratio cut of H is

gk(H) = min
Pk∈Pk

g(Pk, H).

Definition 10 Let H = (V,E) be a hypergraph and Pk = (V1, . . . , Vk) a k-
partition of its vertices. The k-sector of H corresponding to the k-partition Pk
is the following set of its hyperedges:

sector(Pk, H) = {e ∈ E : there exist i 6= j s. t. e ∩ Vi 6= ∅ and e ∩ Vj 6= ∅}.

The cardinality of the minimum k-sector of H is

θk(H) = min
Pk∈Pk

|sector(Pk, H)|. (29)

Note that the k-partition Pk defines the coloring c of the vertices with k different
colors: c(v) = i if v ∈ Vi. In terms of this coloring, sector(Pk, H) consists of
the multicolored edges of H (i.e. hyperedges of H having at least two vertices
of different colors).
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Remark 1 The above quantities are trivially monotonous in the sense that

mincut2(H) ≤ mincut3(H) ≤ · · · ≤ mincutn(H),

g2(H) ≤ g3(H) ≤ · · · ≤ gn(H),

θ2(H) ≤ θ3(H) ≤ · · · ≤ θn(H) = |E|.

Let L̃ be the Laplacian of the hypergraph H defined in Definition 3. For the
bottom of its spectrum, in [17], the following two-sided estimation was proved.

Theorem 4 Let 0 = λ̃0 < λ̃1 ≤ · · · ≤ λ̃n−1 be the Laplacian eigenvalues of the
connected hypergraph H, and k be a fixed integer (2 ≤ k ≤ n). Then

cnθk(H) ≤
k−1∑
i=1

λ̃i ≤ gk(H)

holds with cn = 6
n(n2−1) .

In the case of k = 2, a more precise estimation for λ1 can be given.

Proposition 4 For the smallest positive Laplacian eigenvalue of the connected
hypergraph H the following lower estimate holds:

λ̃1 ≥
{

2(1− cos πn )mincut2(H) if 0 ≤ mincut2(H) ≤ 1
2dvmax

C1mincut2(H)− C2dvmax if 1
2dvmax < mincut2(H)

where dvmax = maxi dvi is the maximum vertex valence of H, whereas the con-
stants C1 and C2 are the same as in Equation (22).

The proof, to be found in [17], is analogous to that of the proof of Equation (22)
of [30].

The upper bound in Theorem 4 shows that the existence of k relatively small
eigenvalues is a necessary condition for the existence of a good classification of
H’s vertices (with a small minimal k-way partition cut). Thus, the spectrum
gives us some idea about the choice of the number k of the clusters for which
good coloring may exist. But the spectrum itself does not divulge anything
about the optimal k-partition, moreover it does not give a sufficient condition
for the existence of a good clustering. The lower bound in Theorem 4 depends
on the constant cn, and there are graphs for which the lower bound is attained
in order of magnitude, e.g. for lattices and spiders (see Examples (d) and (e) in
Section 2.3), which can not be classified into k clusters in a meaningful way.

Now we want to recognize optimal k-partitions by means of classification
of k-dimensional representatives of the vertices in an optimal k-dimensional
Euclidean representation of the hypergraph. The classification is performed by
the k-means algorithm. We will be confined to the case, when a ’very’ well-
separated k-partition of the above k-dimensional points exists.

Definition 11 A k-partition Pk = (V1, . . . , Vk) is called well-separated k-partition
of the vertex-set V in the k-dimensional Euclidean representation r1, . . . , rn of
the vertices if for the coloring c, corresponding ing to Pk, the relation

minc(vi) 6=c(vj) ‖xi − xj‖
maxc(vi)=c(vj) ‖xi − xj‖

≥ 1

holds.
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Theorem 5 Assume that for some integer 1 < k < n there exists a well-
separated k-partition of the optimal representatives of the vertices of H = (V,E),
for the clusters of which the diameters are at most ε, where ε < 1

2
√
n
. Then

gk(H) ≤ q2
k−1∑
i=1

λ̃i

where q = 1 + 2ε
1−ε
√
n
.

For the proof see [17]. Comparing the results of Theorems 4 and 5, under the
constraints of the latter one, we obtain that

k−1∑
i=1

λ̃i ≤ gk(H) ≤ q2
k−1∑
i=1

λ̃i, where 1 < q < 2.

This means that, provided ε is less than 1
2
√
n
, then q is at most 2, and hence,

gk(H) and
k−1∑
i=1

λ̃i differ at most by a factor of 4.
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