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1 SVD of contingency tables and correspondence

matrices

[This section can be skipped.]
Now, more generally, our underlying objects will be contingency tables,

i.e. rectangular arrays with nonnegative, real entries. For example, keyword–
document matrices or microarrays are such. In microarrays, rows correspond
to genes and columns to different conditions, while the corresponding entries
are expression levels of genes under specific conditions (a 0-1 matrix is a special
case of it). Let C be a contingency table on row set Row = {1, . . . ,m}, column
set Col = {1, . . . , n}, where C is m× n rectangular matrix of nonnegative real
entries cij ’s. Without loss of generality, we can assume that there are no iden-
tically zero rows or columns (otherwise they can be omitted). Here cij is some
kind of association between the objects representing row i and column j, where
0 means no interaction at all. Usually, the entries of C are normalized, either
with a uniform bound, say 1 (like probabilities), or the sum of the entries is 1
(reminiscent of a joint distribution). This normalization will have importance
in Section 4, here it has no relevance, since the correspondence matrix to be
introduced is invariant under scaling the entries of C. Let the row-sums of C

be

drow,i =

n
∑

j=1

cij , i = 1, . . . ,m (1)

and the column-sums

dcol,j =

m
∑

i=1

cij , j = 1, . . . , n (2)

which are collected in the main diagonal of the m×m diagonal matrix Drow =
diag(drow,1, . . . , drow,m) and that of the n×n diagonal matrix Dcol = diag(dcol,1, . . . , dcol,n),
respectively.

For a given integer 1 ≤ k ≤ min{m,n}, we are looking for k-dimensional
representatives r1, . . . , rm ∈ Rk of the rows and q1, . . . ,qn ∈ Rk of the columns
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such that they minimize the objective function

Qk =

m
∑

i=1

n
∑

j=1

cij‖ri − qj‖2 (3)

subject to
m

∑

i=1

drow,irir
T
i = Ik and

n
∑

j=1

dcol,jqjq
T
j = Ik. (4)

When minimized, the objective function Qk favors k-dimensional placement
of the rows and columns such that representatives of columns and rows with
large association are forced to be close to each other. As we will see, this is
equivalent to the problem of Correspondence Analysis.

Let us put both the objective function and the constraints in a more favorable
form. Let X be them×k matrix of rows rT1 , . . . , r

T
m, and x1, . . . ,xk ∈ Rn denote

the columns of X, for which fact we use the notation X = (x1, . . . ,xk). Because

of the constraint (4), the vectors D
−1/2
row xi (i = 1, . . . , k) form an orthonormal

system, hence, D
−1/2
row X is a suborthogonal matrix. Therefore, the first part of

the constraint can be formulated as XTDrowX = Ik. Likewise, let Y be the
n × k matrix of rows qT1 , . . . ,q

T
n , and y1, . . . ,yk ∈ Rn denote the columns of

Y , i.e. Y = (y1, . . . ,yk). Hence, the second part of the constraint (4) can be

formulated as Y TDcolY = Ik and the matrix D
−1/2
col Y is also suborthogonal.

With this notation, the objective function (3) is rewritten as

Qk =

m
∑

i=1

drow,i‖ri‖2 +

n
∑

j=1

dcol,j‖qj‖2 −
m

∑

i=1

n
∑

j=1

cijr
T
i qj

=

k
∑

ℓ=1

xTℓ Drowxℓ +

k
∑

ℓ=1

yTℓ Dcolyℓ −
k

∑

ℓ=1

xTℓ Cyℓ

= tr(XT
DrowX) + tr(Y T

DcolY ) − tr(XT
CY )

= 2k − tr(XT
CY ) = 2k − tr[(D1/2

rowX)T (D−1/2
row CD

−1/2
col )(D

1/2
col Y )]

where the matrix Ccorr = D
−1/2
row CD

−1/2
col is introduced in [20] as the normalized

contingency table or correspondence matrix corresponding to the contingency
table C.

The correspondence matrix has singular value decomposition, briefly SVD

Ccorr =

r−1
∑

k=0

skvku
T
k , (5)

where r ≤ min{n,m} is the rank of Ccorr, or equivalently (as there are no iden-
tically zero rows or columns), the rank of C. Here 1 = s0 ≥ s1 ≥ · · · ≥ sr−1 > 0
are the non-zero singular values of Ccorr. They cannot exceed 1, since they
are correlations. Furthermore, 1 is a single singular value if Ccorr (or equiva-
lently, C) is non-decomposable). In this case v0 = (

√

drow,1, . . . ,
√

drow,m)T

and u0 = (
√

dcol,1, . . . ,
√

dcol,n)
T is the singular vector pair corresponding to

s0 = 1.
Note that the singular spectrum of a decomposable contingency table can

be composed from the singular spectra of its non-decomposable parts, as well
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as their singular vector pairs. Therefore, in the future, the non-decomposability
of the underlying contingency table will be assumed.

Theorem 1 (Representation theorem for contingency tables) Let C be
a non-decomposable contingency table with correspondence matrix Ccorr. Let
1 = s0 > s1 ≥ · · · ≥ sr−1 be the positive singular values of Ccorr with unit-
norm singular vector pairs vi,ui (i = 0, . . . , r − 1), and k ≤ r be a positive
integer such that sk−1 > sk. Then the minimum of (3) subject to (4) is 2k −
∑k−1

i=0 si and it is attained with the optimum row representatives r∗1, . . . , r
∗
m and

column representatives q∗
1, . . . ,q

∗
n the transposes of which are row vectors of the

matrices X
∗ = D

−1/2
row (v0,v1, . . . ,vk−1) and Y

∗ = D
−1/2
col (u0,u1, . . . ,uk−1),

respectively.

Proof 1 In fact, we have to maximize

tr[(D1/2
rowX)TCcorr(D

1/2
col Y )]

under the constraints that D
1/2
rowX and D

1/2
col Y are suborthogonal matrices.

Definition 1 The vectors r∗1, . . . , r
∗
n and q∗

1, . . . ,q
∗
m giving the optimum in

Theorem 1 are called optimum k-dimensional representatives of the rows and

columns, while the transformed singular vectors D
−1/2
row v0, . . . ,D

−1/2
row vk−1 and

D
−1/2
col u0, . . . ,D

−1/2
col uk−1 are called vector components of the contingency table,

taking part in the k-dimensional representation of its rows and columns.

We remark the following.

• Provided 1 is a single singular value (or equivalently, C is non-decomposable),

the first columns of the matrices X∗ and Y ∗ are D
−1/2
row v0 and D

−1/2
col u0,

i.e. the constantly 1 vectors of Rm and Rn, respectively. Therefore they
do not contribute significantly to the separation of the representatives, and
the k-dimensional representatives are in a (k− 1)-dimensional hyperplane
of Rm and Rn, respectively.

• Note that the dimension k does not play an important role here, the vector
components can be included successively up to a k such that sk−1 >

sk. We remark that the singular vectors can arbitrarily be chosen in
the isotropic subspaces corresponding to possible multiple singular values,
under the orthogonality conditions.

• As for the joint distribution view (when the rows and columns belong
to the categories of two categorical variables), this representation has the
following optimum properties: the closeness of categories of the same vari-
able reflects the similarity between them, while the closeness of categories
of the two different variables reflects their frequent simultaneous occur-
rence. For example, C being a microarray, the representatives of similar
function genes as well as representatives of similar conditions are close
to each other; likewise, representatives of genes that are responsible for a
given condition are close to the representatives of those conditions.
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• One frequently studied example of a rectangular array is the keyword–
document matrix. Here the entries are associations between documents
and words. Based on network data, the entry in the ith row and jth
column is the relative frequency of word j in document i. Latent seman-
tic indexing looks for real scores of the documents and keywords such
that the score of a any document be proportional to the total scores of
the keywords occurring in it, and vice versa, the score of any keyword
be proportional to the total scores of the documents containing it. Not
surprisingly, the solution is given by the SVD of the contingency table,
where the document- and keyword-scores are the coordinates of the left
and right singular vectors corresponding to its largest non-trivial singular
value which gives the constant of proportionality. This idea is generalized
in [32] in the following way. We can think of the above relation between
keywords and documents as the relation with respect to the most impor-
tant topic (or context, or factor). After this, we are looking for another
scoring with respect to the second topic, up to k (where k is a positive
integer not exceeding the rank of the table). The solution is given by the
singular vector pairs corresponding to the k largest singular values of the
table. The problem is also related to the Pagerank, see e.g. [39].

• In another view, a contingency table can be considered as part of the
weight matrix of a bipartite graph on vertex set Row∪Col. this bipartite
graph However, it would be hard to always distinguish between these two
types of vertices, we rather use the framework of correspondence analysis,
and formulate our statements in terms of rows and columns.

2 Normalized Laplacian spectra

Let G = (V,W ,S) be a weighted graph on the vertex-set V (|V | = n), where
both the edges and vertices have nonnegative weights. The edge-weights are
entries of W , whereas the diagonal matrix S = diag(s1, . . . , sn) contains the
positive vertex-weights in its main diagonal. Without loss of generality, we
can assume that the entries in W and S both sum to 1. For the time being,
the vertex-weights have nothing to do with the edge-weights. These individ-
ual weights are assigned to the vertices subjectively. For example, in a social
network, the edge-weights are similarities between the vertices based on the
strengths of their pairwise connections (like frequency of co-starring of artists),
while vertex-weights embody the individual strengths of the vertices in the net-
work (like the actors’ individual abilities). We will further motivate this idea in
later.

Now, we look for k-dimensional representatives r1, . . . , rn of the vertices so
that they minimize the objective function Qk =

∑

i<j wij‖ri − rj‖2 subject to

n
∑

i=1

sirir
T
i = Ik.
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With the notation and considerations of Lesson 1,

min
P

n
i=1 sirir

T
i

=Ik

Qk = min
XT SX=Ik

tr(XT
LX)

= min
XT SX=Ik

tr[(S1/2
X)T (S−1/2

LS
−1/2)(S1/2

X)]

=

k−1
∑

i=0

λi(LS) =

k−1
∑

i=1

λi(LS)

where LS = S
−1/2

LS
−1/2 is the Laplacian, normalized by S, and because of

the constraints, S1/2X is a suborthogonal matrix. Obviously, LS is also posi-
tive semidefinite with eigenvalues 0 = λ0(LS) ≤ λ1(LS) ≤ · · · ≤ λn−1(LS) and
corresponding orthonormal eigenvectors u0,u1, . . . ,un−1. Furthermore, 0 is a
single eigenvalue if and only if G is connected. The optimum k-dimensional rep-
resentation is obtained by the row vectors of the matrix S−1/2(u0,u1, . . . ,uk−1).

The special case, when the vertex-weights are the generalized degrees, that
is S = D, has a distinguished importance.

Definition 2 The matrix

LD = D
−1/2

LD
−1/2 = In − D

−1/2
WD

−1/2

is called the normalized Laplacian of the edge-weighted graph G = (V,W ).

Remark 1 Now, we enumerate some simple statements concerning the nor-
malized Laplacian spectrum.

(i) Since the matrix D−1/2WD−1/2 is the correspondence matrix correspond-
ing to the symmetric contingency table W , the singular values of this ma-
trix are in the [0, 1] interval: they are special correlations, the largest one
being 1 (see Section 1). Consequently, the eigenvalues of D−1/2WD−1/2

are in the [−1, 1] interval, while those of In−D
−1/2

WD
−1/2 in the [0, 2]

interval. Let
0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2

denote the spectrum of the normalized Laplacian LD.

(ii) Trivially, 0 is a single eigenvalue of LD if and only if G is connected (i.e.
W is irreducible), and in this case, the corresponding unit-norm eigen-
vector is the

√
d = (

√
d1, . . . ,

√
dn)T vector. Furthermore, the normalized

Laplacian spectrum of a disconnected graph is the union of those of its
connected components.

(iii) Since
∑n−1

i=0 λi = tr(LD) = n, the following estimations for the small-
est and largest positive normalized Laplacian eigenvalues of the connected
edge-weighted graph G = (V,W ) on n vertices hold:

λ1 = min
i∈{1,...,n−1}

λi ≤
1

n− 1

n−1
∑

i=1

λi =
n

n− 1
≤ max

i∈{1,...,n−1}
λi = λn−1.

Note that both of the above inequalities hold with equality at the same time,
if and only if G is the complete graph (see the forthcoming Example (A)).
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(iv) For a simple graph G, which is not the complete graph, λ1 ≤ 1 holds. For
the proof see [25].

(v) Provided G is connected, 2 is an eigenvalue if and only if G is a bipartite
graph (i.e. its vertices can be divided into two parts such that there are
no edges within these two vertex-subsets, or equivalently, after permuting
its rows and columns in the same way, W contains two zero diagonal
blocks). The proof for simple graphs is found in [25], and for general
edge-weighted graphs follows from the following considerations. The bi-
partedness of a connected G is equivalent to the fact that its weight matrix
W is irreducible, but decomposable. With the arguments of (i), this prop-
erty extends to the correspondence matrix, which has therefore a multiple
singular value 1. Since 1 is a single eigenvalue of D−1/2WD−1/2 (thanks
to G connected), it must have the −1 as an eigenvalue, which results in
the eigenvalue 2 of LD.

Next, we enlist the normalized Laplacian spectra of some simple graphs.
Fially, for regular graphs, the Laplacian and normalized Laplacian eigenvalues
are constant multiples of each other.

(A) Since the complete graph Cn is (n− 1)-regular, its normalized Laplacian
eigenvalues are the 1

n−1 multiples of the Laplacian ones. Therefore,

λ0 = 0, λ1 = · · · = λn−1 =
n

n− 1
.

(B) For the path graph Pn,

λi = 1 − cos
iπ

n− 1
, i = 0, 1, . . . , n− 1.

Note that the largest eigenvalue is 2, since Pn is bipartite. Indeed, let us
label the vertices in their natural succession. Then the vertices of odd and
even labels constitute the two independent vertex subsets of the bipartite
graph. We also remark that for large n, Pn is almost regular, in other
words, its degree-matrix is close to 2In. Therefore the normalized Lapla-
cian eigenvalues of Pn are asymptotically 1

2 multiples of the Laplacian
ones, see Example (b) of Lesson 1.

(C) For the d-dimensional hypercubeQd on 2d vertices, based on the adjacency
spectrum (derived in [40]), the normalized Laplacian eigenvalues are the
numbers 2i

d with multiplicity
(

d
i

)

, i = 0, 1, . . . , d. Hence, 2 is a single
eigenvalue of Qd, which fact is not surprising, since Qd is bipartite again.

(D) The normalized Laplacian eigenvalues of the complete bipartite graph
Kn1,n2 are

λ0 = 0, λ1 = · · · = λn1+n2−2 = 1, λn1+n2−1 = 2.

(E) Especially, the star graph Sd on d+1 vertices is the K1,d graph, therefore
its eigenvalues are

λ0 = 0, λ1 = . . . , λd−1 = 1, λd = 2.
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Normalized Laplacian was used for spectral clustering in several papers (see,
e.g., [11, 18]). Those results will be based on the observation that the spec-
tral decomposition (briefly, SD) of LD solves the following quadratic placement
problem.

Theorem 2 (Representation theorem for edge- and vertex-weighted graphs)
Let G = (V,W ) be a connected edge-weighted graph with normalized Laplacian
LD. Let 0 = λ0 < λ1 ≤ · · · ≤ λn−1 be the eigenvalues of LD with corresponding
unit-norm eigenvectors u0,u1, . . . ,un−1. Let k < n be a positive integer such
that λk−1 < λk. Then the minimum of Qk−1 subject to

n
∑

i=1

dirir
T
i = Ik−1 and

n
∑

i=1

diri = 0

is
∑k−1
i=1 λi and it is attained with the optimum (k− 1)-dimensional representa-

tives r∗1, . . . , r
∗
n the transposes of which are row vectors of X∗ = D−1/2(u1, . . . ,uk−1).

Proof 2 Observe that instead of X, the augmented n×k matrix X̃ can as well
be used, which is obtained from X by inserting the column x0 = 1 of all 1’s.
In fact, x0 = D−1/2u0, where u0 =

√
d is the eigenvector corresponding to the

eigenvalue 0 of LD. Then

min
P

n
i=1 dirir

T
i =Ik−1

P

n
i=1 diri=0

Qk−1 = min
X

T
DX=Ik−1

X
T

D1=0

tr[(D1/2
X)TLD(D1/2

X)]

= min
X̃T DX̃=Ik

tr[(D1/2
X̃)TLD(D1/2

X̃)] =
k−1
∑

i=1

λi.

(6)

Here we used that

tr[(D1/2
X̃)TLD(D1/2

X̃)] =

k−1
∑

ℓ=0

(D1/2xℓ)
T
LD(D1/2xℓ)

=
k−1
∑

ℓ=1

(D1/2xℓ)
T
LD(D1/2xℓ)

because of the relation LD(D1/2xℓ) = LD

√
d = 0, since

√
d = u0 is the unit-

norm eigenvector of LD corresponding to the eigenvalue 0. It is important that
G is connected and W is normalized such that

∑n
i=1 di = 1.

3 Modularity spectra

The modularity matrix M was defined by [46, 47] for simple graphs and natu-
rally extends to edge-weighted graphs (see [21]) as

M = W − ddT (7)

which is the negative of the so-called Q-Laplacian introduced in [64]. It is easy
to see that 0 is always an eigenvalue of M with corresponding eigendirection 1.
However, it is not true that the modularity spectrum of a disconnected graph is
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the union of modularity spectra of its components, and the above minima are
not related immediately to the eigenvalues of this modularity matrix. In case of
simple graphs, M is usually indefinite, and it is negative definite for complete or
complete multipartite graphs. In [22] we proved that the complete and complete
multipartite graphs are the only ones for which the largest modularity eigenvalue
is 0.

In [21] we introduced the following normalized version of the modularity
matrix.

Definition 3 Let G = (V,W ) be an edge-weighted graph with the entries of W

summing up to 1. The matrix

MD = D
−1/2

MD
−1/2 = D

−1/2
WD

−1/2 −
√

d
√

d
T

(8)

is called normalized modularity matrix of G.

As we have established, the eigenvalues of D−1/2WD−1/2 are in the [−1, 1]
interval; the largest eigenvalue is always 1 with corresponding unit-norm eigen-

vector
√

d. The only non-zero eigenvalue of the rank 1 term
√

d
√

d
T

is also 1
with the same eigenvector. Therefore, the spectrum of the matrix MD is the
same as the spectrum of D−1/2WD−1/2, with the only exception that – due

to the subtraction of the term
√

d
√

d
T

– the eigenvalue 1 of D−1/2WD−1/2

becomes an eigenvalue 0 of MD with eigenvector
√

d. Hence, the spectrum of
MD is in [−1, 1] and includes the 0.

These considerations give an exact relation between the normalized Lapla-

cian and modularity matrix: MD = I−LD−
√

d
√

d
T
. If the eigenvalues of LD

are 0 = λ0 ≤ λ1 · · · ≤ λn−1 ≤ 2, then the spectrum of MD consists of the num-
bers 1 − λi (i = 1, . . . , n− 1) and the zero with corresponding eigenvector

√
d.

Further, the multiplicity of 0 is one more than the multiplicity of the eigenvalue
1 of LD. The multiplicity of 1 is one less than multiplicity of the eigenvalue 0
of LD; hence, 1 cannot be an eigenvalue of MD if G is connected.

In terms of the normalized modularity matrix, the minimization problem (6)
can be formulated as a maximization task in the following way.

max
XT DX=Ik−1

tr[(D1/2
X)TMD(D1/2

X)]

= max
X

T
DX=Ik−1

X
T

D1=0

tr[(D1/2
X)T (D−1/2

WD
−1/2)(D1/2

X)]

=k − 1 − min
X

T
DX=Ik−1

X
T

D1=0

tr[(D1/2
X)T (In − D

−1/2
WD

−1/2)(D1/2
X)]

=k − 1 − min
Pn

i=1 dirir
T
i =Ik−1

P

n
i=1 diri=0

Qk−1.

The maximum is k− 1−∑k−1
i=1 λi =

∑k−1
i=1 (1− λi), that is the sum of the k− 1

largest eigenvalues of MD.
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4 Representation of joint distributions

[This section can be skipped.]
In this section we would like to give an abstract description of the issues

discussed in the previous sections in terms of two-variate distributions. With
the help of joint distributions, representation can be discussed in a more general
framework, of which graphs and contingency tables are special finite cases. This
section is rather of theoretical importance, however, some parts of it will appear
later when we will take limits of graphs and contingency tables, and consider
the continuous limit objects as kernels of integral operators taking conditional
expectation with respect to the joint distributions. Here and in the next section
we will intensively use the theory of Hilbert spaces and linear operators between
them; further, distribution of random vectors.

4.1 General setup

Let (ξ, η) be a pair of real-valued random variables – neither of them being
constant with probability 1 – defined over the product space X ×Y having joint
distribution W with marginals P and Q, respectively. Assume that the depen-
dence between ξ and η is regular, i.e. their joint distribution W is absolutely
continuous with respect to the product measure P × Q, and let w denote the
Radon–Nikodym derivative of W with respect to P × Q, see [54] for details. In
case of discrete or absolutely continuous distributions we will soon introduce
more friendly versions of this derivative.

In the spirit of [24], let H = L2(ξ) and H ′ = L2(η) be the set of random
variables which are functions of ξ and η and have zero expectation and finite
variance with respect to P and Q, respectively. BothH andH ′ are Hilbert spaces
with the covariance as inner product; further, they are embedded as subspaces
into the L2 space defined likewise by the (ξ, η) pair over the product space.
(Note that we consider Borel-measurable functions which are also measurable
with respect to the so-called σ-algebras generated by ξ and η, but we do not
want to introduce superfluous notions that will not be used later. For example,
in case of discrete, especially categorical variables with finitely many values, a
function of such a variable takes on as many values as the original one, with the
same probabilities.)

4.2 Integral operators between L
2 spaces

Let K : X × Y → R be a kernel such that for it
∫

X

∫

Y
K2(x, y) P(dx) Q(dy) <∞ (9)

holds. With the kernel K, a linear operator (integral operator) A : H ′ → H is
defined in the following way: to the random variable φ ∈ H ′ the linear operator
A assigns the random variable ψ ∈ H such that

ψ(x) = (Aφ)(x) =

∫

Y
K(x, y)φ(y) Q(dy), x ∈ X .

By the linearity of A, ψ has zero expectation, and it is easy to check that has
finite variance; further

‖ψ‖ ≤ ‖K‖2 · ‖φ‖ <∞,
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where ‖ψ‖ and ‖φ‖ denote the standard deviation (squareroot of the variance)
of the random variables ψ and φ, respectively, while ‖K‖2 is the squareroot of
the finite integral in (9). Further, for the operator norm of A, the following
holds:

‖A‖ = sup
‖φ‖=1

‖Aφ‖ ≤ ‖K‖2.

It is known that the above L2 spaces are separable Hilbert spaces, and in view
of (9), A is a Hilbert–Schmidt, therefore a compact (in other words, completely
continuous) linear operator with SVD:

A =
∞
∑

i=1

si〈., φi〉H′ψi.

Here 〈., .〉 denotes the real inner product (covariance) in the corresponding
Hilbert space; further, the nonnegative real numbers s1 ≥ s2 ≥ · · · ≥ 0 are the
singular values with the zero as the only possible point of accumulation, and the
corresponding function pairs ψi, φi can be chosen (even in case of multiple singu-
lar values) so that {ψi}∞i=1 ⊂ H and {φi}∞i=1 ⊂ H ′ form complete orthonormal
systems. Since A is also a Hilbert–Schmidt operator,

∑∞
i=1 s

2
i = ‖K‖2

2 < ∞.
Such an SVD is essentially unique (apart from function pairs corresponding to
multiple singular values). It is easy to see that the adjoint of A (which is, in
fact, the transpose, as we only deal with real valued random variables) has the
SVD

A∗ =

∞
∑

i=1

si〈., ψi〉Hφi

and
Aφi = siψi, A∗ψi = siφi, i = 1, 2, . . .

further, s1 is the spectral norm of both A and A∗.
Now we proceed to the symmetric case: the joint distribution over the prod-

uct space is symmetric, i.e. w(x, y) = w(y, x), x ∈ X , y ∈ Y. In this case ξ and
η are identically distributed (not independent as their joint distribution is W)
and hence, each random variable in H has a counterpart in H ′ and vice versa,
such that they are identically distributed; therefore H and H ′ are isomorphic in
terms of the distributions, too. By the Hilbert–Schmidt theorem, the selfadjoint
compact linear operator A : H ′ → H has SD

A =

∞
∑

i=1

λi〈., ψ′
i〉H′ψi

with real eigenvalues whose only possible point of accumulation is the zero
(limi→∞ λi = 0 if the eigenvalues are countably infinitely many), and corre-
sponding orthonormal eigenvectors ψ1, ψ2, . . . such that ψi and ψ′

i are identi-
cally distributed with joint distribution W. Of course, A also has a singular
value decomposition, where the singular values are the absolute values of the
eigenvalues; if λi > 0, then si = λi, ψi = φi and they coincide with the unit-
norm eigenfunction; if λi < 0, then si = −λi, ψi = −φi and any of them can be
the unit-norm eigenfunction corresponding to λi.

10



4.3 When the kernel is the joint distribution itself

The following linear operators taking conditional expectation between the two
marginals (with respect to the joint distribution) will play a crucial role in the
future, see also [24]. In the general, not necessarily symmetric case, they are
defined as

PX : H ′ → H, ψ = PXφ = E(φ | ξ), ψ(x) =

∫

Y
w(x, y)φ(y) Q(dy)

and

PY : H → H ′, φ = PYψ = E(ψ | η), φ(y) =

∫

X
w(x, y)ψ(x) P(dx).

It is easy to see that P ∗
X = PY and vice versa, because of the relation

〈PXφ, ψ〉H = 〈PYψ, φ〉H′ = CovW(ψ, φ), (10)

where CovW is the so-called covariance function with respect to the joint distri-
bution W, defined as

CovW(ψ, φ) =

∫

X×Y
ψ(x)φ(y)W(dx, dy) =

∫

X

∫

Y
ψ(x)φ(y)w(x, y)Q(dy)P(dx).

Assume that
∫

X

∫

Y
w2(x, y)Q(dy)P(dx) <∞. (11)

In case of discrete distributions with joint distribution {wij} and marginals {pi}
(pi =

∑

j wij) and {qj} (qj =
∑

i wij), (11) means that

∑

i∈X

∑

j∈Y

(

wij

piqj

)2

piqj =
∑

i∈X

∑

j∈Y

w2
ij

piqj
<∞,

while in case of absolutely continuous distributions with joint p.d.f. f(x, y) and
marginal p.d.f.s f1(x) (f1(x) =

∫

f(x, y) dy) and f2(y) (f2(y) =
∫

f(x, y) dx),
(11) means that or

∫

X

∫

Y

(

f(x, y)

f1(x)f2(y)

)2

f1(x)f2(y) dx dy =

∫

X

∫

Y

f2(x, y)

f1(x)f2(y)
dx dy <∞.

Under these conditions PX and PY are Hilbert–Schmidt operators, and there-
fore compact, with SVD

PX =

∞
∑

i=1

si〈., φi〉H′ψi, PY =

∞
∑

i=1

si〈., ψi〉Hφi (12)

where for the singular values 1 > s1 ≥ s2 ≥ · · · ≥ 0 holds, since the operators
PX and PY are in fact orthogonal projections from one marginal onto the other,
but the projections are restricted to the subspaces H and H ′, respectively.
We remark that denoting by ψ0 and φ0 the constantly 1 random variables,
E(φ0|ξ) = ψ0 and E(ψ0|η) = φ0, however, this pair is not considered as a
function pair with singular value s0 = 1, since they have no zero expectation.

11



Consequently, we will subtract 1 from the kernel, but with this new kernel, PX
and PY will define the same integral operators.

Especially, if W is symmetric (H and H ′ are isomorphic in terms of the
distributions too), then in view of (10), PX = PY is a selfadjoint (symmetric)
linear operator, since

〈PXφ, ψ〉H = CovW(φ, ψ) = CovW(ψ, φ) = 〈PYψ, φ〉H′ .

The SD of PX : H ′ → H is

PX =

∞
∑

i=1

λi〈., ψ′
i〉H′ψi.

Here for the eigenvalues, |λi| ≤ 1 holds, and the eigenvalue–eigenfunction equa-
tion looks like

PXψ
′
i = λiψi

where ψi and ψ′
i are identically distributed, whereas their joint distribution is

W (i = 1, 2, . . . ).

4.4 Maximal correlation and optimal representations

From now on, we will intensively use separation theorems for the singular values
and eigenvalues. In view of these, the SVD gives the solution of the following
task of maximal correlation, posed by [33] and [53]. We are looking for ψ ∈ H ,
φ ∈ H ′ such that their correlation is maximum with respect to their joint
distribution W. Using (10),

max
‖ψ‖=‖φ‖=1

CovW(ψ, φ) = s1

and it is attained on the non-trivial ψ1, φ1 pair. In the finite, symmetric case,
maximal correlation is related to some conditional probabilities in [19].

This task is equivalent to the following one:

min
‖ψ‖=‖φ‖=1

‖ψ−φ‖2 = min
‖ψ‖=‖φ‖=1

(‖ψ‖2 +‖φ‖2−2CovW(ψ, φ)) = 2(1−s1). (13)

Correspondence analysis is on the one hand, a special case of the problem
of maximal correlation being X and Y finite sets, but on the other hand, it is a
generalization in the extent that we are successively finding maximal correlations
under some orthogonality conditions.

The product space is now an m × n contingency table with row set X =
{1, . . . ,m} and column set Y = {1, . . . , n}, whereas the entries wij ≥ 0 (i =
1, . . . ,m; j = 1, . . . , n) embody the joint distribution over the product space,
with row-sums p1, . . . , pm and column-sums q1, . . . , qn as marginals.

Hence, the effect of PX : H ′ → H , PXφ = ψ is the following:

ψ(i) =
1

pi

n
∑

j=1

wijφ(j) =

n
∑

j=1

wij

piqj
φ(j)qj , i = 1, . . . ,m. (14)

Therefore, PX is an integral operator with kernel Kij =
wij

piqj
(instead of inte-

gration, we have summation with respect to the marginal measure Q).
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Consider the SVD

PX =

r−1
∑

k=1

sk〈., φk〉H′ψk

where r is the now finite rank of the contingency table (r ≤ min{n,m}). The
singular value s0 = 1 with the trivial ψ0 = 1, φ0 = 1 factor pair is disregarded
as their expectation is 1 with respect to the P- and Q-measures, respectively,
therefore, the summation starts from 1. If we used the kernel Kij − 1, we could
eliminate the trivial factors. Assume that there is no other singular value 1,
i.e. our contingency table is non-decomposable. Then, by the orthogonality, the
subsequent left- and right-hand side singular functions have zero expectation
with respect to the P- and Q-measures, and they solve the following successive
maximal correlation problem. For k = 1, . . . , r − 1, in step k we want to find
maxCorrW(ψ, φ) subject to

VarP(ψ) = VarQ(φ) = 1, CovP(ψ, ψi) = CovQ(φ, φi) = 0, 0 = 1, . . . , k − 1.

Note that the last condition for i = 0 is equivalent to

EP(ψ) = EQ(φ) = 0.

The maximum is sk and it is attained on the ψk, φk pair.
Now, we are able to define the joint representation of the general Hilbert-

spaces H,H ′ with respect to the joint measure W in the following way.

Definition 4 We say that the pair (X,Y) of k-dimensional random vectors
with components in H and H ′, respectively, form a k-dimensional representa-
tion of the product space endowed with the measure W if EPXXT = Ik and
EQYYT = Ik (i.e. the components of X and Y are uncorrelated with zero
expectation and unit variance, respectively). Further, the cost of this represen-
tation is defined as

Qk(X,Y) = EW‖X− Y‖2.

The pair (X∗,Y∗) is an optimal representation if it minimizes the above cost.

Theorem 3 (Representation theorem for joint distributions) Let W be
a joint distribution with marginals P and Q. Assume that among the singular
values of the conditional expectation operator PX : H ′ → H (see (12)) there are
at least k positive ones and denote by 1 > s1 ≥ s2 ≥ · · · ≥ sk > 0 the largest
ones. The minimum cost of a k-dimensional representation is 2

∑k
i=1(1 − si)

and it is attained with X∗ = (ψ1, . . . , ψk) and Y∗ = (φ1, . . . , φk), where ψi, φi is
the singular function pair corresponding to the singular value si (i = 1, . . . , k).

Proof 3

EW(X − Y)T (X− Y) = EW(XTX) + EW(YTY) − EWXTY − EWYTX

= EP(tr[XXT ]) + EQ(tr[YYT ]) − 2
k

∑

i=1

EW(XiYi)

= 2k − 2

k
∑

i=1

Cov(XiYi).

Applying the statement for the singular values of the conditional expectation
operator, the required statement is obtained.
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We remark that in case of a finite X and Y, the solution corresponds to
the SVD of the correspondence matrix. Though, the correspondence matrix
seemingly does not have the same normalization as the kernel, but our numerical
algorithm for the SVD of a rectangular matrix is capable to find orthogonal
eigenvectors in the usual Euclidean norm, which corresponds to the Lebesgue
measure and not to the P- or Q-measures. Observe that in case of an irreducible
contingency table, si < 1 (i = 1, . . . , k), therefore the minimum cost is strictly
positive.

In the symmetric case we can also define a representation. Now the X,X′

pair is identically distributed, but not independent as they are connected with
the symmetric joint measure W.

Definition 5 We say that the k-dimensional random vector X with components
in H forms a k-dimensional representation of the product space H×H ′ (H and
H ′ are isomorphic) endowed with the symmetric measure W (and marginal P) if
EPXXT = Ik (i.e. the components of X are uncorrelated with zero expectation
and unit variance). Further, the cost of this representation is defined as

Qk(X) = EW‖X− X′‖2,

where X and X′ are identically distributed and the joint distribution of their
coordinates Xi and X ′

i is W (i = 1, . . . , k), while Xi and X ′
j are uncorrelated if

i 6= j. The random vector X∗ is an optimal representation if it minimizes the
above cost.

Theorem 4 (Representation theorem for symmetric joint distributions)
Let W be a symmetric joint distribution with marginal P. Assume that among
the eigenvalues of the conditional expectation operator PX : H ′ → H (H and
H ′ are isomorphic) there are at least k positive ones and denote by 1 > λ1 ≥
λ2 ≥ · · · ≥ λk > 0 the largest ones. Then the minimum cost of a k-dimensional
representation is 2

∑k
i=1(1 − λi) and it is attained by X∗ = (ψ1, . . . , ψk) where

ψi is the eigenfunction corresponding to the eigenvalue λi (i = 1, . . . k).

In case of a finite X (vertex set of an edge-weighted graph), we have a
weighted graph with edge-weights wij (

∑n
i=1

∑n
j=1 wij = 1). The operator PX

deprived of the trivial factor corresponds to its normalized modularity matrix
with eigenvalues in the [-1,1] interval (1 cannot be an eigenvalue if the underlying
graph is connected), and eigenfunctions which are the transformed eigenvectors.
As the numerical algorithm gives an orthonormal set of eigenvectors in Euclidean
norm, some back-transformation is needed to get uncorrelated components with
unit variance, therefore we use the normalized modularity matrix instead of
the kernel Kij =

wij

didj
expected from (14), where di =

∑

j∈X wij , i ∈ X , the

generalized degrees of the vertices.
We remark that the above formula for the kernel corresponds to the so-called

copula transformation of the joint distribution W into the unit square, see [?].
This idea appears when vertex- and edge-weighted graphs are transformed into
piecewise constant functions over [0, 1] × [0, 1], see the definition of graphons
later. This transformation can be done in the general non-symmetric and non-
finite cases too. Also observe that neither the kernel nor the contingency table
or graph is changed under measure preserving transformations of X , see the
theory of exchangeable sequences and arrays.
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We also remark that any or both of the starting random variables ξ, η can
as well be a random vector (with real components). For example, if they have
p- and q-dimensional Gaussian distribution respectively, than their maximum
correlation is the largest canonical correlation between them, and it is realized
by appropriate linear combinations of the components of ξ and η, respectively.
Moreover, we can find canonical correlations one after the other with corre-
sponding function pairs (under some orthogonality constraints), as many as the
rank of the cross-covariance matrix of ξ and η. In fact, the whole decomposi-
tion relies on the SVD of a matrix calculated from this cross-covariance matrix
and the individual covariance matrices of ξ and η. Hence, in many cases, the
maximum correlation problem can be dealt more generally by means of SVD or
SD.

5 Treating nonlinearities via reproducing kernel

Hilbert spaces

There are fairy tales about some fictitious spaces, where everything is ‘smooth’
and ‘linear’. Such spaces really exist, the hard part is that we should adopt them
to our data. Good news is that it is not necessary to actually map our data into
them, it suffices to treat only a kernel function, but the bad news is that the
kernel must be appropriately selected so that the underlying nonlinearity could
be detected.

Reproducing kernel Hilbert spaces were introduced in the middle of the 20th
century by [9, 50], and others, but the theory itself is an elegant application of
already known theorems of functional analysis, first of all the Riesz–Fréchet
theorem and the theory of integral operators, see the works of [56, 57] tracing
back to the beginning of the 20ieth century. Later on, in the last decades of
the 20ieth century and even in our days, reproducing kernel Hilbert spaces are
several times reinvented and applied in modern statistical methods and data
mining, for example in [13, 58]. But what is the mystery of reproducing kernels
and what is the diabolic kernel trick? We would like to reveal this secret and
show the technical advantages of this artificially constructed creature. We will
start with the motivation for using this concept of data representation.

A popular approach to data clustering (sometimes this is called spectral
clustering) is the following. Our data points x1, . . . ,xn are already in a metric
space, called data space, but cannot be well classified by the k-means algorithm
for no integer 0 < k < n. For example, there are obviously two clusters of points
in R2, but they are separated by an annulus and the k-means algorithm with
k = 2 is not able to find them, see [52]. However, we can map the points into a
usually higher dimensional, or more abstract space with a non-linear mapping
so that the images are already well clustered in the new, so-called feature space.
At the end of this section, we will give a mapping of the points into R3 using
a second degree polynomial kernel, because we want to make a separation with
second degree curves linear.

In practical higher-dimensional problems, when we do not have the faintest
idea about the clusters and no visualization is possible, unfortunately, we cannot
give such mappings explicitly. Moreover, the feature space usually has much
higher dimension than the original one, which fact is frequently referred to as
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the curse of dimensionality. However, the point of the kernel method to be
introduced is that it is not even necessary to perform the mapping, it suffices to
select a kernel – based on the inner product of the original points – that is no
longer a linear kernel, but a more complicated, still admissible kernel (the exact
meaning is given in Definition 7), and defines a new inner product within the
feature space. Then we process statistical algorithms that need only this kernel
and nothing else.

The feature space above is the counterpart of a so-called reproducing kernel
Hilbert space that we will introduce right now together with the correspondence
between it and the feature space. For example, finite dimensional Euclidean
spaces (vector spaces with the usual inner product, e.g. Rp) or the L2(X ) space
of real-valued, square integrable functions with respect to some finite measure
on the compact set X (where the inner product of two functions is the integral
of their product on X ) are such.

5.1 Notion of the reproducing kernel

A stronger condition imposed on a Hilbert space H of functions X → R (where X
is an arbitrary set, for the time being) is that the following so-called evaluation
mapping be a continuous, or equivalently, a bounded linear functional. The
evaluation mapping Lx : H → R works on an f ∈ H such that

Lx(f) = f(x). (15)

Definition 6 A Hilbert space H of (real) functions on the set X is a reproducing
kernel Hilbert space, briefly RKHS, if the point evaluation functional Lx of (15)
exists and is continuous for all x ∈ X .

The name reproducing kernel comes from the fact that – by the Riesz–Fréchet
representation theorem – the result of such a continuous mapping can be written
as an inner product. This theorem states that a Hilbert space (in our case H)
and its dual (in our case the set of H → R continuous linear functionals, e.g. Lx)
are isometrically isomorphic. Therefore, to any Lx there uniquely corresponds
a Kx ∈ H such that

Lx(f) = 〈f,Kx〉H, ∀f ∈ H. (16)

Since Kx is itself an X → R function, it can be evaluated at any point y ∈ X .
We define the bivariate function K : X × X → R as

K(x, y) := Kx(y) (17)

and call it the reproducing kernel for the Hilbert space H. Then using formu-
las (15), (16), and (17), we get that on the one hand,

K(x, y) = Kx(y) = Ly(Kx) = 〈Kx,Ky〉H,
and on the other hand,

K(y, x) = Ky(x) = Lx(Ky) = 〈Ky,Kx〉H.
By the symmetry of the (real) inner product it follows that the reproducing
kernel is symmetric and it is also reproduced as the inner product of special
functions in the RKHS:

K(x, y) = 〈Kx,Ky〉H = 〈K(x, .),K(., y)〉H, (18)
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hence, K is positive definite (for the precise notion see the forthcoming Defini-
tion 7). This is the diabolic kernel trick. In this way, any point is represented
by its similarity to all other points, see [8, 61] for more details.

Vice versa, if we are given a positive definite kernel function on X × X at
the beginning, then there exists an RKHS such that with appropriate elements
of it, the inner product relation (18) holds. (In fact, we are not given, we just
select an appropriate kernel function.) The mystery of RKHS just lies in this
converse statement.

For this purpose, let us first define the most important types of kernel func-
tions and discuss how more and more complicated ones can be derived from the
simplest ones.

Definition 7 A symmetric two-variate function K : X × X → R is called
positive definite kernel (equivalently, admissible, valid, or Mercer kernel) if for
any n ∈ N and x1, . . . , xn ∈ X , the symmetric matrix of entries K(xi, xj) =
K(xj , xi) (i, j = 1, . . . n) is positive semidefinite.

We remark that a symmetric real matrix is positive semidefinite if and only
if it is a Gram matrix, and hence, its entries become inner products, but usually
not of the entries in its arguments. However, the simplest kernel function, the
so-called linear kernel, does this job. It is defined as

Klin(x, y) = 〈x, y〉X ,

if X is subset of a Euclidean space.
From a valid kernel, one can get other valid kernels with the following oper-

ations:

1. If K1,K2 : X × X → R are positive definite kernels, then the kernel K
defined by K(x, y) = K1(x, y) +K2(x, y) is also positive definite.

2. If K1,K2 : X × X → R are positive definite kernels, then the kernel K
defined by K(x, y) = K1(x, y)K2(x, y) is also positive definite. Especially,
if K is a positive definite kernel, then so does cK with any c > 0.

The first statement is trivial, the second one follows from the following propo-
sition.

Proposition 1 Let A and B be n×n symmetric, positive semidefinite matrices.
Then the matrix C of entries cij = aijbij (i, j = 1, . . . n) is also symmetric,
positive semidefinite.

Proof 4 The symmetry of C is trivial. Any symmetric, positive semidefi-
nite matrix is a Gram-matrix, and hence, can be considered as the covari-
ance matrix of an n-dimensional random vector. For the simplicity, let X =
(X1, . . . , Xn)

T ∼ Nn(0,A) and Y = (Y1, . . . , Yn)
T ∼ Nn(0,B) be independent

Gaussian random vectors. We define the random vector Z in the following way:

Z := (X1Y1, . . . , XnYn)
T .

It is easy to see that E(Z) = 0, since E(XiYi) = Cov(Xi, Yi)+E(Xi) ·E(Yi) = 0,
i = 1, . . . , n. If we verify that the covariance matrix of Z is C then we are ready
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as a covariance matrix is always positive semidefinite. Indeed, the ij-th entry
of E(ZZT ) is

E(XiYiXjYj) = E([XiXj ] · [YiYj ]) = E(XiXj) · E(YiYj) = aij · bij = cij ,

where we again used that the expectation of the product of the two independent
random variables in the brackets is the product of their expectations.

We remark that Z is not multivariate Gaussian, and it is not necessary that
X and Y be so, just because of their independence, the above calculations are
valid (as any component of X is independent of any component of Y, their
covariances are also zeros). It should be noted that the above kind of matrix
product is called Hadamard product or Schur product and denoted by A ◦ B,
whereas Proposition 1 is referred to as Schur’s theorem, with a purely algebraic
proof.

Consequently, if h is a polynomial with positive coefficients andK : X×X →
R is a positive definite kernel, then the kernel Kh : X × X → R defined by

Kh(x, y) = h(K(x, y)) (19)

is also positive definite. Since the exponential function can be approximated
by polynomials with positive coefficients and the positive definiteness is closed
under pointwise convergence, the same is true if h is the exponential function:
h(x) = ex, perhaps some transformation of it.

Putting these facts together and using the formula

‖x− y‖2 = 〈x, x〉 + 〈y, y〉 − 2〈x, y〉, (20)

one can easily verify that the following, so-called Gaussian kernel is positive
definite:

KGauss(x, y) = e−
‖x−y‖2

2σ2 , (21)

where σ > 0 is a parameter. Indeed, in view of (20), this kernel can be written
as the product of two positive definite kernels in the following way:

KGauss(x, y) = K1(x, y)K2(x, y),

where
K1(x, y) = e−

〈x,x〉+〈y,y〉

2σ2 ,

and
K2(x, y) = e

〈x,y〉

σ2 .

Here K2 is positive definite as it is the exponential function of the positive
definite kernel 1

σ2Klin. To show that K1 is positive definite, by definition, we
have to verify that for any n ∈ N and x1, . . . , xn ∈ X , the symmetric matrix of
entries

K1(xi, xj) = e−
〈xi,xi〉

2σ2 · e−
〈xj,xj〉

2σ2 , i, j = 1, . . . n

is positive semidefinite. But it is a rank 1 matrix (dyad), its only non-zero
eigenvalue being equal to its trace, which is positive.

If X = {x1, . . . , xn} and S is an n×n symmetric similarity matrix comprised
of the pairwise similarities between the entries of X , then the kernelK defined by
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the n×n symmetric, positive definite matrix eλS is called diffusion kernel, where
0 < λ < 1 is parameter (sometimes called decay factor). Let us recapitulate that
the eigenvalues of the eλS matrix are the numbers eλλi (i = 1, . . . , n), where λi’s
are real eigenvalues of S. Therefore the diffusion kernel is always strictly positive
definite, even if S is not positive semidefinite. Above the aforementioned ones,
there are a lot of other kernels, see [8, 52] for details.

5.2 RKHS corresponding to a kernel

Now we are able to formulate the converse statement. Recall that, by the Riesz–
Fréchet representation theorem, an RKHS defines a positive definite kernel. In
the other direction, for any positive definite kernel we can find a unique RKHS
such that the relation formulated in (18) holds with appropriate elements of it.
The following theorem is due to [9] who attributed it to E. H. Moore.

Theorem 5 For any positive definite kernel K : X × X → R there exists a
unique, possibly infinite-dimensional Hilbert space H of functions on X , for
which K is a reproducing kernel.

If we want to emphasize that the RKHS corresponds to the kernel K, we will
denote it by HK . The proof of the Theorem 5 can be found in [8, 61], among
others. It is based on the observation that the function space Span{Kx =
K(x, .) |x ∈ X} uniquely defines a pre-Hilbert space that can be completed into
a Hilbert space. This will provide the unique RKHS HK .

However, we may wish to realize the elements of an RKHS HK in a more
straightforward Hilbert space F . Assume that there is a (usually not linear)
map φ : X → F such that when x ∈ X is mapped into φ(x) ∈ F , then

K(x, y) = 〈φ(x), φ(y)〉F

is the desired positive definite kernel. At the same time, in view of (18),

K(x, y) = 〈Kx,Ky〉HK

where recall that Kx = K(x, .) is an X → R function, hence, cannot be identical
to φ(x), but they can be connected with the following transformation. Let T
be a linear operator from F to the space of functions X → R defined by

(Tf)(y) = 〈f, φ(y)〉F , y ∈ X , f ∈ F .

Then
(Tφ(x))(y) = 〈φ(x), φ(y)〉F = K(x, y) = Kx(y),

therefore
Tφ(x) = Kx, ∀x ∈ X (22)

and hence, HK becomes the range of T . This was the informal proof of the
more precise statements about this correspondence.
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5.3 Two examples of an RKHS

Here we give the theoretical construction for Hk and F , together with the
functions Kx and the features φ(x), in two special cases.

(a) Let K be the continuous kernel of a positive definite Hilbert–Schmidt
operator which is an integral operator working on the L2(X ) space, where
X is a compact set in R for simplicity (it could be Rp as well). Now the
positive definiteness of K means that

∫

X

∫

X
K(x, y)f(x)f(y) dx dy ≥ 0, ∀f ∈ L2(X ),

and for the integral operator to be Hilbert–Schmidt, K must be in the
L2(X × X ) space, that is

∫

X

∫

X
K2(x, y) dx dy <∞

holds for it.

It is well known (see, e.g. [57]) that this operator is compact, hence has
a discrete spectrum whose only possible point of accumulation is the 0.
Because of the symmetry of K, the integral operator is also self-adjoint,
and for it, the Hilbert–Schmidt theorem is applicable. This guarantees
that the operator has nonnegative real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0 and
corresponding eigenfunctions ψ1, ψ2, . . . . It also follows that

∑∞
i=1 λ

2
i =

∫

X
∫

X K
2(x, y) dx dy < ∞. By the Mercer theorem, if K is a continu-

ous kernel of a positive definite integral operator on L2(X ), where X is
some compact space, then it can be expanded into the following uniformly
convergent series:

K(x, y) =

∞
∑

i=1

λiψi(x)ψi(y), ∀x, y ∈ X

by the eigenfunctions and the eigenvalues of the integral operator.

The RKHS defined by K is the following:

HK = {f : X → R : f(x) =
∞
∑

i=1

ciψi(x) s.t.

∞
∑

i=1

c2i
λi

<∞}.

If g(x) =
∑∞

i=1 diψi(x) – where
∑∞

i=1
d2i
λi
<∞ – is another function in HK ,

then f(x) + g(x) also corresponds to HK , due to (ci + di)
2 ≤ 2(c2i + d2

i );
the constant multiple of f(x) also corresponds to HK , therefore HK is a
subspace of L2(X ). The inner product of f and g is

〈f, g〉Hk
=

∞
∑

i=1

cidi

λi
.

Then one can easily verify that

Kx = K(x, .) =
∞
∑

i=1

λiψi(x)ψi
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is in HK . Indeed, it operates as

Kx(z) =

∞
∑

i=1

λiψi(x)ψi(z)

and ∞
∑

i=1

λ2
iψ

2
i (x)

λi
= K(x, x) <∞.

Therefore,

〈Kx,Ky〉HK
=

∞
∑

i=1

λiψi(x)λiψi(y)

λi
= K(x, y). (23)

Here the feature space F is the following counterpart of HK : it consists
of infinite dimensional vectors

φ(x) = (
√

λ1ψ1(x),
√

λ2ψ2(x), . . . ), x ∈ X

and the inner product is naturally defined by

〈φ(x), φ(y)〉F =
∞
∑

i=1

λiψi(x)ψi(y),

which, in view of (23), is really equal to 〈Kx,Ky〉HK
.

In fact, here there are the functions
√
λ1ψ1,

√
λ2ψ2, . . . , which form an

orthonormal basis in Hk, and because of this transformation, a function

f ∈ L2(X ) is in Hk if ‖f‖2
Hk

=
∑∞

i=1
c2i
λi
<∞. This condition restricts Hk

to special functions between which the inner product is also adopted to the
affine basis transformation. As the eigenfunctions of a Hilbert–Schmidt
operator are continuous, an f ∈ HK is also a continuous function. To
further characterize the elements of HK , let us use the Banach–Steinhaus
theorem.

sup
x∈X

‖Lx(f)‖ = sup
x∈X

|f(x)| <∞

holds for any f ∈ HK , as f is continuous on the compact set X , by the
Theorem of Weierstass. Under these circumstances, the Banach–Steinhaus
uniform boundedness principle states that

sup
x∈X

‖Lx‖ <∞,

that is, with some positive constant B,

sup
x∈X

sup
‖f‖HK

=1

|f(x)| ≤ B <∞.

Consequently, functions with fixed norm ‖f‖HK
are uniformly bounded,

and the uniform bound is proportional to their HK-norm. Therefore, the
global behavior of functions in HK effects their local behavior, at least, it
bounds the functions on their whole domain. Thus, they are – in certain
sense – smooth functions. This property is due to the fact that these
functions are strongly determined by the common kernel.
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(b) Now X is a Hilbert space of finite dimension, say Rp, and its elements will
be denoted by boldface x, stressing that they are vectors. If we used Klin

on X × X , then Kx = 〈x, .〉X , and by the Riesz–Fréchet representation
theorem, φ(x) = x would reproduce the kernel, as Klin(x,y) = 〈x,y〉X
for all x,y ∈ X . Now the RKHS induced by Klin is identified with the
feature space, which is X = Rp itself.

In case of more sophisticated kernels, HK contains non-linear functions,
and therefore, the features φ(x) can be realized usually in much higher
dimension than that of X . For example, let us consider the so-called
polynomial kernel

Kpoly(x,y) = (〈x,y〉X + c)d, c ≥ 0, d ∈ N, (x,y ∈ Rp)

obtained by using a special h in (19). It has
(

p+d
d

)

≈ pd eigenfunctions that
span the space of p-variate polynomials with total degree d (this number
is actually less if c = 0, i.e. the polynomials are of homogeneous degree).

In the following example of [52, 61], p = 2, d = 2, but instead of a
(

4
2

)

=6-
dimensional feature space, a 3-dimensional one will do, since the choice
c = 0 is possible. Indeed, for x = (x1, x2) ∈ X = R2 let

φ(x) := (x2
1, x

2
2,
√

2x1x2),

hence, F ⊂ R3. The idea comes from that we want to separate data points
allocated along two concentric circles, and therefore R2 → R quadratic
functions are applied. The separating circle with equation x2

1 + x2
2 = r2

(with a radius r between the radii of the two concentric circles) becomes
a plane in the new coordinate system. The original x’s in R2 were sepa-
rated by an annulus, whereas projecting φ(x)’s onto an appropriate two-
dimensional plane of R3, a linear separation can be achieved. The two
clusters can be separated by the k-means algorithm, as well.

Let us see, exactly what kernel is applied here. Using the usual inner
product in R3,

〈φ(x), φ(y)〉F = x2
1y

2
1 + x2

2y
2
2 + 2x1x2y1y2 = (x1y1 + x2y2)

2 = 〈x,y〉2X ,

hence, the new kernel is the square of the linear one, which is also positive
definite (polynomial kernel with c = 0, d = 2).

The RKHS HK corresponding to the feature space F now consists of
homogeneous degree quadratic functions R2 → R, with the functions
f1 : (x1, x2) → x2

1, f2 : (x1, x2) → x2
2, and f3 : (x1, x2) →

√
2x1x2 forming

an orthonormal basis in Hk such that K(x,y) =
∑3
i=1 fi(x)fi(y). How-

ever, by the correspondence (22), the elements of HK can be imagined as
elements φ(x) in R3. Anyway, we do not need to navigate neither in the
RKHS, nor in the feature space F , but what we only need, is the new
kernel:

K(x,y) = [Klin(x,y)]2, ∀x,y ∈ X .

In another setup, we may start with the above quadratic kernel K and
build up the RKHS HK as the span and completion of the following (ho-
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mogeneous degree quadratic) X → R functions:

Kx =

3
∑

i=1

fi(x)fi = x2
1f1 + x2

2f2 +
√

2x1x2f3, x ∈ X .

For example, f1 = K(1,0), f2 = K(0,1), and f3 = 1
2
√

2
(K(1,1) −K(−1,1)).

Then F = {φ(x) |x ∈ R2} ⊂ R3, and

〈Kx,Ky〉HK
= 〈φ(x), φ(y)〉F = K(x,y),

in accord with the theory, producing some kind of representation for spe-
cial non-linear R2 → R functions.

Observe that in both examples φ(x) is a vector with coordinates which are
the basis vectors of the RKHS evaluated at x. In the first exercise φ(x) is an
infinite, whereas in the second one, a finite dimensional vector. Note that HK

is an affine and sparsified version of the Hilbert space of X → R functions,
between which the inner product is adopted to the requirement that it would
reproduce the kernel.

5.4 Kernel – based on a sample – and the empirical feature

map

In practical applications, we usually have a finite sample X = {x1, . . . ,xn).

Based on it, the empirical feature map φ̂ : X → Rn can be constructed in the
following way (see e.g. [61]):

φ̂(x) = K
−1/2φn(x), (24)

with φn(x) = (K(x,x1), . . . ,K(x,xn))T , the counterpart of K(x, .) based on
the n-element set X , and the n×n symmetric real matrix K = (Kij) of entries
Kij = K(xi,xj), i, j = 1, . . . , n. Assume that K is positive definite, otherwise
(if positive semidefinite with at least one zero eigenvalue) we will use generalized
inverse when calculating K

−1/2. Let us apply (24) for xi’s. Since

φn(xi) = Kei,

where ei is the ith unit vector in Rn (it has 0 coordinates, except the ith one
which is equal to 1), the relation

φ̂(xi) = K
−1/2φn(xi) = K

1/2ei

holds. Further,

〈φ̂(xi), φ̂(xj)〉 = (K1/2ei)
T (K1/2ej) = eTi Kej = Kij , i, j = 1, . . . , n.

Howsoever we cannot see well in the artificially constructed spaces, this
whole abstraction was not in vain. Observe that for the data points xi’s we
need not even calculate φ̂(xi)’s, the spectral clustering of these images can be
done based on their pairwise distances:

‖φ̂(xi) − φ̂(xj)‖2 = 〈φ̂(xi), φ̂(xj)〉 + 〈φ̂(xi), φ̂(xi)〉 − 2〈φ̂(xj), φ̂(xj)〉
= K(xi,xi) +K(xj ,xj) − 2K(xi,xj)
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(i, j = 1, . . . , n). Thus, to evaluate the pairwise distances between any pairs of
the n features, merely the kernel values are needed. Sometimes the kernel is
some transformation of a similarity matrix of n objects, even if we do not have
them as finite-dimensional points. In other cases, we have finite dimensional
measurements on the objects, but merely the n×n empirical covariance matrix
is stored. If our data are multivariate Gaussian, this matrix suffices for further
processing, in other cases, we can calculate a polynomial or Gaussian kernel
based on it, with the explanation that it may be the true similarity between
our non-Gaussian data which are, in fact, in an abstract space. For example, if
K(xi,xj) = 〈xi,xj〉2, then the n×n similarity matrix of the features, applying
a Gaussian kernel afterwards, gives matrix entries

KGauss(φ̂(xi), φ̂(xj)) = e−
‖φ̂(xi)−φ̂(xj)‖2

2σ2 = e−
〈xi,xi〉

2+〈xj ,xj〉2−2〈xi,xj 〉2

2σ2

which can be further processed through Laplacian based clustering, see Chap-
ter ??.

In this way, linear methods are applicable in an implicitly constructed space,
instead of having to use non-linear methods in the original one. Here we only
use the kernel which is calculated from the inner products of the data points
through several transformations. The philosophy behind the above techniques
is that sometimes sophisticated, composite kernels are more capable to reveal
the structure of our data or to classify them, especially if they are not from a
Gaussian distribution or consist of different type of measurements (e.g. location,
brightness, color, texture). Just like in geometry, where the Euclidean distance
is not necessarily the best choice, it is not always the linear kernel which is most
useful in data representation.

But what kind of a kernel to be used? This is the important question. Many
authors, e.g. [62, 63], recommend the Gaussian kernel. For the data points
x1, . . . ,xn to be classified they construct the Gaussian kernel and the n × n

symmetric, positive definite kernel matrix is considered as weight matrix W of
a graph (in [49] the authors use zero diagonal). Then they perform spectral
clustering based on the Laplacian or normalized Laplacian matrix correspond-
ing to W , see Lesson 1. In this way, applying the k-means algorithm for the
so obtained k-dimensional (in fact, (k − 1)-dimensional) representatives, they
obtain nice clusters. This is because the data points of X are mapped into a
feature space F such that the only implicitly known images φ(xi) (i = 1, . . . , n)
define a graph similarity, starting with which, the usual representation based
spectral clustering works well. Hence, the graph construction is just an inter-
mediate step for the subsequent metric clustering. Even if we are given a graph
in advance, we may calculate the k-dimensional representatives of the vertices
(with a relatively small k, based on the Laplacian eigenvectors), and then we
classify them using kernel methods (e.g. substituting them into the Gaussian
kernel).

The advantage of the Gaussian kernel is that it is also translation-invariant.
The kernel K : Rp × Rp → R is translation-invariant if

K(x,y) = k(x− y)

with some Rp → R function k. In this case, the feature space has infinite
dimension and the RKHS determined by a translation-invariant K is described
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by Fourier theory, see [34]. Since the Fourier transforms of functions in HK

decay rapidly, the induced RKHS consists of smooth functions. Now, let K be
a p-dimensional Gaussian kernel with parameter σ > 0, defined in (21). Then

K(x,y) = k(x − y) = e−
‖x−y‖2

2σ2 (x,y ∈ Rp),

Kx’s are the so-called radial basis functions, and the functions of the induced

RKHS are convolutions of functions of L2(Rp) with e−
‖x‖2

σ2 . The RKHS de-
creases from L2(Rp) to ∅ as σ increases from 0 to ∞. In this way, Gaussian
kernels may be used as smoothing functions, for example, in the ACE (Al-
ternating Conditional Expectation) algorithm elaborated for the generalized
non-parametric regression problem, see [24] for details.

If the underlying space X is a probability space of random variables with
finite variance, and the product space is endowed with a joint distribution (see
Section 4), we may look for the so-called F -correlation of two random variables
which is the largest possible correlation between their φ-maps in the feature
space. In [13] it is proved that if F is the feature space corresponding to the
RKHS defined by the Gaussian kernel on R (with any positive parameter σ),
then the F -correlation of two random variables is zero if and only if they are
independent. Therefore, by mapping our data into the feature space, usual
linear methods – like Principal Component Analysis or Canonical Correlation
Analysis – become non-linear ones, and able to find independent components
instead of uncorrelated ones, which fact has significance if our data come from a
non-Gaussian distribution. This is the base of the so-called Kernel Independent
Component Analysis, see [13, 60] for details. Note that with a finite-dimensional
feature space, F -correlation cannot characterize independence.

Finally, let us remark that because of the smoothness of the functions in
an RKHS, not only the φ-maps of the data points xi’s are available, but also
φ(x) for an x in the small neighborhood of a data point. There is the Nyström
formula of similar flavor than (24) to do so, see [14, 15]. It can also be helped if
the kernel is just some similarity function between pairs of data (not in a metric
space), and though it is symmetric, not positive definite. In this case we can
approximate it with a positive definite one. The technique applied is similar
to that of the Multidimensional Scaling and other low rank approximations. In
addition, we can better work with a low rank matrix; especially, if n is ‘large’
we need to find only some leading eigenvalues and eigenvectors of the n × n

matrix K. Using Gaussian kernel, the entries of K corresponding to pairs of
data points that are far away, are negligibly ‘small’ and made zero, which fact
gives rise to use algorithms developed for SD of sparse matrices, see e.g. [1].

Summarizing, RKHS techniques can be useful if we want to recover non-
linear separation in our data. What we can do in general is that we calculate a
linear kernel based on the sample and use admissible transformations to define
newer and newer positive definite kernels, for example, a polynomial kernel of
degree d if we guess that our data points can be separated with some curve of
degree d. If only the relative position of the data points is of importance, we can
build a Gaussian kernel based on their pairwise distances. The diffusion kernel is
advisable to use in situations, when only a distance matrix of the objects is given
and it is not Euclidean. In this case, either we use Multidimensional Scaling to
embed the objects into a Euclidean space (and then use linear, polynomial, or
Gaussian kernels), or else we select a diffusion kernel based on the not necessarily
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positive definite similarity matrix obtained from the given distance matrix (e.g.
the entries are transformed by some monotonous decreasing function). Possibly,
the similarities are correlations between the variables (if we want to classify the
variables in a multidimensional dataset).

Even if we know the type of the kernel to be used, we must adapt its param-
eters to the data. With the new kernel and the pairwise distances, either Mul-
tidimensional Scaling or Laplacian based spectral clustering can be performed
here.

We remark that for image segmentation purposes, [59] uses two or more
Gaussian kernels: one contains the Euclidean distances of the pixels, and the
others those of their brightness, color, texture, etc. Eventually, they take the
product of the two or more positive definite kernels. If we multiply kernels, it
means that entries in the same position of the kernel matrices are multiplied
together. During the whole calculation for n data points, we only use the n×n

symmetric, positive definite, usually sparse kernel matrix. In [65] the authors
also recommend kernelization, but they do not specify the kernel to be used.

6 Application to image segmentation

In an image segmentation problem, we used the normalized modularity matrix
and the eigenvectors corresponding to its k − 1 largest eigenvalues to find k

clusters of 2304 pixels based on a Gaussian kernel, see Section 5 (the distances
of the pixels depended not only on their spacial distances). More precisely, we
assigned the points x1, . . . ,x2304 ∈ R3 to the pixels, the coordinates of which
characterize the spacial location, color, and brightness of the pixels. With the

positive parameter σ, the similarity between pixels i and j was wij = e−
‖xi−xj‖2

2σ2

for i 6= j. Figure 1 shows the original picture, and the picture when the pixels
were colored according to their cluster memberships with number of clusters 3,4,
and 5. Since the largest absolute value eigenvalues of the 2304×2304 normalized
modularity matrix are

0.137259, 0.0142548, 0.000925228, −0.000670733, −0.000670674, . . .

and the number of the positive eigenvalues is three, with a gap after the second
one, the 3- or 4-cluster solution seems the most reasonable. It is an intriguing
question – unsolved so far – whether the dimension k of the original data points
can be detected in the spectrum of MD when n is large.

Note that instead of the usual Gaussian kernel we can use product kernel as
follows. Divide the coordinates i of xi into groups G1, . . . , Gm and denote by

x
(ℓ)
i the subvector of xi with coordinates in Gℓ, for ℓ = 1, . . . ,m (e.g., according

to the Fourier frequencies). Then

wij =

m
∏

ℓ=1

e
−

‖x
(ℓ)
i

−x
(ℓ)
j

‖2

2σ2
ℓ , i 6= j,

where σℓ can be ‘smaller’ if we want to enhance the importance of coordinates
in group ℓ (e.g., at smaller Fourier frequencies).
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Figure 1: The original picture and the pixels colored with 3, 4, and 5 different
colors according to their cluster memberships.
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