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Normalized multiway cut problems are discussed together with modular-
ity cuts. Since the optima of the corresponding objective functions are taken
on partition vectors corresponding to the hidden clusters, they are related to
Laplacian, normalized Laplacian, or modularity spectra, whereas the precision
of the estimates depends on the distance between the subspaces spanned by
the corresponding eigenvectors and partition vectors. By an Analysis of Vari-
ance argument, this distance is the sum of the inner variances of the underlying
clusters, the objective function of the k-means clustering.

Clusters (in other words, modules or communities) of graphs are typical
(strongly or loosely connected) subsets of vertices that can be identified, for ex-
ample, with social groups or interacting enzymes in social or metabolic networks,
respectively; they form special partition classes of the vertices. To measure the
performance of a clustering, different kinds of multiway cuts are introduced and
estimated by means of Laplacian spectra. The key motif of these estimations
is that minima and maxima of the quadratic placement problems are attained
on some appropriate eigenspaces of the Laplacian, while optimal multiway cuts
are special values of the same quadratic objective function realized by piece-
wise constant vectors. Hence, the optimization problem, formulated in terms of
the Laplacian eigenvectors, is the continuous relaxation of the underlying max-
imum or minimum multiway cut problem. The objective functions defined on
the partitions of the vertices are sometimes called modularities, see [58, 63].

1 Normalized cuts
Here we will use the normalized Laplacian matrix to find so-called minimum
normalized cuts of edge-weighted graphs. Normalized cuts also favor balanced
partitions, but the balancing is in terms of the cluster-volumes defined by the
generalized degrees.

Definition 1 Let G = (V,W ) be an edge-weighted graph with generalized de-
grees d1, . . . , dn and assume that

∑n
i=1 di = 1. For the vertex-subset U ⊂ V

let Vol(U) =
∑
i∈U di denote the volume of U . The k-way normalized cut of G
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corresponding to the k-partition Pk = (V1, . . . , Vk) of V is defined by

f(Pk, G) =

k−1∑
a=1

k∑
b=a+1

(
1

Vol(Va)
+

1

Vol(Vb)

)
w(Va, Vb)

=

k∑
a=1

w(Va, V a)

Vol(Va)
= k −

k∑
a=1

w(Va, Va)

Vol(Va)
.

(1)

The minimum k-way normalized cut of G is

fk(G) = min
Pk∈Pk

f(Pk, G). (2)

The equivalence of the seemingly different expressions in (1) can be easily ver-
ified, using that

∑k
a=1 Vol(Va) =

∑n
i=1 di = 1. It is easy to see that fk(G)

punishes k-partitions with ’many’ inter-cluster edges of ’large’ weights and with
’strongly’ differing volumes. The quantity f2(G) was introduced in [56] for sim-
ple graphs and in [54] for edge-weighted graphs; further, for a general k in [9]
and [16], though they called it k-density of G.

Now, fk(G) will be related to the k smallest normalized Laplacian eigenval-
ues. Recall that the normalized Laplacian LD (see Definition ??) is unaffected
by scaling the edge-weights, its spectrum is in the [0, 2] interval and 0 is a single
eigenvalue whenever G is connected.

Theorem 1 Assume that G = (V,W ) is connected and let 0 = λ0 < λ1 ≤ · · · ≤
λn−1 ≤ 2 denote the eigenvalues of its normalized Laplacian matrix. Then

k−1∑
i=1

λi ≤ fk(G) (3)

and in the case when the optimal k-dimensional representatives of the vertices
can be classified into k well-separated clusters V1, . . . , Vk in such a way that the
maximum cluster diameter ε satisfies the relation ε ≤ min{1/

√
2k,
√

2 mini
√
pi},

where pi = Vol(Vi), i = 1, . . . , k, then

fk(G) ≤ c2
k−1∑
i=1

λi,

where c = 1 + εc′/(
√

2− εc′) and c′ = 1/mini
√
pi.

To prepare the proof, analogously to the balanced partition vectors, we will
introduce the notion of the normalized partition vectors. The k-partition Pk is
uniquely determined by the n×k normalized partition matrix Zk = (z1, . . . , zk),
where the a-th normalized k-partition vector za = (z1a, . . . , zna)T is the follow-
ing:

zia =

{
1√

Vol(Va)
if i ∈ Va

0 otherwise.
(4)

The matrixD1/2Zk is obviously suborthogonal, where D is the diagonal degree-
matrix. The set of normalized k-partition matrices is denoted by ZNk . The
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normalized cut of G = (V,W ) corresponding to the k-partition Pk can be
rewritten as

f(Pk, G) =

k∑
a=1

zTaLza = tr(ZT
k LZk) = tr[(D1/2Zk)TLD(D1/2Zk)] (5)

and fk(G) is its minimum over ZNk .

Proof 1 • Lower bound. The discrete problem is again relaxed to a contin-
uous one. Let r̃1, . . . , r̃n be k-dimensional representatives of the vertices
subject to

∑n
i=1 dir̃ir̃

T
i = Ik. Let X̃ denote the n × k matrix with these

representatives as row-vectors. With the augmented n× k matrix X̃,

min
X̃TDX̃=Ik

n−1∑
i=1

n∑
j=i+1

wij‖r̃i − r̃j‖2

= min
X̃TDX̃=Ik

tr[(D1/2X̃)TLD(D1/2X̃)] =
k−1∑
i=1

λi =
k−1∑
i=0

λi

(6)

holds, and equality is attained with X∗ = (D−1/2u0, . . . ,D
−1/2uk−1),

where u0, . . .uk−1 are unit-norm, pairwise orthogonal eigenvectors corre-
sponding to the eigenvalues λ0, . . . , λk−1 of LD. We also saw that D−1/2u0 =
1.

Since the normalized k-partition matrix Zk satisfies ZT
k DZk = Ik, the

equivalent form (5) for f(Pk, G) implies that

fk(G) = min
Zk∈ZN

k

tr(ZT
k LZk) ≥

k−1∑
i=0

λi (7)

and equality can be attained only in the k = 1 trivial case, otherwise
the vectors D−1/2ui cannot be normalized partition vectors, since any ui
(i = 1, . . . , k− 1) has both positive and negative coordinates because of the
orthogonality to the u0 =

√
d vector.

• Upper bound. To effectuate the upper estimation, let Pk = (V1, . . . , Vk) be a
k-partition obtained by k-means classification of the optimal k-dimensional
Euclidean vertex representatives, r∗1, . . . , r∗n (row vectors of X∗ all having
1 as first coordinate). In fact, the clusters V1, . . . , Vk are obtained by
minimizing the weighted k-variance of these representatives. According to
our assumption,

ε = max
c(i)=c(j)

‖r∗i − r∗j‖ ≤ min{ 1√
2k
,
√

2 min
i

√
pi},

where c(i) denotes the cluster membership of vertex i. The representatives
satisfy the condition

∑n
j=1 djr

∗
jr
∗
j
T = X∗DX∗T = Ik.

Let r̄(i) denote the weighted center of the ith cluster:

r̄(i) =
1

pi

∑
j∈Vi

djr
∗
j , i = 1, . . . , k.
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Further, let yi denote the k-dimensional vector with coordinates

yij =

{ 1√
pi

if j ∈ Vi
0 otherwise

and Y = (y1, . . . ,yk). In fact, with P = diag(p1, . . . , pk), the relation
Y = P−1/2 holds. Let R be a k× k orthogonal matrix. With the notation
y′i = Ryi and Y ′ = RY we are looking for a system Y ′ such that y′i
is ’close’ to the cluster center r̄(i) for i = 1, . . . , k. To this end, we use
the a Multivariate Analysis of Variance (MANOVA) technique. We adopt
the decomposition to the situation when the variances are calculated with
respect to the degree distribution, i.e. we use the weights d1, . . . , dn in
the formula. In this way, the k × k empirical covariance matrix of r∗j ’s
is decomposed into within-cluster and between-cluster covariances in the
following way (the weighted mean of the coordinates of r∗j s is zero except
the first one that is identically 1, but it will not contribute to the variances):

n∑
j=1

djr
∗
jr
∗
j
T =

k∑
i=1

∑
j∈Vi

dj(r
∗
j − r̄(i))(r∗j − r̄(i))T +

k∑
i=1

pir̄
(i)r̄(i)T

or briefly,

Ik =

k∑
i=1

Ai + B = A + B

where Ai =
∑
j∈Vi

dj(r
∗
j− r̄(i))(r∗j− r̄(i))T , i = 1, . . . , k. Here tr(Ai) is the

k-variance of representatives in cluster i, therefore tr(Ai) ≤
∑
c(j)=i djε

2 =

piε
2, and tr(A) =

∑k
i=1 tr(Ai) ≤ ε2. Since A is symmetric, positive

semidefinite, its maximum eigenvalue is at most ε2. Hence, A will be
viewed as a perturbation on B. The matrix B = Ik −A is also positive
semidefinite and by the Weyl’s perturbation theorem for symmetric ma-
trices it follows that denoting by β1, . . . βk its eigenvalues, for them the
relation

0 ≤ 1− βi ≤ ε2, i = 1, . . . , k

holds. With the notation X̄ = (r̄(1), . . . , r̄(k)) our matrix B is equal to
X̄PX̄T .

Now, let us find an R such that, with (y′1, . . . ,y
′
k) = RY , the sum∑k

i=1 pi‖r̄(i) − y′i‖2 be the least possible.

k∑
i=1

pi‖r̄(i) − y′i‖2 = tr[(X̄ −RY )P (X̄ −RY )T ]

= tr(X̄PX̄T ) + tr(RY PY TRT )− 2tr(X̄PY TR)

≥
k∑
i=1

βi + k − 2

k∑
i=1

si

(8)

where s1, . . . , sk are the singular values of the matrix X̄PY T . Indeed, the
first term is trB, the second is trIk, while to the third one Proposition ??
of the Appendix is applicable as follows. With our notation, tr(X̄PY TR)
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is maximal (with respect to R) if the matrix X̄PY TR is symmetric and
the maximum is equal to the sum of the singular values of X̄PY T . By
choosing such an R, equality can be attained. Taking into consideration
that

(X̄PY T )(X̄PY T )T = X̄PY TY PX̄T = X̄PP−1PX̄T

= X̄PX̄T = B,

the eigenvalues of B can be enumerated in such a way that βi = s2i ,
i = 1, . . . , k. But we saw that s2i is of order 1− ε2, therefore, via Taylor’s

expansion, 1 − si ≈
ε2

2
+
ε4

4
is a good approximation. Hence, with the

choice of R giving equality in (8) we have that
k∑
i=1

pi‖r̄(i) − y′i‖2 =

k∑
i=1

s2i − k + 2k − 2

k∑
i=1

si

k∑
i=1

(s2i − 1) + 2
k∑
i=1

(1− si) ≈ 2kε4

that is less than ε2 provided that ε ≤ 1/
√

2k holds. Consequently, pi‖r̄(i)−
y′i‖2 ≤ ε2 and ‖r̄(i) − y′‖ ≤ εc′.
Let the y′i nearest to r̄(i) be denoted by y(r∗j ) for every j in Vi (thus
y(r∗j ) = y′i, ∀ j ∈ Vi). Let δ denote the minimum distance between the
different y′i’s, that is

δ = min
a 6=b
‖y′a − y′b‖ = min

a6=b
‖ya − yb‖ = min

a6=b

√
1

pa
+

1

pb
≥
√

2.

Then the estimation

fk(G) ≤ fk(Pk, G) =

n−1∑
i=1

n∑
j=i+1

wij‖y(r∗i )− y(r∗j )‖2

≤
n−1∑
i=1

n∑
j=i+1

wij(c‖r∗i − r∗j ‖)2 = c2
k−1∑
i=1

λi

holds with the constant

c =
δ

δ − εc′
= 1 +

εc′

δ − εc′
≤ 1 +

εc′√
2− εc′

where we used Equation (6) and the optimality of the representation r∗1, . . . , r
∗
n.

This finishes the proof.

Note that the constant c of the upper estimation is greater than 1, and it is
the closer to 1, the smaller ε is. The latter requirement is satisfied if there exists a
’very’ well-separated k-partition of the k-dimensional Euclidean representatives.
From Theorem 1 we can also conclude that the gap in the spectrum is a necessary
but not a sufficient condition of a good classification. In addition, the Euclidean
representatives should be well classified in the appropriate dimension.

The following theorem directly estimates the weighted 2-variance of the op-
timal representatives of the vertices by the ratio of the two smallest positive
normalized Laplacian eigenvalues.
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Theorem 2 Let G = (V,W ) be connected edge-weighted graph with generalized
degrees d1, . . . , dn and assume that

∑n
i=1 di = 1. Let 0 = λ0 < λ1 ≤ · · · ≤ λn−1

denote the eigenvalues of the normalized Laplacian matrix of G. Then for the
weighted 2-variance of the optimal vertex representatives, comprising row vectors
of the matrix X∗2 , the following upper estimate holds:

S̃2
2(X∗2 ) ≤ λ1

λ2
.

In main lines, we will follow the proof of [15]. Before plunging into it, let
us recall that X∗2 = (D−1/2u0,D

−1/2u1), where u0 and u1 are unit-norm,
orthogonal eigenvectors corresponding to the eigenvalues λ0 and λ1 of LD, re-
spectively. Because D−1/2u0 is the 1 vector, the first column of X∗2 can as well
be omitted in the representation and we only use the coordinates of the vector
x∗ := D−1/2u1 = (x∗1, . . . , x

∗
n). Therefore,

s2 = S̃2
2(X∗2 ) = min

c(i)∈{1,2}, i=1,...,n
m1,m2

n∑
i=1

di(x
∗
i −mc(i))

2, (9)

where the minimization over the 2-partitions of V is uniquely defined by the
cluster memberships c(i)’s of the vertices (c(i) = 1 or c(i) = 2 depending on
whether vertex i corresponds to the first or second cluster), and the cluster
centers are m1,m2 ∈ R.

Proof 2 As u1 is the unit-norm vector and orthogonal to the u0 =
√
d vector,

for the coordinates of x∗ the following relations hold:

n∑
i=1

dix
∗
i = 0 and

n∑
i=1

dix
∗
i
2 = 1. (10)

Now we will find a vector y = (y1, . . . , yn) such that for it, the conditions

n∑
i=1

diyi = 0 (11)

and
n∑
i=1

dix
∗
i yi = 0 (12)

are met. We are looking for y in the following form:

yi := |x∗i − a| − b, (i = 1, . . . , n) (13)

where a and b are appropriate real numbers.
We will show that there exist real numbers a and b such that the yi’s defined

by them satisfy conditions (11) and (12). Indeed, when we already have a, the
above conditions together with

∑n
i=1 di = 1 yield

b =

n∑
i=1

di|x∗i − a| (14)
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for b. With this choice of b, the fulfillment of (12) means that

n∑
i=1

dix
∗
i |x∗i − a| = 0.

Since the left-hand side of the above equation is a continuous function of a, and it
is equal to 1 if a ≤ mini x

∗
i , and −1 if a ≥ maxi x

∗
i , by the Bolzano—Weierstrass

theorem, the function
∑n
i=1 dix

∗
i |x∗i − a| must have a root (in a) somewhere

between mini x
∗
i and maxi x

∗
i . Choosing such an a and the corresponding b via

(14), the coordinates of y are then uniquely determined by (13). Let us define
the cluster centers by

m1 = a− b and m2 = a+ b.

It is easy to see that

yi = |x∗i − a| − b =

{
m1 − x∗i if x∗i < a
x∗i −m2 if x∗i ≥ a,

therefore
|yi| = min{|x∗i −m1|, |x∗i −m2|} (15)

holds for i = 1, . . . , n. Denote

σ2(y) =

n∑
i=1

diy
2
i

the variance of the coordinates of y. Since, due to (15), the weighted 2-variance
of the coordinates of x∗ is one of the terms behind the minimum in (9), σ2(y) ≥
s2. In the case of σ(y) = 0, the 2-variance s2 is also equal to 0, and the
statement of the theorem is automatically true (but this cannot occur if 0 is
a single eigenvalue of LD). Therefore, σ(y) > 0 can be assumed. Define the
vector z ∈ Rn of the following coordinates:

zi =
yi
σ(y)

, i = 1, . . . , n

and let xi = (x∗i , zi) be 2-dimensional vector, a possible representative of vertex
i. Further, let

X = (x∗, z) and X∗ = (x∗,D−1/2u3)

be n × 2 matrices, where X contains the representatives xi’s, while X∗ con-
tains the optimal 2-dimensional representatives in its rows. (In fact, they are
3-dimensional representatives, but we disregard the first, constantly 1, coordi-
nates.) Then, on the one hand,

max
x∗i 6=x∗j

|zi − zj |
|x∗i − x∗j |

≤ 1

σ(y)
,

since due to the definition of yi, the relation

|yi − yj | ≤ |x∗i − x∗j | (i 6= j)
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holds, i.e. y′is (as functions of x∗i ’s) satisfy the Lipschitz condition (with con-
stant 1).

On the other hand,

λ1 + λ2
λ1

=
tr(X∗TLX∗)

x∗TLx∗
≤ tr(XTLX)

x∗TLx∗
=

∑n−1
i=1

∑n
j=i+1 wij‖xi − xj‖2∑n−1

i=1

∑n
j=i+1 wij(x

∗
i − x∗j )2

=

∑n−1
i=1

∑n
j=i+1 wij

[
(x∗i − x∗j ))2 + (zi − zj)2

]∑n−1
i=1

∑n
j=i+1 wij(x

∗
i − x∗j )2

≤ 1 + max
x∗i 6=x∗j

(zi − zj)2

(x∗i − x∗j )2
≤ 1 +

1

σ2(y)
≤ 1 +

1

s2
,

which – by subtracting 1 from both the left- and right-hand sides and taking the
reciprocals – finishes the proof.

Theorem 2 indicates the following two-clustering property of the two smallest
positive normalized Laplacian eigenvalues: the greater the gap between them,
the better the optimal 2-dimensional (if fact, one-dimensional) representatives
of the vertices can be classified into two clusters. This fact, via Theorem 1
implies that the gap between the eigenvalues λ1 and λ2 of LD is sufficient for
the graph to have a small 2-way normalized cut. For k > 2, the situation is
more complicated, as will be discussed in the next section.

2 The isoperimetric number and sparse cuts
For the two-cluster case, the normalized cut of Section 1 is the symmetric version
of the isoperimetric number (sometimes called Cheeger constant) introduced
in the context of Riemannian manifolds (see e.g. [22]) and much earlier, in
mathematical physics. There is a wide literature of this topic together with
expander graphs, see e.g. [4, 21, 26, 39, 52, 55, 56] and [23], for a summary. We
just discuss the most important relations of this topic to sparse, balanced cuts
and clustering.

Definition 2 Let G = (V,W ) be an edge-weighted graph with generalized de-
grees d1, . . . , dn and assume that

∑n
i=1 di = 1. The isoperimetric number of G

is

h(G) = min
U⊂V

Vol(U)≤ 1
2

w(U,U)

Vol(U)
. (16)

Since Vol(U) is the sum of the weights of edges emanating from U , while
w(U,U) is sum of the weights of those connecting U and U , the relation 0 ≤
h(G) ≤ 1 is trivial. Further, h(G) = 0 if and only if G is disconnected; therefore,
only isoperimetric number of a connected graph is of interest. The isoperimetric
number will later be considered as conditional probability, but first we investi-
gate its relation to the smallest positive normalized Laplacian eigenvalue. Note
that for simple graphs, h(G) is not identical to the combinatorial isoperimetric
number i(G) which uses the cardinality of the subsets instead of their volumes in
the denominator of (16), and hence, can exceed 1, see [56] for details. More pre-
cisely, the combinatorial isoperimetric number of the simple graph G is defined
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by

i(G) = min
S⊂V

0<|S|≤n
2

e(S, S)

|S|
.

It is sometimes called edge-expansion, and mainly used for regular graphs,
see [39]. The authors of the aforementioned paper also note that a graph is
a ’good’ expander if it is simultaneously sparse and highly connected.

Intuitively, h(G) is ’small’ if ’few low-weight’ edges connect together two dis-
joint vertex-subsets (forming a partition of the vertices) with ’not significantly’
differing volumes; therefore, a ’small’ h(G) is an indication for a sparse cut of
G. On the contrary, a ’large’ h(G) means that any vertex-subset of G has a
large boundary compared to its volume, where the boundary of U ⊂ V is the
weighted cut between U and its complement in V . This is called good edge-
expanding property of G, but we do not want to give the exact definition of
an expander graph which depends on many parameters and discussed in details
(distinguishing between edge- and vertex-expansion) in many other places, see
e.g. [3, 5, 39, 52].

Now, a two-sided relation between h(G) and the normalized Laplacian eigen-
value λ1 is stated for edge-weighted graphs in the following theorem. Similar
statements are proved in [23, 56, 4] for simple graphs and in [69] for edge-
weighted graphs, but without the upcoming improved upper bound.

Theorem 3 (Cheeger inequality) Let G = (V,W ) be a connected edge-weighted
graph with isoperimetric number h(G), and let λ1 denote the smallest positive
eigenvalue of its normalized Laplacian LD. Then

λ1
2
≤ h(G) ≤ min{1,

√
2λ1}

always holds true. Furthermore, provided λ1 ≤ 1, the upper estimate improves
to

h(G) ≤
√
λ1(2− λ1).

Note that λ1 ≤ 1 is not a peculiar requirement as, by Remark ?? (iv), except
the complete graph, every simple graph satisfies this requirement.

We will follow the proof of [17].

Proof 3 • Lower bound. It follows from the lower estimate (3) of the
normalized cut (see Theorem 1). Indeed, in the k = 2 case, this gives
λ1 ≤ f2(G). By the definition of the normalized cut,

f2(G) = min
(U,U)

w(U,U)

Vol(U)Vol(U)
≤ 2 min

Vol(U)≤ 1
2

w(U,U)

Vol(U)
= 2h(G),

where we used that Vol(U) + Vol(U) = 1, and because of the symmetry,
assuming Vol(U) ≤ 1

2 and Vol(U) ≥ 1
2 is not a restriction. These facts

together imply that λ1 ≤ 2h(G) which provides the required lower bound.

• Upper bound. We will follow the proof of [17].

With the notation of Section 1, let 0 = λ0 < λ1 ≤ · · · ≤ λn−1 ≤ 2 be the
spectrum of LD and u1 be unit-norm eigenvector corresponding to λ1. Let
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x∗ = D−1/2u1 contain the optimal representatives of the vertices in its
coordinates (we omit the trivial dimension) for which

∑n
i=1 dix

∗
i = 0 and∑n

i=1 dix
∗
i
2 = 1 holds, see also (10) in the proof of Theorem 2. Without

loss of generality, x∗ is directed such that∑
i: x∗i<0

di ≥
∑

i: x∗i≥0

di.

From now on, the superscript of x∗ is discarded for notational convenience.
We rearrange the coordinates of x in increasing order:

x1 ≤ · · · ≤ xr−1 < 0 ≤ xr ≤ · · · ≤ xn.

Actually, we took advantage of the fact that there are both negative and pos-
itive numbers among the coordinates of x, because of the relation

∑n
i=1 dixi =

0. Say, the number of strictly negative coordinates is r−1, r ≥ 2. The ver-
tex set V = {1, . . . , n} is rearranged, accordingly. Put V− := {1, . . . , r−1}
and V+ := {r, . . . , n}.
By the above assumption, for the coordinates of x we have that

r−1∑
i=1

di ≥
n∑
i=r

di. (17)

Set y := x+, that is the coordinates of the vector y are

yi =

{
xi if xi ≥ 0
0 if xi < 0.

We will choose special two-partitions of the rearranged vertex-set induced
by the subsets Uk = {k, . . . , n} and put

ck = w(Uk, Uk) (k = 2, . . . , n). (18)

Obviously,
h(G) ≤ c = min

2≤k≤n

ck

min{Vol(Uk),Vol(Uk)}
. (19)

We remark that in view of (17), the relation

min{Vol(Uk),Vol(Uk)} = Vol(Uk) =

n∑
i=k

di for k = r, . . . , n (20)

is valid.

As D1/2x is an eigenvector of LD = In−D−1/2WD−1/2 with eigenvalue
λ1,

λ1Dx = Dx−Wx,

or equivalently, for the coordinates,

λ1dixi = dixi −
n∑
j=1

wijxj =

n∑
j=1

wij(xi − xj), i = 1 . . . , n (21)
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holds.

Multiplying both sides of (21) by xi and summing for indices i ∈ V+, we
get that

λ1
∑
i∈V+

dix
2
i =

∑
i∈V+

xi

n∑
j=1

wij(xi − xj),

or equivalently,

λ1 =

∑
i∈V+

xi
∑n
j=1 wij(xi − xj)∑

i∈V+
dix2i

=:
A∑n

i=1 diy
2
i

. (22)

Now, we will estimate the numerator (A) from below as follows:

A =
∑
i∈V+

∑
j∈V+

wijxi(xi − xj) +
∑
i∈V+

∑
j∈V−

wijxi(xi − xj)

=
∑

i∈V+, j∈V+

i>j

[wijxi(xi − xj) + wjixj(xj − xi)] +

+
∑
i∈V+

∑
j∈V−

wijx
2
i −

∑
i∈V+

∑
j∈V−

wijxixj

(1)
=

∑
i∈V+, j∈V+

i>j

wij(xi − xj)2 +
∑
i∈V+

∑
j∈V−

wijy
2
i −

∑
i∈V+

∑
j∈V−

wijxixj

(2)
≥

∑
i∈V+, j∈V+

i>j

wij(yi − yj)2 +
∑
i∈V+

∑
j∈V−

wij(yi − yj)2

(3)
=
∑
i∈V+

∑
j<i

wij(yi − yj)2 =
1

2

n∑
i=1

n∑
j=1

wij(yi − yj)2.

In the steps (1) and (2) we used the fact that yi is equal to xi on V+
and 0 on V−. We decreased the expression between the two steps by
−
∑
i∈V+

∑
j∈V− wijxixj that is a nonnegative quantity due to the differ-

ent signs of xi and xj for indices i ∈ V+ and j ∈ V−. In the step (3) we
utilized that for such indices i > j automatically holds true. We also used
the symmetry of W several times.

Now, let us go back to (22). Using the lower estimate for A we get that

λ1 ≥
1
2

∑n
i=1

∑n
j=1 wij(yi − yj)2∑n
i=1 diy

2
i

=: Q. (23)

The quantity Q defined above will be important later when we improve the
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estimate. Q will be further decreased as follows.

Q =

1
2

[∑n
i=1

∑n
j=1 wij(yi − yj)2

]
·
[∑n

i=1

∑n
j=1 wij(yi + yj)

2
]

∑n
i=1 diy

2
i ·
[∑n

i=1

∑n
j=1 wij(yi + yj)2

]
=

1

2

[∑n
i=1

∑n
j=1 wij |yi − yj |2

]
·
[∑n

i=1

∑n
j=1 wij |yi + yj |2

]
∑n
i=1 diy

2
i ·
[∑n

i=1

∑n
j=1 wij(yi + yj)2

]
≥ 1

2

[∑n
i=1

∑n
j=1 wij |yi − yj | · |yi + yj |

]2
∑n
i=1 diy

2
i ·
[∑n

i=1

∑n
j=1 wij(yi + yj)2

]
=

1

2

[∑n
i=1

∑n
j=1 wij |y2i − y2j |

]2
∑n
i=1 diy

2
i ·
[∑n

i=1

∑n
j=1 wij(yi + yj)2

]2
=

1

2

[
2
∑
i>j wij |y2i − y2j |

]2
∑n
i=1 diy

2
i ·
[∑n

i=1

∑n
j=1 wij(yi + yj)2

]
= 2

[∑
i>j wij(y

2
i − y2j )

]2
∑n
i=1 diy

2
i ·
[∑n

i=1

∑n
j=1 wij(yi + yj)2

] =: 2
A2

1

B
.

(24)

In the third line we used the Cauchy–Schwarz inequality for the expecta-
tion of the random variables |Y − Y ′| and |Y + Y ′| with the symmetric
joint distribution given by W , where Y and Y ′ are identically distributed
according to the marginal degree distribution and taking on values yi’s.

To estimate A1 from below, we will use the fact that yi ≥ yj for i > j and
write the terms y2i − y2j as a telescopic sum:

y2i − y2j = (y2i − y2i−1) + · · ·+ (y2j+1 − y2j ) for i > j.

By this,

A1 =
∑
i>j

wij(y
2
i − y2j ) =

n∑
k=2

(y2k − y2k−1)
∑
i≥k>j

wij
(4)
=

n∑
k=2

(y2k − y2k−1)ck

=

n∑
k=r

(y2k − y2k−1)ck
(5)
≥

n∑
k=r

(y2k − y2k−1)c

n∑
i=k

di ≥
n∑
k=r

(y2k − y2k−1)h

n∑
i=k

di

= h(G)

n∑
k=r

(y2k − y2k−1)

n∑
i=k

di
(6)
= h

n∑
k=r

y2kdk

where in (4) we used the definition of ck, in (5) the relations (19) and (20)
were exploited, while in (6) a partial summation was performed.
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The denominator B is estimated from above as follows:

B =

n∑
i=1

diy
2
i

 n∑
i=1

n∑
j=1

wij(yi + yj)
2

 ≤ n∑
i=1

diy
2
i

 n∑
i=1

n∑
j=1

wij(2y
2
i + 2y2j )


=

n∑
i=1

diy
2
i

[
4

n∑
i=1

y2i di

]
= 4

(
n∑
i=1

y2i di

)2

.

There remains to collect the terms together:

λ1 ≥
2A2

1

B
≥

2h2(G)
(∑n

k=1 y
2
kdk
)2

4 (
∑n
i=1 y

2
i di)

2 =
h2(G)

2
,

and hence, the upper estimate h(G) ≤
√

2λ1 follows.

We can improve this upper bound by using the exact value of B and going
back to (23) that implies

n∑
i=1

n∑
j=1

wij(yi − yj)2 = 2Q

n∑
i=1

diy
2
i .

An equivalent form of B is

B =

n∑
i=1

diy
2
i ·

 n∑
i=1

n∑
j=1

wij(yi + yj)
2

 =

n∑
i=1

diy
2
i

 n∑
i=1

n∑
j=1

wij(2y
2
i + 2y2j − (yi − yj)2)


=

n∑
i=1

diy
2
i

4

n∑
i=1

y2i di −
n∑
i=1

n∑
j=1

wij(yi − yj)2
 = 2

(
n∑
i=1

diy
2
i

)2

(2−Q).

Starting the estimation of Q at (24) and continuing with the B above,
yields

Q ≥ 2
A2

1

B
≥ 2

h2(
∑n
k=1 y

2
kdk)2

2(
∑n
i=1 diy

2
i )2(2−Q)

=
h2(G)

2−Q
.

In view of (23), Q is nonnegative, implying

Q ≥ h2

2−Q
or equivalently, 1−

√
1− h2(G) ≤ Q ≤ 1 +

√
1− h2(G).

Summarizing, we derive that

λ1 ≥ Q ≥ 1−
√

1− h2(G) or equivalently,
√

1− h2(G) ≥ 1− λ1.

For λ1 > 1 this is a trivial statement. For λ1 < 1 it implies that h(G) ≤√
λ1(2− λ1) < 1, while for λ1 = 1 we get the trivial bound h(G) ≤ 1.

This finishes the proof.

In the framework of joint distributions, h(G) can be viewed as a conditional
probability and related to the symmetric maximal correlation in the following
way. The weight matrixW (with sum of its entries 1) defines a discrete symmet-
ric joint distribution W with equal marginals D = {d1, . . . , dn}. Let H denote

13



the Hilbert space of V → R random variables taking on at most n different
values with probabilities d1, . . . , dn, and having zero expectation and finite vari-
ance. Let us take two identically distributed (i.d.) copies ψ,ψ′ ∈ H with joint
distribution W. Then, obviously,

h(G) = min
B⊂RBorel-set
ψ,ψ′∈H i.d.

PD(ψ∈B)≤1/2

PW(ψ′ ∈ B|ψ ∈ B).

The symmetric maximal correlation defined by the symmetric joint distribution
W is the following:

r1 = max
ψ,ψ′∈H i.d.

CorrW(ψ,ψ′) = max
ψ,ψ′∈H i.d.
VarDψ=1

CovW(ψ,ψ′).

Then r1 = 1− λ1, provided λ1 ≤ 1.
With this notation, the result of Theorem 3 can be written in the equivalent

form as follows.

Proposition 1 Let W be the symmetric joint distribution of two discrete ran-
dom variables taking on at most n different values, where the joint probabilities
of W are the entries of the weight matrix W . If the symmetric maximal corre-
lation r1 is nonnegative, then with it, the estimation

1− r1
2
≤ min
B⊂RBorel-set
ψ,ψ′H i.d.

PD(ψ∈B)≤1/2

PW(ψ′ ∈ B|ψ ∈ B) ≤
√

1− r21

holds.

Proof 4 Since λ1 = 1−r1, the lower bound trivially follows. r1 ≥ 0 implies that
λ1 ≤ 1, so the improved upper bound of Theorem 3 becomes

√
(1− r1)(1 + r1)

which finishes the proof.

Consequently, the symmetric maximal correlation somehow regulates the
minimum conditional probability that provided a random variable takes values
in a category set (with probability less than 1/2) then another copy of it (their
joint distribution is given by W ) will take values in the complementary category
set. The larger r1, the smaller this minimum conditional probability is. In
particular, if r1 is the largest absolute value eigenvalue of I − LD (apart from
the trivial 1), then r1 is the usual maximal correlation.

The other important application of the isoperimetric inequality is related in
many aspects to random walks. We just touch upon to this topic here, for the
interested readers we refer to [2, 10, 26, 23, 49, 50, 51, 74, 70].

In fact, time-reversible Markov chains can be viewed as random walks on
undirected, possibly edge-weighted graphs (W is symmetric). The walk can be
described by a discrete time stochastic process ξ0, ξ1, . . . , ξt, . . . with finite state
space {1, . . . , n}. The transition probabilities

P(ξt+1 = j | ξt = i) =
wij
di

do not depend on t and are entries of the transition probability matrix D−1W .
The transition probability matrix is not symmetric, but its spectrum is the
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same as that of the symmetric matrix D−1/2WD−1/2, since the eigenvalue–
eigenvector equation

D−1/2WD−1/2u = λu

is equivalent to
D−1W (D−1/2u) = λ(D−1/2u).

Therefore, the transition probability matrix has real eigenvalues in the [−1, 1]
interval, they are the numbers 1 − λi, where λi is the ith largest eigenvalue
of LD, and corresponding eigenvectors which are the vector components of the
optimal representation. Further, its largest eigenvalue is always 1 with corre-
sponding eigendirection 1, and the multiplicity of 1 as an eigenvalue is equal
to the number of the connected components of G. The random walk is ergodic
if it has a unique stationary distribution. The necessary and sufficient condi-
tion of ergodicity is the irreducibility (λ1 > 0) and aperiodicity (λn−1 < 2).
Therefore a random walk on a connected and non-bipartite graph exhibits a
unique stationary distribution which is just {d1, . . . , dn}. The so-called mixing
rate shows how rapidly the random walk converges to this stationary distribu-
tion. By the Cheeger inequality (Theorem 3) it follows that a relatively large
λ1 induces rapid mixing and short cover time which is the expected number of
time to reach every vertex (starting from a given distribution), see [49]. The
electric network analogue, including conductance of random walks on graphs is
discussed thoroughly e.g. by [70, 71, 72].

We are rather interested in the case when λ1 is near zero and the random
walk cannot go through quickly the graph because of bottlenecks in it. Such a
bottleneck can be the weighted cut between two disjoint and mutually exhaus-
tive vertex-subsets which give the minimum in the definition of h(G). More
generally, if there are k − 1 near zero eigenvalues of LD, then we may expect k
clusters such that the random walk stays with high probability within the clus-
ters and goes through between the cluster pairs (

(
k
2

)
bottlenecks) with smaller

probability. This assumption is formulated by the normalized cuts (introduced
in Definition 1) and sparse cuts, to be introduced.

Note that because of the relation f2(G) ≤ 2h(G) (we saw this when proved
the lower bound in the Cheeger inequality), Theorem 3 and Theorem 1 provide
us with the following estimation of the 2-way normalized cut of G with the help
of its smallest positive normalized Laplacian eigenvalue, in the λ1 ≤ 1 typical
case:

λ1 ≤ f2(G) ≤ 2
√
λ1(2− λ1).

There are several natural generalizations of the isoperimetric number for k >
2 and of the Cheeger inequality for the upper end of the normalized Laplacian
spectrum. We will discuss some recent results that directly relate so-called
k-way sparse cuts to the eigenvalue λk−1.

In [73], the so-called dual Cheeger inequality is proved which estimates the
measure β(G) of bipartiteness of G by means of the upper spectral gap of LD,
i.e. the difference between λn−1 and 2. To be consistent with the previous
notation, 0 = λ0 ≤ · · · ≤ λn−1 ≤ 2 will stand for the normalized Laplacian
spectrum.

Definition 3 The bipartiteness ratio of the simple, d-regular graph G on the
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n-element vertex set V is

β(G) = min
S⊂V

(L,R) 2-partition ofS

2e(L) + 2e(R) + e(S, S)

d|S|

where e(L) and e(R) stands for the number of edges between vertices of L and
R, respectively, and e(S, S) denotes the number of cut-edges.

Note that the left and right non-empty, disjoint subsets of S (L ∪ R = S) not
necessarily exhaust V . Since there are no loops, e(L,L) = 2e(L) and e(R,R) =
2e(R).

Proposition 2 (Dual Cheeger inequality)

1

2
(2− λn−1) ≤ β(G) ≤

√
2(2− λn−1)

where λn−1 is the largest eigenvalue of the normalized Laplacian LD.

Note that the original paper uses the eigenvalues of the matrix D−1/2WD−1/2,
especially, |1−λn−1| in the formulation of the dual Cheeger inequality. Observe
that λn−1 ≥ n

n−1 ≥ 1, therefore 1− λn−1 < 0 always holds.
Observe that if G is bipartite, then λn−1 = 2 and β(G) = 0. The proposition

implies that β(G) is small if λn−1 is close to 2, i.e. a large λn−1 is an indication
for G having a closely bipartite induced subgraph that is relatively large and
sparsely connected to the other part of G.

We also remark that the notion of the bipartiteness ratio can naturally be
extended to an edge-weighted graph G = (V,W ) in the following way:

β(G) = min
S⊂V

(L,R) 2-partition ofS

w(L,L) + w(R,R) + w(S, S)

Vol(S)
.

Probably, a similar estimation with it for the upper spectral gap of an edge-
weighted graph exists. Analogously to Theorem 2, in [19] the upper spectral
gap was used to estimate the 2-variance of the 1-dimensional vertex representa-
tives, based on the coordinates of the vector D−1/2un−1. The relation between
bipartite subgraphs and the smallest adjacency eigenvalue (corresponding to the
largest normalized Laplacian one if the graph is regular) is also treated in [6].

Now we discuss some recent results of [45, 46, 47] on possible extensions of the
Cheeger inequality to multiway cuts, called higher-order Cheeger inequalities.
For the edge-weighted graph G = (V,W ), the expansion of the vertex-subset
S ⊆ V is defined by

φ(S,G) =
w(S, S)

Vol(S)
. (25)

Note that in [45] it is formulated for simple, d-regular graphs with e(S, S) in the
numerator and d|S| in the denominator. In [47], the authors define this expan-
sion for edge-weighted graphs, but use min{Vol(S),Vol(S)} in the denominator.
However, this does not make any difference in the upcoming definition.
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Definition 4 For a given integer 1 < k < n, the k-way expansion constant of
the edge weighted graph G = (V,W ) on n vertices is

ρk(G) = min
S1,...,Sk⊂V
Si 6=∅, i,...,k
Si∩Sj=∅, i 6=j

max
i∈{1,...,k}

φ(Si, G).

Note that here the collection of pairwise disjoint subsets S1, . . . , Sk is not nec-
essarily a k-partition, since the do not always exhaust V .

It is easy to see that ρ2(G) = h(G) and therefore, the Cheeger inequality
bounds it from below and from above in terms of λ1. In [45] a similar relation
is proved for ρk(G), for a general k, in terms of the kth smallest normalized
Laplacian eigenvalue λk−1. We cite this result with our notation.

Theorem 4
λk−1

2
≤ ρk(G) ≤ O(k2)

√
λk−1.

With fewer sets than the order of the eigenvalue, the upper estimate improves
to

ρk(G) ≤ O(
√
λ2k−1 log k). (26)

The proof of Theorem 4 is algorithmic. It uses the optimum k-dimensional
representatives of the vertices and applies geometric considerations to them.
Namely, it is shown that the total mass of them is localized on k disjoint regions
of Rk (in fact, in a (k−1)-dimensional hyperplane of it). Observe that this notion
is closely related to our weighted k-variance introduced in Lesson 1. Otherwise,
to find these sparsest cuts is NP-complete.

Both in [45] and [47] a sparsest small set, producing some kind of sparse cut
of G and comprising at most the 1/k fraction of the total volume, is defined as
follows with our notation.

Definition 5 For a given integer 1 < k < n, the small-set sparsity of the edge
weighted graph G = (V,W ) on n vertices is defined by

φk(G) = min
S⊂V

Vol(S)≤Vol(V )/k

φ(S,G).

Obviously, φk(G) ≤ ρk(G), for every positive integer k < n. Therefore,
Inequality (26) implies that

φk/2(G) ≤ O(
√
λk−1 log k)

which improves a statement of [46] that

φ√k(G) ≤ C(
√
λk−1 log k),

where C is a fixed constant.
We remark that the small set problem is closely related to Unique Games.

In this context, [8] showed that φk(G) < C
√
λ(k−1)100 logk n, where C is some

absolute constant.
To find the sparsest k-partition, in [46] an iterative algorithm is defined which

finds the sparsest 2-way cut in each step and removes the cut-edges. Meanwhile,
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the graph becomes disconnected, and the algorithm operates on the components
of it. The authors also prove that for any edge-weighted graph G = (V,W ) and
any integer 1 ≤ k ≤ |V |, there exist ck disjoint subsets S1, . . . , Sck of V such
that

max
i
φ(Si, G) ≤ C

√
λk−1 log k

where c < 1 and C are absolute constants. Moreover, these sets can be iden-
tified in polynomial time. In [45], the authors find a so-called non-expanding
k-partition V1, . . . , Vk of V such that

φ(Vi, G) . k4
√
λk−1, i = 1, . . . , k.

We remark that between the k-way expansion constant and the normalized
cut the following relation holds:

ρk(G) ≤ min
(V1,...,Vk)=Pk

max
i∈{1,...,k}

φ(Vi, G) ≤ min
(V1,...,Vk)=Pk

k∑
i=1

φ(Vi, G) = fk(G)

where we took into consideration the equivalent forms (1) of the normalized cut.
If the minimum in ρk(G) is attained at a k-partition, then

fk(G) = min
(V1,...,Vk)=Pk

k∑
i=1

φ(Vi, G) ≤ k min
(V1,...,Vk)=Pk

max
i∈{1,...,k}

φ(Vi, G) = kρk(G).

In this case, Theorem 4 also implies fk(G) ≤ O(k3)
√
λk−1.

Consequently, there are the k-way sparsest cuts which are closely related to
λk−1. However, a small λk−1 is not always an indication of a small normalized
cut. In fact, λk−1 can be small if there exist a sparse system S1, . . . , Sk which
not necessarily exhaust V . The other parts of V may have, for example, closely
bipartite subgraphs, etc. When later we define so-called regular cuts, we will
illustrate that there are the small and large normalized Laplacian eigenvalues
which together recover the graph’s structure, and regular cuts may contain
sparse and dense cuts as well.

3 The Newman–Girvan modularity
The Newman–Girvan modularity introduced in [58] directly focuses on modules
of higher intra-community connections than expected based on the model of
independent attachment of the vertices with probabilities proportional to their
degrees. To maximize this modularity, hierarchical clustering methods based on
the edge betweenness measure of [58, 59, 60, 24], and vector partitioning algo-
rithms based on the eigenvectors of the modularity matrix of [62] are introduced.
In [29] an extremal optimization algorithm is presented.

We will extend the linear algebraic machinery developed for Laplacian based
spectral clustering to the modularity based community detection. To this end,
two penalized versions of the Newman–Girvan modularity are introduced in the
general framework of an edge-weighted graph, see [61], and their relation to
projections onto the subspace of partition vectors and to k-variance of the clus-
ters formed by the vertex representatives is investigated. These considerations
give useful information on the choice of k and on the nature of the community
structure.
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Definition 6 The Newman-Girvan modularity corresponding to the k-partition
Pk = (V1, . . . , Vk) of the vertex-set of the edge-weighted graph G = (V,W ),
where the entries of W sum to 1, is

M(Pk, G) =

k∑
a=1

∑
i,j∈Va

(wij − didj) =

k∑
a=1

[w(Va, Va)−Vol2(Va)].

For given integer 1 ≤ k ≤ n, the k-module Newman-Girvan modularity of the
edge-weighted graph G is

Mk(G) = max
Pk∈Pk

M(Pk, G).

For a simple graph, w(Va, Va) = 2e(Va) is twice the number of edges with both
endpoints in in Va, and Vol(Va) is the number of edges emanating from Va.
The entries didj of the null-model matrix ddT correspond to the hypothesis
of independence. In other words, under the null-hypothesis, vertices i and j
are connected to each other independently, with probability didj proportional
(actually, because the sum of the weights is 1, equal) to their generalized degrees
(i, j = 1, . . . , n). Hence, for given k, maximizing M(Pk, G) is equivalent to
looking for k modules of the vertices with intra-community connections higher
than expected under the null-hypothesis. As

∑k
a=1

∑k
b=1

∑
i∈Va

∑
j∈Vb

(wij −
didj) = 0, the above task is equivalent to minimizing∑

a6=b

∑
i∈Va, j∈Vb

(wij − didj), (27)

that is, to looking for k clusters of the vertices with inter-cluster connections
lower than expected under the hypothesis of independence. In the minimum cut
problem the cumulated inter-cluster connections themselves were minimized.
Therefore, the spectral method introduced in [75] for maximizing the Newman-
Girvan modularity is closely related to that of [54, 64, 13] for minimizing the
normalized cut.

We want to penalize partitions with clusters of extremely different sizes.
To measure the size of cluster Va, either the number of its vertices |Va| or its
volume Vol(Va) is used. [34] remarks that the Newman–Girvan modularity
seems to attain its maximum for clusters of near equal sizes, though there is
no explanation for it. Of course, communities of real-life networks have more
practical relevance if they do not differ too much in sizes. In [59] and [67], the
authors also define a good modularity structure as one having near equal sizes of
modules. However, they do not make use of this idea in their objective function.
Actually, [67] prove that the Newman–Girvan modularity is a special ground
state energy, the convergence of the ground state energies is used to prove the
testability of some balanced multiway cut densities. However, these conditional
extrema cannot be immediately related to spectra. As a compromise, we modify
the modularity itself so that it would penalize clusters of significantly different
sizes. Of course, real-life communities are sometimes very different in sizes
or volumes. Our method is capable to find fundamental clusters, and further
analysis is needed to separate small communities from the large ones. Other
possibility is to distinguish a core of the graph that is free of low-degree vertices
for which, usually near zero eigenvalues are responsible.
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As in the case of k > 2, there are more inter-cluster sums than intra-cluster
ones, it is in (27), where we penalize clusters of too different sizes or volumes by
introducing a factor 1

|Va| + 1
|Vb| or

1
Vol(Va)

+ 1
Vol(Vb)

for the a 6= b pair that shifts
the argmin towards balanced pairs. For the above reasons, analogously to the
ratio and normalized cuts, the following notions were introduced in [20].

Definition 7 The balanced Newman-Girvan modularity corresponding to the
k-partition Pk = (V1, . . . , Vk) of the vertex-set of G = (V,W ) (Vol(V ) = 1) is

BM(Pk, G) =

k∑
a=1

1

|Va|
∑
i,j∈Va

(wij − didj) =

k∑
a=1

[
e(Va, Va)

|Va|
− Vol2(Va)

|Va|

]
and the balanced k-module Newman-Girvan modularity of G is

BMk(G) = max
Pk∈Pk

BM(Pk, G).

Definition 8 The normalized Newman-Girvan modularity corresponding to the
k-partition Pk = (V1, . . . , Vk) of the vertex-set of G = (V,W ) (Vol(V ) = 1) is

NM(Pk, G) =

k∑
a=1

1

Vol(Va)

∑
i,j∈Va

(wij − didj) =

k∑
a=1

e(Va, Va)

Vol(Va)
− 1

and he normalized k-module Newman-Girvan modularity of G is

NMk(G) = max
Pk∈Pk

NM(Pk, G).

Here we used the fact that
∑k
a=1 Vol(Va) = 1. In view of (1), minimizing the

normalized cut of G over k-partitions of its vertices is equivalent to maximizing∑k
a=1

e(Va,Va)
Vol(Va)

. Hence, maximizing the normalized Newman–Girvan modularity
can be solved with the same spectral method (using the normalized Laplacian)
as the normalized cut problem. However, we introduce another method based
on the normalized modularity matrix.

We also want to show another insight into the problem of the choice of k
from the point of view of computational demand and by using the linear alge-
braic structure of our objective function. In this way, we will prove that for the
selected k, maximizing the above adjusted modularities is equivalent to mini-
mizing the k-variance of the vertex representatives by choosing an appropriate
representation; hence, the k-means algorithm is applicable.

3.1 Maximizing the balanced Newman–Girvan modular-
ity

The k-partition Pk is uniquely defined by the n × k balanced partition matrix
Zk = (z1, . . . , zk), i.e.

BM(Pk, G) =

k∑
a=1

zTaMza = tr(ZT
k MZk)

where M is the modularity matrix. We want to maximize tr(ZT
k MZk) over

balanced k-partition matrices Zk ∈ ZBk . Since Zk is a suborthogonal matrix,
ZT
k Zk = Ik.
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Let β1 ≥ · · · ≥ βn denote the eigenvalues of the modularity matrix M with
corresponding unit-norm, pairwise orthogonal eigenvectors u1, . . . ,un. Let p
denote the number of its positive eigenvalues; thus, βp+1 = 0 and up+1 = 1/

√
n.

Now let Y = (y1, . . . ,yk) be an arbitrary n× k suborthogonal matrix (k ≤ p).
Then

max
Zk∈ZB

k

BM(Zk, G) ≤ max
Y TY =Ik

tr(Y TMY ) =

k∑
a=1

βa ≤
p+1∑
a=1

βa. (28)

Both inequalities can be attained by equality only in the k = 1, p = 0 case, when
our underlying graph is the complete graph. In this case there is only one cluster
with partition vector of equal coordinates (balanced eigenvector corresponding
to the single 0 eigenvalue). For k > 1, partition vectors for no graph can coincide
with eigenvectors corresponding to positive eigenvalues, since their coordinates
do not sum to zero that would be necessary to be orthogonal to the vector
corresponding to the 0 eigenvalue.

It is also obvious that the maximum with respect to k of the maximum in
(28) is attained with the choice of k = p + 1. In [62], for the non-penalized
case, the author shows how p + 1 clusters can be constructed by applying a
vector partitioning algorithm for u1, . . . ,up. However, in case of large networks,
p can also be large, and computation of the positive eigenvalues together with
eigenvectors is time-consuming. As a compromise, it will be shown that choosing
a k < p such that there is a remarkable gap between βk−1 and βk will also suffice.
Further, even for a fixed “small” k < p, to find the true maxim over k-partitions
cannot be solved in polynomial time in n, but due to our estimations, spectral
partitioning algorithms can be constructed like spectral clustering based on
Laplacian eigenvectors. Now, we are going to discuss this issue in details.

We expand BM(Pk, G) with respect to the eigenvalues and eigenvectors of
the modularity matrix:

BM(Pk, G) = tr(ZT
k MZk) =

k∑
a=1

zTa (

n∑
i=1

βiuiu
T
i )za =

n∑
i=1

βi

k∑
a=1

(uTi za)2.

We can increase the last sum if we neglect the terms corresponding to the
negative eigenvalues, hence, the outer summation stops at p, or equivalently, at
p+ 1. In this case the inner sum is the largest if k = p+ 1, when the partition
vectors z1, . . . , zp+1 are ’close’ to the eigenvectors u1, . . . ,up+1, respectively. As
both systems consist of orthonormal sets of vectors, the two subspaces spanned
by them should be close to each other. The subspace Fp+1 = Span{z1, . . . , zp+1}
consists of piecewise constant vectors on p+1 steps, therefore up+1 ∈ Fp+1, and
it suffices to process only the first p eigenvectors. The notation Qp+1,p will
be used for the increased objective function based on the first p eigenvalue–
eigenvector pairs and looking for p+ 1 clusters:

BM(Pp+1, G) ≤ Qp+1,p(Zp+1,M) :=

p∑
i=1

βi

p+1∑
a=1

(uTi za)2.

In the sequel, for given M , we want to maximize Qp+1,p(Zp+1,M) over ZBp+1.
For this purpose, let us project the vectors

√
βiui onto the subspace Fp+1:√

βiui =

p+1∑
a=1

[(
√
βiui)

T za]za + ortFp+1
(
√
βiui), i = 1, . . . , p. (29)
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The first term is the component in the subspace, and the second is orthogonal
to it. In fact, the projected copies will be in a p-dimensional subspace of Fp+1

orthogonal to the 1 vector (scalar multiple of up+1). They will be piecewise
constant vectors on p + 1 steps, and their coordinates sum to 0. This is why
one less eigenvectors are used than the number of clusters looked for.

By the Pythagorean theorem, for the squared lengths of the vectors in the
decomposition (29) we get that

βi = ‖
√
βiui‖2 =

p+1∑
a=1

[(
√
βiui)

T za]2 + dist2(
√
βiui, Fp+1), i = 1, . . . , p.

By summing for i = 1, . . . , p, the cumulated second term will turn out to be
the sum of inner variances of the vertex representatives in the representation,
defined as follows. For a given positive integer d ≤ p, let the d-dimensional
representatives x1, . . . ,xn of the vertices be row vectors of the n × d matrix
Xd = (

√
β1u1, . . . ,

√
βdud). Their k-variance is S2

k(Xd). Since Fk consists
of piecewise constant vectors on the partition (V1, . . . , Vk), by thee ANOVA
argument it follows that

S2
k(Xd) =

d∑
i=1

dist2(
√
βiui, Fk).

Hence,
p∑
i=1

βi =

p∑
i=1

p+1∑
a=1

[(
√
βiui)

T za]2 +

p∑
i=1

dist2(
√
βiui, Fp+1)

= Qp+1,p(Zp+1,M) + S2
p+1(Xp),

where the rows of Xp = (
√
β1u1, . . . ,

√
βpup) are p-dimensional representatives

of the vertices. We could as well take (p + 1)-dimensional representatives as
the last coordinates are zeros, and hence, S2

p+1(Xp) = S2
p+1(Xp+1). Thus,

maximizing Qp+1,p is equivalent to minimizing S2
p+1(Xp) that can be obtained

by applying the k-means algorithm for the p-dimensional representatives with
p+ 1 clusters.

More generally, if there is a gap between βd and βd+1 > 0, then we may
look for k clusters based on d-dimensional representatives of the vertices. Anal-
ogously to the above calculations, for d < k ≤ p+ 1 we have that

d∑
i=1

βi =

d∑
i=1

k∑
a=1

[(
√
βiui)

T za]2 +

d∑
i=1

dist2(
√
βiui, Fk)

=: Qk,d(Zk,M) + S2
k(Xd).

(30)

If βd is much greater than βd+1, the k-variance S2
k(Xd+1) is not significantly

greater than S2
k(Xd), since Xd+1’s last column,

√
βd+1ud+1, will not increase

too much the k-variance of the d-dimensional representatives, its norm being
much less than that of the first d columns. As the left hand side of (30) is
not increased significantly by adding βd+1, the quantity Qk,d+1(Zk,M) is not
much greater than Qk,d(Zk,M) is. Neither the classification nor the value
of the modularity is changed much compared to the cost of taking one more
eigenvector into consideration. After d has been selected, we can process the
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k-means algorithm with k = d + 1, . . . , p + 1 clusters. By an easy argument,
S2
k+1(Xd) ≤ S2

k(Xd), but we can stop, if it is much less. These considerations
would minimize computational demand and proved good for randomly generated
graphs from different block structures, see Chapter ??.

Calculating eigenvectors is costly; the Lánczos method (see e.g. [35]) per-
forms well if we calculate only eigenvectors corresponding to some leading eigen-
values followed by a spectral gap. In [7, 42], the authors suggest to use as many
eigenvectors as possible. In fact, using more eigenvectors (up to p) is better from
the point of view of accuracy, but using less eigenvectors (up to a gap in the
positive part of the spectrum) is better from the computational point of view,
cf. [64, 59]. We have to compromise. By these arguments, a local maximum of
the modularity can be expected at k = d+ 1.

The advantage of the modularity matrix versus the Laplacian is that here
0 is a watershed, and for small graphs, the d = p, k = p + 1 choice is feasible;
for large graphs we look for gaps (like in case of the Laplacian) in the positive
part of the modularity spectrum, and the number of clusters is one more than
the number of the largest positive eigenvalues with corresponding eigenvectors
entered into the classification.

3.2 Maximizing the normalized Newman–Girvan modu-
larity

The k-partition Pk is also uniquely defined by the n × k normalized partition
matrix Zk = (z1, . . . , zk) introduced in (4). With it,

NM(Pk, G) =

k∑
a=1

zTaMza = tr[(D1/2Zk)TMD(D1/2Zk)]

where MD is the normalized modularity matrix defined in Lesson 2. Since the
matrix D1/2Zk is suborthogonal, the maximization here happens with respect
to ZT

k DZk = Ik, that is over normalized k-partition matrices Zk ∈ ZNk .
Let β′1 ≥ · · · ≥ β′n denote the eigenvalues of the symmetric normalized mod-

ularity matrix MD with corresponding unit-norm, pairwise orthogonal eigen-
vectors u′1, . . . ,u′n. We saw that the spectrum of MD is in [−1, 1] and includes
the 0.

Let p denote the number of positive eigenvalues ofMD (this p not necessarily
coincides with that of Section 3.1). Now let Y = (y1, . . . ,yk) be an arbitrary
n× k matrix (k ≤ p) such that Y TDY = Ik. With the same linear algebra as
used in Section 3.1,

max
Zk∈Zn

k

NM(Pk, G) ≤ max
Y TDY =Ik

tr(Y TMY ) ≤
k∑
a=1

β′a ≤
p+1∑
a=1

β′a.

For further investigation, we expand our objective function with respect to
the eigenvectors:

NM(Pk, G) =

n∑
i=1

β′i

k∑
a=1

[(u′i)
T (D1/2za)]2.

We can increase this sum if we neglect the terms corresponding to the negative
eigenvalues, hence, the outer summation stops at p, or equivalently, at p +
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1. The inner sum is the largest in the k = p + 1 case, when the unit-norm,
pairwise orthogonal vectors D1/2z1, . . . ,D

1/2zp+1 are close to the eigenvectors
u′1, . . . ,u

′
p+1, respectively. In fact, the two subspaces spanned by them should

be close to each other. Now the subspace Fp+1 = Span{D1/2z1, . . . ,D
1/2zp+1}

does not consist of piecewise constant vectors, but the following argument is
valid. By the notation Q′p+1,p(Zp+1,M) for the increased objective function
based on the first p eigenvalue–eigenvector pairs and looking for p + 1 clusters
we get that

NM(Pp+1, G) ≤ Q′p+1,p(Zp+1,M) :=

p∑
i=1

β′i

p+1∑
a=1

[(u′i)
T (D1/2za)]2.

In the sequel, for given M , we want to maximize Q′p+1,p(Zp+1,M) over ZNp+1.
With the argument of Section 3.1, now the vectors

√
β′i u

′
i are projected onto

the subspace Fp+1:

√
β′i u

′
i =

p+1∑
a=1

[(
√
β′i u

′
i)
TD1/2za]D1/2za + ortFp+1(

√
β′i u

′
i), i = 1, . . . , p.

As
√
β′p+1 u

′
p+1 = 0, there is no use of projecting it.

By the Pythagorean theorem, for the squared lengths of the vectors in the
above orthogonal decomposition we get that

β′i = ‖
√
β′i u

′
i‖2 =

p+1∑
a=1

[(
√
β′i u

′
i)
TD1/2za]2 + dist2(

√
β′i u

′
i, Fp+1), i = 1, . . . , p.

Let the vertex representatives x′1, . . . ,x
′
n ∈ Rp be the row vectors of the n × p

matrix X ′p = (
√
β′1 D

−1/2u′1, . . . ,
√
β′pD

−1/2u′p). Then

dist2(
√
β′i u

′
i, Fp+1) =

n∑
j=1

dj(x
′
ji − cji)2, i = 1, . . . , p

where x′ji is the ith coordinate of the vector x′j and cji is the same for the
vector cj ∈ Rp, where there are at most p+ 1 different ones among the centers
c1, . . . , cn assigned to the vertex representatives. Namely,

cji =
1∑

`∈Va
d`

∑
`∈Va

d`x
′
`i, j ∈ Va, i = 1, . . . , p.

In other words, the column vectors of the n × p matrix of rows c1, . . . , cn are
stepwise constant vectors on the same p+ 1 steps corresponding to the (p+ 1)-
partition of the vertices encoded into the partition matrix Zp+1.

By summing for i = 1, . . . , p, in view of the ANOVA argument of Section 3.1,
the cumulated second term will turn out to be the weighted (p+ 1)-variance of
the vertex representatives in the (p + 1)-partition designated by the partition
matrix Zp+1:

S̃2
p+1(X ′p) =

p∑
i=1

dist2(
√
β′i u

′
i, Fp+1) =

n∑
j=1

dj‖xj − cj‖2.
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Therefore,
p∑
i=1

β′i = Q′p+1,p(Zp+1,M) + S̃2
p+1(X ′p).

This applies to a given (p + 1)-partition of the vertices. We are looking for
the (p + 1)-partition maximizing the first term. In view of the above formula,
increasingQ′p+1,p can be achieved by decreasing S̃2

p+1(X ′p); latter one is obtained
by applying the k-means algorithm with p + 1 clusters for the p-dimensional
representatives x′1, . . . ,x′n with respective weights d1, . . . , dn.

Analogously, for d < k ≤ p+ 1:

d∑
i=1

β′i =

d∑
i=1

k∑
a=1

[(
√
β′i u

′
i)
TD1/2za]2 +

d∑
i=1

dist2(
√
β′i u

′
i, Fk)

= Q′k,d(Zk,M) + S̃2
k(X ′d)

where the row vectors of the n×dmatrixX ′d = (
√
β′1 D

−1/2u′1, . . . ,
√
β′dD

−1/2u′d)
are d-dimensional representatives of the vertices. Hence, in the presence of a
spectral gap between β′d and β

′
d+1 > 0 – in the miniature world of the [0,1] inter-

val – neither
∑d
i=1 β

′
i nor S̃2

k(X ′d) can be increased significantly by introducing
one more eigenvalue-eigenvector pair (by using (d + 1)-dimensional represen-
tatives instead of d-dimensional ones). Consequently, Q′k,d(Zk,M) would not
change much, and by the argument of Section 3.1, k = d + 1 clusters based on
d-dimensional representatives will suffice.

In their paper [43] introduce a model that takes into consideration the het-
erogeneity in the degrees of vertices. While the usual blockmodel is biased
towards placing vertices of similar degrees in the same cluster, the new model is
capable to find clusters of vertices of heterogeneous degrees. Similar stochastic
blockmodels will be discussed later.

3.3 Anti-community structure
Given the weighted graph G = (V,W ), instead of taking the maximum, we take
the minimum of QB(Pk,W ) = QB(Zk,M) over balanced k-partition matrices
Zk. For fixed k ≤ m, analogously to the inference of Section 3.1,

min
Pk∈Pk

BM(Pk, G) = min
ZT

k Zk=Ik
tr(ZT

k MZk) ≥ min
Y TY =Ik

tr(Y TMY )

≥
k∑
a=1

βn+1−a ≥
m+1∑
a=1

βn+1−a

wherem is the number of negative eigenvalues ofM (m+p < n). For the classifi-
cation, here we use the scaled (by the square root of the absolute value of the cor-
responding eigenvalue) eigenvectors corresponding to the negative eigenvalues
for the representation to findm+1 clusters. For large n, it suffices to choose d <
m structural negative eigenvalues such that there is a remarkable spectral gap
between βn+1−d and βn−d. Then with Xd = (

√
|βn|un, . . . ,

√
|βn+1−d|un+1−d),

we find the minimum of S2
d+1(Xd) by the k-means algorithm with d+1 clusters.

The same can be done by minimizing the normalized modularity based on the
largest absolute value negative eigenvalues and the corresponding eigenvectors of
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the normalized modularity matrix. The following examples illustrate that large
positive eigenvalues of the modularity matrix are indications of a community,
while large absolute value negative ones, of an anti-community structure. In [68],
these structures are called ’homophilic’ or ’heterophilic’. For the heterophilic
structure an example is the network of dating relationships in a high school,
where two persons of opposite sex are more likely to date than persons of the
same sex.

(i) Let G be the disjoint union of k complete graphs Cn1
, . . . , Cnk

, respec-
tively, with total number of vertices n =

∑k
i=1 ni and corresponding

partition V1, . . . , Vk of the vertices. This is sometimes called pure com-
munity structure, since there are no inter-community edges, but all possi-
ble intra-community edges are present. The modularity matrix of G has
k − 1 positive eigenvalues, βk = 0 with corresponding eigenvector 1/

√
n,

and there is only one negative eigenvalue with multiplicity n − k. (In
the n1 = · · · = nk special case β1 = · · · = βk−1 is a multiple positive
eigenvalue.) Here k communities are detected by the k-means algorithm
applied for the (k − 1)-dimensional representatives based on the eigen-
vectors corresponding to the positive eigenvalues. As these eigenvectors
themselves have piecewise constant structures over the clusters V1, . . . , Vk,
the k-variance of the representatives is 0, and the maximum BM(Pk, G)
is a slightly smaller positive number than the maximum Qk,k−1(Zk,M),
latter one being the sum of the positive eigenvalues. In the k = 1 case
the modularity matrix is negative semidefinite, and both the maximum
BM(Pk, G) and Qk,k−1(Zk,M) are zeros. The normalized modularity
matrix MD of G has the eigenvalue 1 with multiplicity k− 1, one 0 eigen-
value and all the other eigenvalues are in the (−1, 0) interval taking on at
most k − 1 different values. (In the n1 = · · · = nk case there is only one
negative eigenvalue with multiplicity n− k.)

(ii) Let G be the complete k-partite graph Kn1,...,nk
, with total number of ver-

tices n =
∑k
i=1 ni and corresponding partition V1, . . . , Vk of the vertices.

This is sometimes called pure anti-community structure as the empty mod-
ules may model hub-authorities and correspond to perfectly disassortative
mixing. The modularity matrix of G has k − 1 negative eigenvalues, all
the other eigenvalues are zeros. (In the n1 = · · · = nk special case there
is one negative eigenvalue with multiplicity k − 1.) Here k communities
are detected by the k-means algorithm applied for the (k−1)-dimensional
representatives based on the eigenvectors corresponding to the negative
eigenvalues. As these eigenvectors themselves have piecewise constant
structures over the clusters V1, . . . , Vk, the k-variance of the representa-
tives is 0, the minimum BM(Pk,G) is negative, but slightly larger than
the minimum Qk,k−1(Zk,M), latter one being the sum of the negative
eigenvalues. The normalized modularity matrix MD of G has k− 1 nega-
tive eigenvalues in the [−1, 0) interval, all the other eigenvalues are zeros.
(In the n1 = · · · = nk case the only negative eigenvalue has multiplicity
k − 1.)

Note that the complete graph ((i) with k = 1) and complete k-partite graphs
((ii) with k ≥ 2) have the zero as the largest modularity eigenvalue. Dragan
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Stevanovic conjectures that these are the only graphs with a positive semidef-
inite modularity matrix (of which zero is always an eigenvalue). An extensive
numerical search also supports this fact, though, it is an open question yet.

We remark that strategic interaction games also provide examples for both
community and anti-community structures. Here the agents are vertices of a
graph and agents connected with an edge (of non-zero weight) influence each
other’s actions, see e.g. [11, 40] for economic networks and simple graphs. The
theory can be extended to edge-weighted graphs, where the impact of an agent’s
action on another agent’s action depends on the edge-weight between them. The
actions themselves are real numbers that – taking into consideration the graph
structure – maximize the joint quadratic payoff which is of the following two
types. In games of so-called strategic complements, an increase of the actions
of other players leads a given player’s higher actions to have relatively higher
payoffs compared to that player’s lower actions. In games of so-called strategic
substitutes the opposite is true: an increase in other players’ actions leads to
relatively lower payoffs under higher actions of a given player. If we classify
the agents such that those exhibiting similar actions belong to the same cluster,
then a community and an anti-community structure is likely to develop in the
two above cases, respectively. We may extend the theory to multiple actions,
where the action vectors play a similar role than the representatives of the ver-
tices in the quadratic placement problems of Lesson 1. For genetic applications
consult [76]. For more examples see [20].

4 Normalized bicuts of contingency tables
[This section can be skipped.]

We are given an m×n contingency table C on row set Row and column set
Col. For a fixed integer k, 0 < k ≤ r = rank(C), we want to simultaneously
partition the rows and columns of C into disjoint, nonempty subsets

Row = R1 ∪ · · · ∪Rk, Col = C1 ∪ · · · ∪ Ck

such that the cuts c(Ra, Cb) =
∑
i∈Ra

∑
j∈Cb

cij , a, b = 1, . . . , k between the
row-column cluster pairs be as homogeneous as possible.

Definition 9 The normalized bicut of the contingency table C with respect to
the k-partitions Prow = (R1, . . . , Rk) and Pcol = (C1, . . . , Ck) of its rows and
columns and the collection of signs σ is defined as follows:

νk(Prow, Pcol, σ) =

k∑
a=1

k∑
b=1

(
1

Vol(Ra)
+

1

Vol(Cb)
+

2σabδab√
Vol(Ra)Vol(Cb)

)
c(Ra, Cb),

(31)
where

Vol(Ra) =
∑
i∈Ra

drow,i =
∑
i∈Ra

n∑
j=1

cij , Vol(Cb) =
∑
j∈Cb

dcol,j =
∑
j∈Cb

m∑
i=1

cij

are volumes of the clusters, δab is the Kronecker delta, and the sign σab is equal
to 1 or -1 (it only has relevance in the a = b case), and σ = (σ11, . . . , σkk) is
the collection of the relevant signs.
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The normalized k-way bicut of the contingency table C is the minimum of
(31) over all possible k-partitions Prow,k and Pcol,k of its rows and columns, and
over all possible collections of signs σ:

νk(C) = min
Prow,Pcol,σ

νk(Prow, Pcol, σ).

Note that νk(C) penalizes row- and column clusters of extremely different vol-
umes in the a 6= b case, whereas in the a = b case σaa moderates the balance
between Vol(Ra) and Vol(Ca).

Theorem 5 Let 1 = s0 ≥ s1 ≥ · · · ≥ sr−1 > 0 be the positive singular values of
the normalized contingency table Ccorr = D

−1/2
row CD

−1/2
col belonging to C. Then

for any positive integer k ≤ r, such that sk−1 > sk,

νk(C) ≥ 2k −
k−1∑
i=0

si.

Proof 5 We will show that νk(Prow, Pcol, σ) is the objective function Qk of (??)
in the special representation, where the column vectors of X and Y are nor-
malized partition vectors corresponding to Prow and Pcol, respectively. From
here, the statement follows, since the overall minimum is 2k−

∑k−1
i=0 si. Indeed,

denoting by xia the ith coordinate of the ath column of X, in view of (4),

xia =

{
1√

Vol(Ra)
if i ∈ Ra

0 otherwise
(a = 1, . . . , k).

Likewise, denoting by yjb the jth coordinate of the bth column of Y ,

yjb =

{
1√

Vol(Cb)
if j ∈ Cb

0 otherwise
, (b = 1, . . . , k).

With this, the matrices X and Y satisfy the conditions imposed on the repre-
sentatives. Actually, the row and column represenatives, r1, . . . rm ∈ Rk and
q1, . . . ,qn ∈ Rk, are the row vectors of X and Y , and it is easy to verify that

‖ri − qj‖2 =
1

Vol(Ra)
+

1

Vol(Cb)
+

2σbbδab√
Vol(Ra)Vol(Cb)

, if i ∈ Ra, j ∈ Cb.

Note that we introduced Ccorr as correspondence matrix belonging to C. This
matrix is used intensively in Correspondence Analysis. For further reading
about Correspondence Analysis we recommend [30, 31] and [18]. If C, or
equaivalently, Ccorr is non-decomposable, then 1 is a single singular value.

Observe, that in case of a symmetric contingency table, we get the same
result with the representation, based on the eigenvectors corresponding to the
largest absolute value eigenvalues of the normalized modularity matrix. How-
ever, νk(Prow, Pcol, σ) cannot always be directly related to the normalized cut,
except the following two special cases.

• When the k− 1 largest absolute value eigenvalues of the normalized mod-
ularity matrix are all positive, or equivalently, if the k smallest eigenvalues
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(including the zero) of the normalized Laplacian matrix are farther from
1 than any other eigenvalue which is greater than 1. In this case, the
k − 1 largest singular values (apart from the 1) of the correspondence
matrix are identical to the k − 1 largest eigenvalues of the normalized
modularity matrix, and the left and right singular vectors are identical to
the corresponding eigenvector with the same orientation. Consequently,
for the k-dimensional (in fact, (k − 1)-dimensional) row- and column-
representatives ri = qi (i = 1, . . . , n = m) holds. With the choice σbb = 1
(b = 1, . . . , k), the corresponding νk(C) is twice the normalized cut of our
weighted graph in which weights of edges within the clusters do not count.
In this special situation, the normalized bicut also favors k-partitions with
low inter-cluster edge-densities (therefore, intra-cluster densities tend to
be large, as they do not count in the objective function).

• When the k− 1 largest absolute value eigenvalues of the normalized mod-
ularity matrix are all negative, then ri = −qi for all (k − 1)-dimensional
row and column representatives, and any (but only one) of them can be
the corresponding vertex representative. Now νk(C), which is attained
with the choice σbb = −1 (b = 1, . . . , k), differs from the normalized cut
in that it also counts the edge-weights within the clusters. Indeed, in the
a = b, Ra = Ca = Va case

‖ri − qj‖2 =
1

Vol(Va)
+

1

Vol(Vb)
+

2√
Vol(Va)Vol(Vb)

=
4

Vol(Va)

if i, j ∈ Va. Here, by minimizing the normalized k-way cut, rather a so-
called anti-community structure is detected in that c(Ra, Ca) = c(Va, Va)
is suppressed to compensate for the term 4

Vol(Va)
.

We remark that [27] treats this problem for two row- and column-clusters
and minimizes another objective function such that it favors 2-partitions where
c(R1, C2) and c(R2, C1) are small compared to c(R1, C1) and c(R2, C2). The
solution is also given by the transformed left- and right-hand side singular vec-
tor pair corresponding to s1. However, it is the objective function νk which
best complies with the SVD of the correspondence matrix, and hence, gives
the continuous relaxation of the normalized bicut minimization problem. The
idea of Ding et al. could be naturally extended to the case of several, but the
same number of row and column clusters, and it may work well in the keyword-
document classification problem. Though, in some real-life problems, e.g., clus-
tering genes and conditions of microarrays, we rather want to find clusters of
similarly functioning genes that equally (not especially weakly or strongly) in-
fluence conditions of the same cluster; this issue discussed in details later. For
further reading about microarrays, we recommend [37, 44, 65]. [25] also suggests
a multipartition algorithm that runs the k-means algorithm simultaneously for
the row- and column representatives.
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