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In this lesson, the theory of convergent graph sequences, elaborated by graph
theorists (see e.g. [5, 6, 17, 25]), will be used for vertex- and edge-weighted
graphs and contingency tables.Roughly speaking, graphs and contingency tables
of a convergent sequence become more and more similar to each other in small
details, which fact is made exact in terms of the convergence of homomorphism
densities when ’small’ simple graphs or binary tables are mapped into the ’large’
networks of the sequence. The convergence can as well be formulated in terms
of the cut-distance, and limit objects are defined. This cut-distance also makes
it possible to classify graphs and contingency tables, or to assign them to given
prototypes.

Testable parameters are, in fact, nonparametric statistics defined on graphs
and contingency tables that can be consistently estimated based on a smaller
sample, selected randomly from the underlying huge network. Real-world graphs
or rectangular arrays are sometimes considered as samples from a large network,
and we want to conclude the network’s parameters from the same parameters of
its smaller parts. The theory guarantees that this can be done if the investigated
parameter is testable. Certain maximum and balanced minimum multiway cut
densities are indeed testable.

1 Convergent graph sequences
Let G = Gn be a weighted graph on the vertex set V (G) = {1, . . . , n} = [n]
and edge set E(G). Both the edges and vertices have weights: the edge-weights
are pairwise similarities βij = βji ∈ [0, 1], i, j ∈ [n] between the vertices, while
the vertex-weights αi > 0 (i ∈ [n]) indicate relative significance of the vertices.
For example, in a social network, the edge-weights are pairwise associations be-
tween people, while the vertex-weights can be individual abilities in the same
context in which relations between them exist; e.g. in the actors’ network, rel-
ative frequencies of costarring of actors are the pairwise similarities, whereas
individual abilities of the actors are their weights. In strategic interaction net-
works, the edge-weights represent the mutual effect of the pairs of individuals on
each other’s strategies, while vertex-weights are actions of the individuals that
they would follow themselves, without being aware of actions of their neigh-
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bors (neighbors are persons to whom an individual is connected with positive
weights), see e.g. [2].

It is important that the edge-weights are nonnegative (βij = 0 means that
vertices i and j are not connected at all), the normalization into the [0,1] interval
is for the sake of treating them later as probabilities for random sampling. A
simple graph has edge-weights 0 or 1, and vertex-weights all 1. Note that the
edge-weights resemble the wij ’s used in the previous lessons, but here loops may
also be present, namely, if βii > 0 for some i. If all the edge-weights are positive,
our graph is called soft-core. Soft-core graphs are dense, and among the simple
graphs they are the complete graphs.

Let G denote the set of all such edge- and vertex-weighted graphs. The
volume of G ∈ G is defined by αG =

∑n
i=1 αi, while that of the vertex-subset S

by αS =
∑
i∈S αi. Note that this notion of volume coincides with that of the

previous lessons only if the vertex-weights are the generalized degrees. Further,

eG(S, T ) =
∑
s∈S

∑
t∈T

αsαtβst

denotes the vertex- and edge-weighted cut between the (not necessarily disjoint)
vertex-subsets S and T , which is equal to w(S, T ) of the previous lessons only
if the vertex-weights are all 1. However, for brevity, we will also call eG(S, T )
weighted cut throughout this chapter.

[6] define the homomorphism density between the simple graph F (on vertex
set V (F ) = [k]) and the above weighted graph G as

t(F,G) =
1

(αG)k

∑
Φ:V (F )→V (G)

k∏
i=1

αΦ(i)

∏
ij∈E(F )

βΦ(i)Φ(j).

Note that under homomorphism, an edge-preserving map is understood in the
following sense. If F is a simple and G is an edge-weighted graph, then Φ :
V (F ) → V (G) is a homomorphism when for every ij ∈ E(F ), βΦ(i)Φ(j) > 0.
Therefore, in the above summation, a zero term will correspond to a Φ which is
not a homomorphism. For ’large’ n, [6] relate this quantity to the probability
that the following sampling results in F : k vertices of G are selected with re-
placement out of the n ones, with respective probabilities αi/αG (i = 1, . . . , n);
given the vertex-subset {Φ(1), . . . ,Φ(k)}, the edges come into existence condi-
tionally independently, with probabilities of the edge-weights. Such a random
simple graph is denoted by ξ(k,G). In the sequel only the k � n case – when
t(F,G) is very close to to the probability that the above sampling from G results
in F – makes sense, and this is the situation we need: k is kept fixed, while n
tends to infinity. (For a more precise formulation with induced and injective
homomorphisms, see [6]).

Definition 1 The weighted graph sequence (Gn) is (left-)convergent if the se-
quence t(F,Gn) converges for any simple graph F as n→∞.

As other kinds of convergence are not discussed here, in the sequel, the word left
will be omitted, and we simply use convergence. Note that [8] define other kinds
of graph convergence too, together with equivalences and implications between
them.
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[25] also construct the limit object that is a symmetric, bounded, measur-
able function W : [0, 1] × [0, 1] → R, called graphon. Let W denote the set of
these functions. The interval [0,1] corresponds to the vertices and the values
W (x, y) = W (y, x) to the edge-weights. In view of the conditions imposed on
the edge-weights, the range is also the [0,1] interval. The set of symmetric,
measurable functions W : [0, 1] × [0, 1] → [0, 1] is denoted by W[0,1]. The step-
function graphon WG ∈ W[0,1] is assigned to the weighted graph G ∈ G in the
following way: the sides of the unit square are divided into intervals I1, . . . , In
of lengths α1/αG, . . . , αn/αG, and over the rectangle Ii × Ij the stepfunction
takes on the value βij .

The so-called cut distance between the graphons W and U is

δ�(W,U) = inf
ν
‖W − Uν‖� (1)

where the cut-norm of the graphon W ∈ W is defined by

‖W‖� = sup
S,T⊂[0,1]

∣∣∣∣∫∫
S×T

W (x, y) dx dy

∣∣∣∣ ,
and the infimum in (1) is taken over all measure-preserving bijections ν : [0, 1]→
[0, 1], while Uν denotes the transformed U after performing the same measure-
preserving bijection ν on both sides of the unit square. (You can also think
of ν such that for a uniformly distributed random variable ξ over (0, 1), ν(ξ)
has the same distribution.) An equivalence relation is defined over the set of
graphons: two graphons belong to the same class if they can be transformed into
each other by a measure-preserving bijection, i.e. their δ� distance is zero. In
the sequel, we consider graphons modulo measure preserving maps, and under
graphon we understand the whole equivalence class. By Theorem 5.1 of [26], the
classes ofW[0,1] form a compact metric space with the δ� metric. Based on this
fact, the authors give an analytic proof for the weak version of the Szemerédi’s
Regularity Lemma.

We will intensively use the following reversible relation between convergent
weighted graph sequences and graphons (see Corollary 3.9 of [6]).

Fact 1 For any convergent sequence (Gn) of weighted graphs with uniformly
bounded edge-weights there exists a graphon such that δ�(WGn

,W ) → 0. Con-
versely, any graphon W can be obtained as the limit of a sequence of weighted
graphs with uniformly bounded edge-weights. The limit of a convergent graph
sequence is essentially unique: if Gn → W , then also Gn → W ′ for precisely
those graphons W ′ for which δ�(W,W ′) = 0.

Authors of [6, 7] define the δ� distance of two weighted graphs and that of a
graphon and a graph in the following way. For the weighted graphs G, G′, and
for the graphon W

δ�(G,G′) = δ�(WG,WG′) and δ�(W,G) = δ�(W,WG).

Theorem 2.6 of [6] states that a sequence of weighted graphs with uniformly
bounded edge-weights is convergent if and only if it is a Cauchy sequence in the
metric δ�.
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A simple graph on k vertices can be sampled based on W in the following
way: k uniform random numbers, X1, . . . , Xk are generated on [0,1] indepen-
dently. Then we connect the vertices corresponding to Xi and Xj with proba-
bility W (Xi, Xj). For the so obtained simple graph ξ(k,W ) the following large
deviation result is proved (see Theorem 4.7 of [6]).

Fact 2 Let k be a positive integer and W ∈ W[0,1] be a graphon. Then with
probability at least 1− e−k2/(2 log2 k), we have

δ�(W, ξ(k,W )) ≤ 10√
log2 k

. (2)

Fixing k, Inequality (2) holds uniformly for any graphon W ∈ W[0,1], especially
for WG. Further, the sampling from WG is identical to the previously defined
sampling with replacement from G, i.e. ξ(k,G) and ξ(k,WG) are identically
distributed. In fact, this argument is relevant in the k ≤ |V (G)| case.

2 Testability of weighted graph parameters
A function f : G → R is called a graph parameter if it is invariant under
isomorphism. In fact, a graph parameter is a statistic evaluated on the graph,
and hence, we are interested in weighted graph parameters that are not sensitive
to minor changes in the weights of the graph. By the definition of [6], the simple
graph parameter f is testable if for every ε > 0 there is a positive integer k such
that for every simple graph G on at least k vertices,

P (|f(G)− f(ξ(k,G))| > ε) ≤ ε,

where ξ(k,G) is a random simple graph on k vertices selected randomly from
G as described above. Then they prove equivalent statements of testability for
simple graphs.

These results remain valid if we consider weighted graph sequences (Gn)

with no dominant vertex-weights, i.e. maxi
αi(Gn)
αGn

→ 0 as n → ∞. To use this
condition imposed on the vertex-weights, [4] slightly modified the definition of
a testable graph parameter for weighted graphs.

Definition 2 A weighted graph parameter f is testable if for every ε > 0 there
is a positive integer k such that if G ∈ G satisfies

max
i

αi(G)

αG
≤ 1

k
, (3)

then
P (|f(G)− f(ξ(k,G))| > ε) ≤ ε,

where ξ(k,G) is a random simple graph on k vertices selected randomly from G
as described in Section 1.

Note that for simple G, Inequality (3) implies that |V (G)| ≥ k, and we get back
the definition applicable to simple graphs..

By the above definition, a testable graph parameter can be consistently
estimated based on a fairly large sample. As the randomization depends only
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on the αi(G)/αG ratios, it is not able to distinguish between weighted graphs
whose vertex-weights differ only in a constant factor. Thus, a testable weighted
graph parameter is invariant under scaling the vertex-weights.

As a straightforward generalization of Theorem 6.1 in [6], [4] introduced the
following equivalent statements of the testability for weighted graphs. We state
this theorem without proof as it uses the ideas of the proof in [6], where some
details for such a generalization are also elaborated.

Theorem 1 For the weighted graph parameter f the following are equivalent:

(a) f is testable.

(b) For every ε > 0 there is a positive integer k such that for every weighted
graph G ∈ G satisfying the node-condition maxi αi(G)/αG ≤ 1/k,

|f(G)−E(f(ξ(k,G)))| ≤ ε.

(c) For every convergent weighted graph sequence (Gn) with maxi αi(Gn)/αGn
→

0, f(Gn) is also convergent (n→∞).

(d) f can (essentially uniquely) be extended to graphons such that the graphon
functional f̃ is continuous in the cut-norm and f̃(WGn

) − f(Gn) → 0,
whenever maxi αi(Gn)/αGn

→ 0 (n→∞).

(e) For every ε > 0 there is an ε0 > 0 real and an n0 > 0 integer such
that if G1, G2 are weighted graphs satisfying maxi αi(G1)/αG1

≤ 1/n0,
maxi αi(G2)/αG2

≤ 1/n0, and δ�(G1, G2) < ε0, then |f(G1)−f(G2)| < ε
also holds.

This theorem indicates that a testable parameter depends continuously on the
whole graph, and hence, it is not sensitive to minor changes in the edge-weights.
Some of these equivalences will be used in the proofs of the next section.

3 Convergence of the spectra and spectral sub-
spaces

In [4], we proved the testability of some normalized balanced multiway cut
densities such that we imposed balancing conditions on the cluster volumes.
Under similar conditions, for fixed number of clusters k, the unnormalized and
normalized multiway modularities are also testable, provided our edge-weighted
graph has no dominant vertices. The proofs rely on statistical physics notions
of [6], utilizing the fact that the graph convergence implies the convergence
of the ground state energy. [31] showed that the Newman-Girvan modularity
is an energy function (Hamiltonian), and hence, testability of the maximum
normalized modularities, under appropriate balancing conditions, can be shown
analogously. Here we rather discuss the testability of spectra and k-variances,
because in spectral clustering methods these provide us with polynomial time
algorithms, though only approximate solutions are expected via the spectral
relaxation.

In Theorem 6.6 of [8], the authors prove that the normalized spectrum of
a convergent graph sequence converges in the following sense. Let W be a
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graphon and (Gn) be a sequence of weighted graphs – with uniformly bounded
edge-weights – tending to W . (For simplicity, we assume that |V (Gn)| = n).
Let |λn,1| ≥ |λn,2| ≥ · · · ≥ |λn,n| be the adjacency eigenvalues of Gn indexed
by their decreasing absolute values, and let µn,i = λn,i/n (i = 1, . . . , n) be
the normalized eigenvalues. Further, let TW be the L2[0, 1] → L2[0, 1] integral
operator corresponding to W :

(TW f)(x) =

∫ 1

0

W (x, y)f(y) dy.

It is well-known that his operator is self-adjoint and compact, and hence, it
has a discrete real spectrum, whose only possible point of accumulation is the
0 (see the background material). Let µi(W ) denote the ith largest absolute
value eigenvalue of TW . Then for every i ≥ 1, µn,i → µi(W ) as n → ∞. In
fact, the authors prove a bit more (see Theorem 6.7 of [8]): if a sequence Wn of
uniformly bounded graphons converges to a graphon W , then for every i ≥ 1,
µi(Wn)→ µi(W ) as n→∞. Note that the spectrum of WG is the normalized
spectrum of G, together with countably infinitely many 0’s. Therefore, the
convergence of the spectrum of (Gn) is the consequence of that of (WGn

).
We will prove that in the absence of dominant vertices, the normalized mod-

ularity spectrum is testable. To this end, both the modularity matrix and the
graphon are related to kernels of special integral operators, discussed in Lesson
2. We recall the most important facts herein. Let (ξ, ξ′) be a pair of identically
distributed real-valued random variables defined over the product space X ×X
having a symmetric joint distribution W with equal margins P. Suppose that
the dependence between ξ and ξ′ is regular, i.e., their joint distribution W is
absolutely continuous with respect to the product measure P × P, and let w
denote its Radon–Nikodym derivative. Let H = L2(ξ) and H ′ = L2(ξ′) be the
Hilbert spaces of random variables which are functions of ξ and ξ′ and have
zero expectation and finite variance with respect to P. Observe that H and
H ′ are isomorphic Hilbert spaces with the covariance as inner product; further,
they are embedded as subspaces into the L2-space defined similarly over the
product space. (Here H and H ′ are also isomorphic in the sense that for any
ψ ∈ H there exists a ψ′ ∈ H ′ and vice versa, such that ψ and ψ′ are identically
distributed.)

Consider the linear operator taking conditional expectation between H ′ and
H with respect to the joint distribution. It is an integral operator and will be
denoted by PW : H ′ → H as it is a projection restricted to H ′ and projects onto
H. To ψ′ ∈ H ′ the operator PW assigns ψ ∈ H such that ψ = EW(ψ′ | ξ), i.e.

ψ(x) =

∫
Y
w(x, y)ψ′(y)P(dy), x ∈ X .

If ∫
X

∫
X
w2(x, y)P(dx)P(dy) <∞,

then PW is a Hilbert–Schmidt operator, therefore it is compact and has SD

PW =

∞∑
i=1

λi〈., ψ′i〉H′ψi
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where for the eigenvalues |λi| ≤ 1 holds and the eigenvalue–eigenfunction equa-
tion looks like

PWψ
′
i = λiψi (i = 1, 2, . . . )

where ψi and ψ′i are identically distributed, whereas their joint distribution
is W. It is easy to see that PW is self-adjoint and it takes the constantly 1
random variable of H ′ into the constantly 1 random variable of H; however, the
ψ0 = 1, ψ′0 = 1 pair is not regarded as a function pair with eigenvalue λ0 = 1,
since they have no zero expectation. More precisely, the kernel is reduced to
w(x, y)− 1.

Theorem 2 Let Gn = (Vn,Wn) be the general entry of a convergent sequence
of connected edge-weighted graphs whose edge-weights are in [0,1] and the vertex-
weights are the generalized degrees. Assume that there are no dominant vertices.
Let W denote the limit graphon of the sequence (Gn), and let

1 ≥ |µn,1| ≥ |µn,2| ≥ · · · ≥ |µn,n| = 0

be the normalized modularity spectrum of Gn (the eigenvalues are indexed by
their decreasing absolute values). Further, let µi(PW) is the ith largest absolute
value eigenvalue of the integral operator PW : L2(ξ′)→ L2(ξ) taking conditional
expectation with respect to the joint measure W embodied by the normalized
limit graphon W , and ξ, ξ′ are identically distributed random variables with the
marginal distribution of their symmetric joint distribution W. Then for every
i ≥ 1,

µn,i → µi(PW) as n→∞.

Proof 1 In case of a finite X (vertex set) we have a weighted graph, and we
will show that the operator taking conditional expectation with respect to the
joint distribution, determined by the edge-weights, corresponds to its normalized
modularity matrix.

Indeed, let X = V , |V | = n, and Gn = (V,W ) be an edge-weighted graph on
the n × n weight matrix of the edges W with entries Wij’s; now, they do not
necessarily sum up to 1. (For the time being, n is kept fixed, so – for the sake
of simplicity – we do not denote the dependence of W on n). Let the vertices
be also weighted with special weights αi(Gn) :=

∑n
j=1Wij, i = 1, . . . , n. Then

the step-function graphon WGn is such that WGn(x, y) = Wij whenever x ∈ Ii
and y ∈ Ij, where the (not necessarily contiguous) intervals I1, . . . , In form a
partition of [0,1] such that the length of Ii is αi(Gn)/αGn

(i = 1, . . . , n).
Let us transform W into a symmetric joint distribution Wn over V ×V . The

entries wij = Wij/αGn
(i, j = 1, . . . , n) embody this discrete joint distribution

of random variables ξ and ξ′ which are identically distributed with marginal dis-
tribution d1, . . . , dn, where di = αi(Gn)/αGn (i = 1, . . . , n). With the previous
notation H = L2(ξ), H ′ = L2(ξ′), and the operator PWn

: H ′ → H taking con-
ditional expectation is an integral operator with now discrete kernel Kij =

wij

didj
.

The fact that ψ, ψ′ is an eigenfunction pair of PWn
with eigenvalue λ means

that
1

di

n∑
j=1

wijψ
′(j) =

n∑
j=1

wij
didj

ψ′(j)dj = λψ(i), (4)
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where ψ(j) = ψ′(j) denotes the value of ψ or ψ′ taken on with probability di (re-
call that ψ and ψ′ are identically distributed). The above equation is equivalent
to

n∑
j=1

wij√
di
√
dj

√
djψ(j) = λ

√
diψ(i).

Therefore, the vector of coordinates
√
diψ(i) (i = 1, . . . , n) is a unit-norm eigen-

vector of the normalized modularity matrix with eigenvalue λ (note that the nor-
malized modularity spectrum does not depend on the scale of the edge-weights, it
is the same whether we use Wij’s or wij’s as edge-weights). Consequently, the
eigenvalues of the conditional expectation operator are the same as the eigen-
values of the normalized modularity matrix, and the possible values taken on by
the eigenfunctions of the conditional expectation operator are the same as the
coordinates of the transformed eigenvectors of the normalized modularity matrix
forming the column vectors of the matrix X∗ of the optimal (k− 1)-dimensional
representatives.

Let f be a stepwise constant function on [0,1], taking on value ψ(i) on Ii.
Then Varψ = 1 is equivalent to

∫ 1

0
f2(x) dx = 1. Let KGn

be the stepwise
constant graphon defined as KGn

(x, y) = Kij for x ∈ Ii and y ∈ Ij. With this,
the eigenvalue–eigenvector equation (4) looks like

λf(x) =

∫ 1

0

KGn(x, y)f(y) dy.

The spectrum of KGn
is the normalized modularity spectrum of Gn together

with countably infinitely many 0’s (it is of finite rank, and therefore, trivially
compact), and because of the convergence of the weighted graph sequence Gn, in
lack of dominant vertices, the sequence of graphons KGn

also converges. Indeed,
the WGn → W convergence in the cut metric means the convergence of the in-
duced discrete distributions Wn’s to the continuous W. Since KGn and K are
so-called copula transformations (see [?]) of those distributions; in lack of dom-
inant vertices (this causes the convergence of the margins) they also converge,
which in turn implies the KGn

→ K convergence in the cut metric.
Let K denote the limit graphon of KGn

(n → ∞). This will be the kernel
of the integral operator taking conditional expectation with respect to the joint
distribution W. It is easy to see that this operator is also a Hilbert–Schmidt
operator, and therefore, compact. With these considerations the remainder of
the proof is analogous to the proof of Theorem 6.7 of [8], where the authors prove
that if the sequence (WGn

) of graphons converges to the limit graphon W , then
both ends of the spectra of the integral operators, induced by WGn ’s as kernels,
converge to the ends of the spectrum of the integral operator induced by W as
kernel. We apply this argument for the spectra of the kernels induced by KGn

’s
and K.

Note that in [28], kernel operators are also discussed, but not with our
normalization.

Remark 1 By using Theorem 1 (c), provided there are no dominant vertices,
Theorem 2 implies that for any fixed positive integer k, the (k − 1)-tuple of
the largest absolute value eigenvalues of the normalized modularity matrix is
testable.
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Theorem 3 Suppose, there are constants 0 < ε < δ ≤ 1 such that the normal-
ized modularity spectrum (with decreasing absolute values) of any Gn satisfies

1 ≥ |µn,1| ≥ · · · ≥ |µn,k−1| ≥ δ > ε ≥ |µn,k| ≥ · · · ≥ |µn,n| = 0.

With the notions of Theorem 2, and assuming that there are no dominant ver-
tices of Gn’s, the subspace spanned by the transformed eigenvectors D−1/2u1,
. . . ,D−1/2uk−1 belonging to the k − 1 largest absolute value eigenvalues of the
normalized modularity matrix of Gn also converges to the corresponding (k−1)-
dimensional subspace of PW. More precisely, if Pn,k−1 denotes the projection
onto the subspace spanned by the transformed eigenvectors belonging to k − 1
largest absolute value eigenvalues of the normalized modularity matrix of Gn,
and Pk−1 denotes the projection onto the corresponding eigen-subspace of PW,
then ‖Pn,k−1 − Pk−1‖ → 0 as n→∞ (in spectral norm).

Proof 2 If we apply the convergence fact µn,i → µi(PW) for indices i = k − 1
and k, we get that there will be a gap of order δ − ε− o(1) between |µk−1(PW)|
and |µk(PW)| too.

Let PW,n denote the n-rank approximation of PW (keeping its n largest abso-
lute value eigenvalues, together with the corresponding eigenfunctions) in spec-
tral norm. The projection Pk−1 (k < n) operates on the eigen-subspace spanned
by the eigenfunctions belonging to the k−1 largest absolute value eigenvalues of
PW,n in the same way as on the corresponding (k− 1)-dimensional subspace de-
termined by PW. With these considerations, we apply the perturbation theory of
eigen-subspaces with the following unitary invariant norm: the Schatten norm
(or trace norm) of the Hilbert–Schmidt operator A is ‖A‖4 = (

∑∞
i=1 λ

4
i (A))1/4

(see e.g. [6] and the Linear Algebra basics) for matrices). Our argument with
the finite (k−1) rank projections is the following. Denoting by PWn the integral
operator belonging to the normalized modularity matrix of Gn (with kernel KGn

introduced in the proof of Theorem 2),

‖Pn,k−1 − Pk−1‖ = ‖P⊥n,k−1Pk−1‖ ≤ ‖P⊥n,k−1Pk−1‖4

≤ c

δ − ε− o(1)
‖PWn − PW,n‖4

with constant c that is at most π/2 (see the Linear Algebra Basics). But

‖PWn
− PW,n‖4 ≤ ‖PWn

− PW‖4 + ‖PW − PW,n‖4,

where the last term tends to 0 as n→∞, since the tail of the spectrum (taking
the fourth power of the eigenvalues) of a Hilbert–Schmidt operator converges.
For the convergence of the first term we use Lemma 7.1 of [6], which states
that the trace-norm of an integral operator can be estimated from above by four
times the cut-norm of the corresponding kernel. But the convergence in the
cut distance of the corresponding kernels to zero follows from the considerations
made in the proof of Theorem 2. This finishes the proof.

Remark 2 As the k-variance depends continuously on the above subspaces,
Theorem 3 implies the testability of the k-variance as well.

The above results suggest that in the absence of dominant vertices, even
the normalized modularity matrix of a smaller part of the underlying weighted
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graph, selected at random with an appropriate procedure, is able to reveal its
cluster structure. Hence, the gain regarding the computational time of this
spectral clustering algorithm is twofold: we only use a smaller part of the graph
and the spectral decomposition of its normalized modularity matrix runs in
polynomial time in the reduced number of the vertices. Under the vertex- and
cluster-balance conditions this method can give quite good approximations for
the multiway cuts and helps us to find the number of clusters and identify the
cluster structure.

Even if the spectrum of convergent graph sequences converges, the spectrum
itself does not carry enough information for the cluster structure of the graph
as stated in [27]. However, together with the eigenvectors it must carry the
sufficient information; moreover, it suffices to consider the structural eigenvalues
with their corresponding spectral subspaces.

4 Noisy graph sequences
Now, we use the above theory for perturbations, showing that special noisy
weighted graph sequences converge in the sense of Section 1. If not stated
otherwise, the vertex-weights are equal (say, equal to 1), and a weighted graph
G on n vertices is determined by its n×n symmetric weight matrix A. Let GA

denote the weighted graph with unit vertex-weights and edge-weights that are
entries of A. We will use the notion of a Wigner-noise and blown-up matrix of
Lesson 4.

Let us fix the q × q symmetric pattern matrix P of entries 0 < pij < 1, and
blow it up to an n × n blown-up matrix Bn of blow-up sizes n1, . . . , nq (note
that Bn is a soft-core graph). Consider the noisy matrix An = Bn + Wn as
n1, . . . , nq → ∞ at the same rate, where Wn is an n × n Wigner-noise. While
perturbing Bn by Wn, assume that for the uniform bound of the entries of Wn

the condition
K ≤ min{ min

i,j∈[q]
pij , 1− max

i,j∈[q]
pij} (5)

is satisfied. In this way, the entries of An are in the [0,1] interval, and hence,
GAn

∈ G. We remark thatGWn
/∈ G, butWGWn

∈ W and the theory of bounded
graphons applies to it. In Lesson 4, we showed that by adding an appropriate
Wigner-noise to Bn, we can achieve that An becomes a 0-1 matrix: its entries
are equal to 1 with probability pij and 0 otherwise within the block of size ni×nj
(after rearranging its rows and columns). In this case, the corresponding noisy
graph GAn

is a generalized random graph.
By routine large deviation techniques we are able to prove that the cut-

norm of the stepfunction graphon assigned to a Wigner-noise tends to zero with
probability 1 as n→∞.

Proposition 1 For any sequence Wn of Wigner-noises

lim
n→∞

‖WGWn
‖� = 0

almost surely.

10



The main idea of the proof is that the definition of the cut-norm of a stepfunction
graphon and formulas (7.2), (7.3) of [6] yield

‖WGWn
‖� =

1

n2
max

U,T⊂[n]

∣∣∣∣∣∣
∑
i∈U

∑
j∈T

wij

∣∣∣∣∣∣ ≤ 6 max
U⊂[n]

1

n2

∣∣∣∣∣∣
∑
i∈U

∑
j∈[n]\U

wij

∣∣∣∣∣∣ ,
where the entries behind the latter double summation are independent random
variables. Hence, the Azuma’s inequality (see [10]) is applicable, and the state-
ment follows by the Borel–Cantelli lemma.

Let An := Bn+Wn and n1, . . . , nq →∞ in such a way that limn→∞
ni

n = ri
(i = 1, . . . , q), n =

∑q
i=1 ni; further, for the uniform bound K of the entries of

the matrix Wn the condition (5) is assumed. Under these conditions, Proposi-
tion 1 implies that the noisy graph sequence (GAn

) ⊂ G converges almost surely
in the δ� metric. It is easy to see that the almost sure limit is the stepfunction
WH , where the vertex- and edge-weights of the weighted graph H are

αi(H) = ri (i ∈ [q]), βij(H) = pij (i, j ∈ [q]).

By adding a special Wigner-noise, the noisy graph sequence (GAn) becomes a
generalized graph sequence on the model graph H, under which the following
is understood. Let V = [n] be the desired vertex-set. A vertex is put into the
vertex-subset Vi with probability αi(H); then vertices of Vi and Vj are connected
with probability βij(H), i, j = 1, . . . , q (see also the generalized random graphs
of Lesson 6).

The deterministic counterparts of the generalized random graphs are the
generalized quasirandom graphs introduced by [27] in the following way. We
have a model graph graph H on q vertices with vertex-weights r1, . . . , rq and
edge-weights pij = pji, i, j = 1, . . . , q. Then (Gn) is H-quasirandom if Gn → H
as n→∞ in the sense of Definition 1. Authors of [27] also prove that the vertex
set V of a generalized quasirandom graph Gn can be partitioned into clusters
V1, . . . , Vq in such a way that |Vi|

|V | → ri (i = 1, . . . , q) and the subgraph of Gn
induced by Vi is the general term of a quasirandom graph sequence with edge-
density tending to pii (i = 1, . . . , q), whereas the bipartite subgraph between
Vi and Vj is the general term of a quasirandom bipartite graph sequence with
edge-density tending to pij (i 6= j) as n→∞. Consequently, for any fixed finite
graph F , the number of copies of F is asymptotically the same in the above
generalized random and generalized quasirandom graphs on the same model
graph and number of vertices.

5 Testability of minimum balanced multiway cuts
The testability of the maximum cut density is stated in [5] based on earlier
algorithmic results of [1, 19, 20]. We are rather interested in the minimum cut
density, which is somewhat different. We will show that it trivially tends to zero
as the number of the graph’s vertices tends to infinity, whereas the normalized
version of it (cuts are penalized by the volumes of the clusters they connect) is
not testable. For example, if a single vertex is loosely connected to a dense part,
the minimum cut density of the whole graph is ’small’, however, randomizing a
smaller sample, with high probability, it comes from the dense part with a ’large’

11



minimum normalized cut density. Nonetheless, if we impose conditions on the
cluster volumes in anticipation, the so obtained balanced minimum cut densities
are testable. Balanced multiway cuts are frequently looked for in contemporary
cluster analysis when we want to find groups of a large network’s vertices with
sparse inter-cluster connections, where the clusters do not differ significantly in
sizes.

For the proofs of the testability results we use Theorem 1 and some notion
of statistical physics in the same way as in [8].

Let G ∈ G be a weighted graph on n vertices with vertex-weights α1, . . . , αn
and edge-weights βij ’s. Let q ≤ n be a fixed positive integer, and Pq denote the
set of q-partitions P = (V1, . . . , Vq) of the vertex set V . The non-empty, disjoint
vertex-subsets sometimes are referred to as clusters or states. The factor graph
or q-quotient of G with respect to the q-partition P is denoted by G/P and it
is defined as the weighted graph on q vertices with vertex- and edge-weights

αi(G/P ) =
αVi

αG
(i ∈ [q]) and βij(G/P ) =

eG(Vi, Vj)

αVi
αVj

(i, j ∈ [q]),

respectively.
In terms of the factor graph, the following weak version of the Szemerédi’s

Regularity Lemma of [6].

Lemma 1 (Weak Regularity Lemma) For every ε > 0, every weighted graph
G has a partition P into at most 4

1
ε2 clusters such that

δ�(G,G/P ) ≤ ε‖G‖2,

where

‖G‖2 =

∑
i,j

αiαj
α2
G

β2
ij

1/2

.

Moreover, [24] gives an algorithm to compute a weak Szemerédi partition in a
huge graph. The way of presenting the output of the algorithm for a large graph
was formerly proposed by [19].

Let Ŝq(G) denote the set of all q-quotients of G. The Hausdorff distance
between Ŝq(G) and Ŝq(G′) is defined by

dHf(Ŝq(G), Ŝq(G′))
= max{ sup

H∈Ŝq(G)

inf
H′∈Ŝq(G′)

d1(H,H ′) , sup
H′∈Ŝq(G′)

inf
H∈Ŝq(G)

d1(H,H ′)}

where

d1(H,H ′) =
∑
i,j∈[q]

∣∣∣∣αi(H)αj(H)βij(H)

α2
H

− αi(H
′)αj(H

′)βij(H
′)

α2
H′

∣∣∣∣
+
∑
i∈[q]

∣∣∣∣αi(H)

αH
− αi(H

′)

αH′

∣∣∣∣
is the l1-distance between two weighted graphs H and H ′ on the same number
of vertices. (If especially, H and H ′ are factor graphs, then αH = αH′ = 1.)

12



Given the real symmetric q×q matrix J and the vector h ∈ Rq, the partitions
P ∈ Pq also define a spin system on the weighted graph G. The so-called ground
state energy (Hamiltonian) of such a spin configuration is

Êq(G,J ,h) = − max
P∈Pq

∑
i∈[q]

αi(G/P )hi +
∑
i,j∈[q]

αi(G/P )αj(G/P )βij(G/P )Jij


where J is the so-called coupling-constant matrix with Jij representing the
strength of interaction between states i and j, and h is the magnetic field.
They carry physical meaning. We will use only special J and h.

Sometimes, we need balanced q-partitions to regulate the proportion of the
cluster volumes. A slight balancing between the cluster volumes is achieved by
fixing a positive real number c (c ≤ 1/q). Let Pcq denote the set of q-partitions
of V such that αVi

αG
≥ c (i ∈ [q]), or equivalently, c ≤ αVi

αVj
≤ 1

c (i 6= j). A more
accurate balancing is defined by fixing a probability vector a = (a1, . . . , aq)
with components forming a probability distribution over [q]: ai > 0 (i ∈ [q]),∑q
i=1 ai = 1. Let Pa

q denote the set of q-partitions of V such that
(
αV1

αG
, . . . ,

αVq

αG

)
is approximately a-distributed, that is

∣∣∣αVi

αG
− ai

∣∣∣ ≤ αmax(G)
αG

(i = 1, . . . , q).
Observe that the above difference tends to 0 as |V (G)| → ∞ for weighted
graphs with no dominant vertex-weights.

The microcanonical ground state energy of G given a and J (h = 0) is

Êaq (G,J) = − max
P∈Pa

q

∑
i,j∈[q]

αi(G/P )αj(G/P )βij(G/P )Jij .

Theorem 2.14 and 2.15 of [8] state the following important facts.

Fact 3 The convergence of the weighted graph sequence (Gn) with no dominant
vertex-weights is equivalent to the convergence of its microcanonical ground state
energies for any q, a, and J . Also, it is equivalent to the convergence of its q-
quotients in Hausdorff distance for any q.

Fact 4 Under the same conditions, the convergence of the above (Gn) implies
the convergence of its ground state energies for any q, J , and h.

Using these facts, we investigate the testability of some special multiway cut
densities defined in the forthcoming definitions.

Definition 3 The minimum q-way cut density of G is

fq(G) = min
P∈Pq

1

α2
G

q−1∑
i=1

q∑
j=i+1

eG(Vi, Vj),

the minimum c-balanced q-way cut density of G is

f cq (G) = min
P∈Pc

q

1

α2
G

q−1∑
i=1

q∑
j=i+1

eG(Vi, Vj),

and the minimum a-balanced q-way cut density of G is

faq (G) = min
P∈Pa

q

1

α2
G

q−1∑
i=1

q∑
j=i+1

eG(Vi, Vj).
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Occasionally, we want to penalize cluster volumes that significantly differ.
We therefore introduce the notions of minimum normalized cut densities.

Definition 4 The minimum normalized q-way cut density of G is

µq(G) = min
P∈Pq

q−1∑
i=1

q∑
j=i+1

1

αVi
· αVj

· eG(Vi, Vj),

the minimum normalized c-balanced q-way cut density of G is

µcq(G) = min
P∈Pc

q

q−1∑
i=1

q∑
j=i+1

1

αVi
· αVj

· eG(Vi, Vj),

and the minimum normalized a-balanced q-way cut density of G is

µa
q (G) = min

P∈Pc
q

q−1∑
i=1

q∑
j=i+1

1

αVi
· αVj

· eG(Vi, Vj).

Proposition 2 fq(G) is testable for any q ≤ |V (G)|.

However, this statement is not of much use, since fq(Gn)→ 0 as n→∞, in
the lack of dominant vertex-weights. Indeed, the minimum q-way cut density is
trivially estimated from above by

fq(Gn) ≤ (q − 1)
αmax(Gn)

αGn

+

(
q − 1

2

)(
αmax(Gn)

αGn

)2

that tends to 0 provided αmax(Gn)/αGn
→ 0 as n→∞.

Proposition 3 faq (G) is testable for any q ≤ |V (G)| and probability vector a
over [q].

Proposition 3 and Fact 3 together imply the following less obvious statement.

Proposition 4 f cq (G) is testable for any q ≤ |V (G)| and c ≤ 1/q.

Now consider the normalized density µq(G) = minP∈Pq

∑q−1
i=1

∑q
j=i+1 βij(G/P ).

It is not testable as the following example shows: let q = 2 and Gn be a simple
graph on n vertices such that about

√
n vertices are connected with a single

edge to the remaining vertices that form a complete graph. Then µ2(Gn)→ 0,
but randomizing a sufficiently large part of the graph, with high probability, it
will be a subgraph of the complete graph, whose minimum normalized 2-way
cut density is of constant order. In the q = 2, αi = 1 (∀i) special case, µ2(G)
of a regular graph G is its normalized 2-way cut; consequently, the normalized
cut is not testable either.

However, balanced versions of the minimum normalized q-way cut density
are testable.

Proposition 5 µa
q (G) is testable for any q ≤ |V (G)| and probability vector a

over [q].

Proposition 6 µcq(G) is testable for any q ≤ |V (G)| and c ≤ 1/q.
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6 Convergence of contingency tables
[This section can be skipped]

Now, we will extend the above theory to rectangular arrays with nonnegative,
bounded entries. A statistic, defined on a contingency table, is testable if it can
be consistently estimated based on a smaller, but still sufficiently large table
which is selected randomly from the original one in an appropriate manner. By
the above randomization, classical multivariate methods can be carried out on
a smaller part of the array. This fact becomes important when our task is to
discover the structure of large and evolving arrays, such as microarrays, social,
and communication networks. Special block structures behind large tables are
also discussed from the point of view of stability and spectra. In order to
recover the structure of large rectangular arrays, classical methods of cluster
and correspondence analysis may not be carried out on the whole table because
of computational size limitations. In other situations, we want to compare
contingency tables of different sizes. For the above causes, convergence and
distance of general normalized arrays is introduced.

Let C = Cm×n be a contingency table on row set RowC = {1, . . . ,m} and
column set ColC = {1, . . . , n}. The nonnegative, real entries cij ’s are thought
of as

associations between the rows and columns, and they are normalized such
that 0 ≤ cij ≤ 1. Sometimes we have binary tables of entries 0 or 1. We may
assign positive weights α1, . . . , αm to the rows and β1, . . . , βn to the columns
expressing individual importance of the categories embodied by the rows and
columns. (In correspondence analysis, these are the row- and column-sums.) A
contingency table is called simple if all the row- and column-weights are equal to
1. Assume that C does not contain identically zero rows or columns, moreover
C is dense in the sense that the number of nonzero entries is comparable with
mn. Let C denote the set of such tables (with any natural numbers m and n).

Consider a simple binary table Fa×b and maps Φ : RowF → RowC , Ψ :
ColF → ColC ; further

αΦ :=

a∏
i=1

αΦ(i), βΨ :=

b∏
j=1

βΨ(j), αC :=

m∑
i=1

αi, βC :=

n∑
j=1

βj .

Definition 5 The F → C homomorphism density is

t(F ,C) =
1

(αC)a(βC)b

∑
Φ,Ψ

αΦβΨ

∏
fij=1

cΦ(i)Ψ(j).

If C is simple, then t(F ,C) = 1
manb

∑
Φ,Ψ

∏
fij=1 cΦ(i)Ψ(j). If, in addition, C

is binary too, then t(F ,C) is the probability that a random map F → C is a
homomorphism (preserves the 1’s). The maps Φ and Ψ correspond to sampling
a rows and b columns out of RowC and ColC with replacement, respectively. In
case of simple C it means uniform sampling, otherwise the rows and columns
are selected with probabilities proportional to their weights.

The following simple binary random table ξ(a× b,C) will play an important
role in the definition of testable contingency table parameters. Select a rows
and b columns of C with replacement, with probabilities αi/αC (i = 1, . . . ,m)
and βj/βC (j = 1, . . . , n), respectively. If the ith row and jth column of C are
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selected, they will be connected by 1 with probability cij and 0, otherwise, inde-
pendently of the other selected row–column pairs, conditioned on the selection
of the rows and columns. For large m and n, P(ξ(a × b,C) = F ) is very close
to t(F ,C) that resembles a likelihood function. (The more precise formulation
with induced and injective homomorphisms is to be found in [3]).

Definition 6 We say that the sequence (Cm×n) of contingency tables is con-
vergent if the sequence t(F ,Cm×n) converges for any simple binary table F as
m,n→∞.

The convergence means that the tables Cm×n become more and more similar
in small details as they are probed by smaller 0-1 tables (m,n→∞).

The limit object is a measurable function U : [0, 1]2 → [0, 1] and we call
it contingon, which is the non-symmetric generalization of a graphon (see Sec-
tion 1) and was introduced in [3]. The step-function contingon UC is assigned
to C in the following way: the sides of the unit square are divided into intervals
I1, . . . , Im and J1, . . . , Jn of lengths α1/αC , . . . , αm/αC and β1/βC , . . . , βn/βC ,
respectively; then over the rectangle Ii×Jj the step-function takes on the value
cij .

In fact, the above convergence of contingency tables can be formulated in
terms of the cut distance. First we define it for contingons.

Definition 7 The cut distance between the contingons U and V is

δ�(U, V ) = inf
µ,ν
‖U − V µ,ν‖� (6)

where the cut-norm of the contingon U is defined by

‖U‖� = sup
S,T⊂[0,1]

∣∣∣∣∫∫
S×T

U(x, y) dx dy

∣∣∣∣ ,
and the infimum in (6) is taken over all measure preserving bijections µ, ν :
[0, 1]→ [0, 1], while V µ,ν denotes the transformed V after performing the mea-
sure preserving bijections µ and ν on the sides of the unit square, respectively.

An equivalence relation is defined over the set of contingons: two contingons
belong to the same class if they can be transformed into each other by measure
preserving map, i.e. their cut distance is zero. In the sequel, we consider con-
tingons modulo measure preserving maps, and under contingon we understand
the whole equivalence class.

Definition 8 The cut distance between the contingency tables C,C ′ ∈ C is

δ�(C,C ′) = δ�(UC , UC′).

By the above remarks, this distance of C and C ′ is indifferent to permuta-
tions of the rows or columns of C and C ′. In the special case when C and C ′

are of the same size, δ�(C,C ′) is 1
mn times the usual cut distance of matrices,

based on the cut-norm (see Definition ??).
The following reversible relation between convergent contingency table se-

quences and contingons also holds, as a rectangular analogue of Fact 1.
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Fact 5 For any convergent sequence (Cm×n) ⊂ C there exists a contingon such
that δ�(UCm×n

, U) → 0 as m,n → ∞. Conversely, any contingon can be ob-
tained as the limit of a sequence of contingency tables in C. The limit of a con-
vergent contingency table sequence is essentially unique: if Cm×n → U , then
also Cm×n → U ′ for precisely those contingons U ′ for which δ�(U,U ′) = 0.

It also follows that a sequence of contingency tables in C is convergent if and
only if it is a Cauchy sequence in the metric δ�.

A simple binary random a×b table ξ(a×b, U) can also be randomized based
on the contingon U in the following way. Let X1, . . . , Xa and Y1, . . . , Yb be i.i.d.,
uniformly distributed random numbers on [0,1]. The entries of ξ(a × b, U) are
independent Bernoulli random variables, namely the entry in the ith row and
jth column is 1 with probability U(Xi, Yj) and 0, otherwise. It is easy to see
that the distribution of the previously defined ξ(a×b,C) and that of ξ(a×b, UC)
is the same. Further, δ�(Cm×n, ξ(a × b,Cm×n)) tends to 0 in probability, for
fixed a and b as m,n→∞.

Note, that in the above way, we can theoretically randomize an infinite sim-
ple binary table ξ(∞×∞, U) out of the contingon U by generating countably
infinitely many i.i.d. uniform random numbers on [0,1]. The distribution of the
infinite binary array ξ(∞×∞, U) is denoted by PU . Because of the symmetry
of the construction, this is an exchangeable array in the sense that the joint dis-
tribution of its entries is invariant under permutations of the rows and columns.
Furthermore, any exchangeable binary array is a mixture of such PU ’s. More
precisely, the Aldous–Hoover Representation Theorem (see [15]) states that for
every infinite exchangeable binary array ξ there exists a probability distribution
µ (over the contingons) such that P(ξ ∈ A) =

∫
PU (A)µ(dU).

A function f : C → R is called a contingency table parameter if it is in-
variant under isomorphism and scaling of the rows/columns. In fact, it is a
statistic evaluated on the table, and hence, we are interested in contingency
table parameters that are not sensitive to minor changes in the entries of the
table.

Definition 9 A contingency table parameter f is testable if for every ε > 0
there are positive integers a and b such that if the row- and column-weights of
C satisfy

max
i

αi
αC
≤ 1

a
, max

j

βj
βC
≤ 1

b
, (7)

then
P(|f(C)− f(ξ(a× b,C))| > ε) ≤ ε.

Consequently, such a contingency table parameter can be consistently estimated
based on a fairly large sample. Now, we introduce some equivalent statements
of the testability, indicating that a testable parameter depends continuously on
the whole table. This is the generalization of Theorem 1.

Theorem 4 For a testable contingency table parameter f the following are
equivalent:

• For every ε > 0 there are positive integers a and b such that for every
contingency table C ∈ C satisfying the condition (7),

|f(C)− E(f(ξ(a× b,C)))| ≤ ε.

17



• For every convergent sequence (Cm×n) of contingency tables with no dom-
inant row- or column-weights, f(Cm×n) is also convergent (m,n→∞).

• f is continuous in the cut distance.

For example, in the case of a simple binary table, the singular spectrum
is testable, since Cm×n can be regarded as part of the adjacency matrix of a
bipartite graph on m+ n vertices, where RowC and ColC are the two indepen-
dent vertex sets; further, the ith vertex of RowC and the jth vertex of ColC
are connected by an edge if and only if cij = 1. The non-zero real eigenvalues
of the symmetric (m + n) × (m + n) adjacency matrix of this bipartite graph
are the numbers ±s1, . . . ,±sr, where s1, . . . , sr are the non-zero singular values
of C, and r ≤ min{m,m} is the rank of C (see Proposition ??). Consequently,
the convergence of the adjacency spectra implies the convergence of the singular
spectra. Therefore, by Theorem 4, any property of a large contingency table
based on its SVD (e.g., correspondence decomposition) can be concluded from
a smaller part of it.

Using the notation of Section ??, analogously to the symmetric case, it can
be proved that special blown-up tables (see Definition ??) burdened with a
general kind of noise (see Definition ??) are convergent.

Proposition 7 For any sequence Wm×n of rectangular Wigner-noises

lim
m,n→∞

‖UWm×n
‖� = 0

almost surely, where (UWm×n
) is the step-function contingon assigned to Wm×n.

Now, let us fix the pattern-matrix matrix Pa×b and blow it up to obtain matrix
Bm×n.

Proposition 8 Let the block sizes of the blown-up matrix Bm×n be m1, . . . ,ma

horizontally, and n1, . . . , nb vertically (
∑a
i=1mi = m and

∑b
j=1 nj = n). Let

Am×n = Bm×n + Wm×n and m,n → ∞ is such a way that mi/m → ri
(i = 1, . . . , a), nj/n→ qj (j = 1, . . . , b), where ri’s and qj’s are fixed ratios. Un-
der these conditions, the ’noisy’ contingency table sequence (Am×n) converges
almost surely.

In many applications we are looking for clusters of the rows and columns of
a rectangular array such that the the densities within the cross-products of the
clusters be as homogeneous as possible. For example, in microarray analysis
we are looking for clusters of genes and conditions such that genes of the same
cluster equally influence conditions of the same cluster. The following theorem
ensures the existence of such a structure with possibly many clusters. However,
the number of clusters does not depend on the size of the array, it merely
depends on the accuracy of the approximation. The following statement is a
straightforward generalization of the Weak Regularity Lemma 1.

Proposition 9 For every ε > 0 and Cm×n ∈ C there exists a blown-up matrix
Bm×n of an a× b pattern matrix with a+ b ≤ 41/ε2 (independently of m and n)
such that δ�(C,B) ≤ ε.
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The statement can be proved by embedding C into the adjacency matrix of
an edge-weighted bipartite graph. The statement itself is closely related to
the testability of the following contingency table parameter. For fixed integers
1 ≤ a� m and 1 ≤ b� n,

S2
a,b(C) = min

R1,...,Ra
C1,...,Cb

a∑
i=1

b∑
j=1

∑
k∈Ri

∑
`∈Cj

(ck` − c̄i,j)2 (8)

where the minimum is taken over balanced a- and b-partitions R1, . . . , Ra and
C1, . . . , Cb of RowC and ColC , respectively; further,

c̄i,j =
1

|Ri| · |Cj |
∑
k∈Ri

∑
`∈Cj

ckl

is the center of the bicluster Ri × Cj (i = 1, . . . , a; j = 1, . . . , b). Note that,
instead of ck`, we may take αkβ`ck` in the row- and column-weighted case,
provided there are no dominant rows/columns.

An objective function reminiscent of (8) is minimized in [21, 29] in a more
general block clustering problem, where not only Cartesian product type bi-
clusters (Ri × Cj , also called chess-board patterns in [23]) are allowed, but the
contingency table is divided into disjoint rectangles forming as homogeneous
blocks of the heterogeneous data as possible. (8) can as well be regarded as
within-custer variance in a Two-way ANOVA setup. In [29], applications to
microarrays is presented, where the rows correspond to genes, the columns to
different conditions, whereas the entries are expression levels of genes under
the distinct conditions. In this framework, biclusters identify subsets of genes
sharing similar expression patterns across subsets of conditions. Recall that in
Subsection ?? we looked for regular cluster pairs by means of spectral methods,
but there we used Cartesian product type biclusters, moreover, the number of
row and column clusters was the same.

TheGardner–Ashby’s connectance cn of a not necessarily symmetric, quadratic
array An×n is the percentage of nonzero entries in the matrix, that is the ratio
of actual row-column interactions to all possible ones in the network. In social
and ecological models, a random array An×n of independent entries is consid-
ered. Assume that the entries have symmetric distribution (consequently, zero
expectation) and common variance σ2

n, where σn is called average interaction
strength. The stability of the system is characterized by the stability of the equi-
librium solution 0 of the differential equation dx/dt = An×nx (sometimes this is
achieved by linearization techniques in the neighborhood of the equilibrium so-
lution). Based on Wigner’s famous semicircle law (see Theorem ??), [30] proved
that the equilibrium solution is stable in the σ2

nncn < 1, and unstable in the
σ2
nncn > 1 case; further, the transition region between stability and instability

becomes narrow as n → ∞. Hence, it seems that high connectance and high
interaction strength destroy stability, but only in this simple model. If An×n
is a block matrix, like a noisy matrix before, it has some structural, possibly
complex eigenvalues (see [22]). If all their real parts are negative, the system
is stable, see [18]. In fact, in many natural ecosystems and other networks the
interactions are arranged in blocks.
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