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1 Parameter estimation in random graph models
We will discuss two basic types of parametric random graph models, and give al-
gorithms for the maximum likelihood estimation of the parameters. The models
are capable to find hidden partitions of the graph’s vertices for given number of
clusters. Since these special clustering algorithms do not need any preliminary
information on the clusters, they correspond to the unsupervised learning of the
data at hand.

1.1 EM algorithm for estimating the parameters of the
stochastic block model (generatized random graph)

The so-called stochastic block model, introduced by Holland, Bickel, Karrer,
Rohe was already discussed in the previous lessons. In fact, this is a generalized
random graph model, formulated in terms of mixtures. Now we consider it as
a parametric model, and want to estimate its parameters. The assumptions
of the model are the following. Given a simple graph G = (V,A) (|V | = n,
with adjacency matrix A) and k (1 < k < n), we are looking for the hidden
k-partition (V1, . . . , Vk) of the vertices such that

• vertices are independently assigned to cluster Va with probability πa, a =
1, . . . , k;

∑k
a=1 πa = 1;

• given the cluster memberships, vertices of Va and Vb are connected inde-
pendently, with probability

P(i ∼ j | i ∈ Va, j ∈ Vb) = pab, 1 ≤ a, b ≤ k.

The parameters are collected in the vector π = (π1, . . . , πk) and the k × k
symmetric matrix P of pab’s.

Our statistical sample is the n×n symmetric, 0-1 adjacency matrixA = (aij)
of G. There are no loops, so the diagonal entries are zeros. Based on A, we
want to estimate the parameters of the above block model.
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Using the theorem of mutually exclusive and exhaustive events, the likeli-
hood function is the mixture of joint distributions of i.i.d. Bernoulli distributed
entries:

1

2

∑
1≤a,b≤k

πaπb
∏

i∈Va,j∈Vb,i6=j

p
aij
ab (1− pab)(1−aij)

=
1

2

∑
1≤a,b≤k

πaπb · peabab (1− pab)(nab−eab).

This is the mixture of binomial distributions, where eab is the number of edges
connecting vertices of Va and Vb (a 6= b), while eaa is twice the number of edges
with both endpoints in Va; further,

nab = |Va| · |Vb| (a 6= b) and naa = |Va| · (|Va| − 1) (a = 1, . . . , k) (1)

are the numbers of possible edges between Va, Vb and within Va, respectively.
Here A is the incomplete data specification as the cluster memberships are

missing. Therefore, it is straightforward to use the Expectation-Maximization,
briefly EM algorithm, proposed by Dempster, Laird, and Rubin in 1978, for pa-
rameter estimation from incomplete data. This special application for mixtures
is sometimes called collaborative filtering. .

First we complete our data matrixA with latent membership vectors ∆1, . . . ,∆n

of the vertices that are k-dimensional i.i.d. Poly(1, π) (polinomially distributed)
random vectors. More precisely, ∆i = (∆1i, . . . ,∆ki), where ∆ai = 1 if i ∈ Va
and zero otherwise. Thus, the sum of the coordinates of any ∆i is 1, and
P(∆ai = 1) = πa.

Based on these, the likelihood function above is

1

2

∑
1≤a,b≤k

πaπb · p
∑
i6=j ∆ai∆bjaij

ab · (1− pab)
∑
i6=j ∆ai∆bj(1−aij)

that is maximized in the alternating E and M steps of the EM algorithm.
Note that that the complete likelihood would be the squareroot of∏

1≤a,b≤k

peabab · (1− pab)
(nab−eab)

=

k∏
a=1

n∏
i=1

k∏
b=1

[p
∑
j: j 6=i ∆bjaij

ab · (1− pab)
∑
j: j 6=i ∆bj(1−aij)]∆ai

(2)

that is valid only in case of known cluster memberships.
Starting with initial parameter values π(0), P(0) and membership vectors

∆
(0)
1 , . . . ,∆(0)

n , the t-th step of the iteration is the following (t = 1, 2, . . . ).

• E-step: we calculate the conditional expectation of each ∆i conditioned
on the model parameters and on the other cluster assignments obtained
in step t − 1 and collectively denoted by M (t−1). By the Bayes theorem,
the responsibility of vertex i for cluster a is

π
(t)
ai = E(∆ai |M (t−1))

=
P(M (t−1)|∆ai = 1) · π(t−1)

a∑k
b=1 P(M (t−1)|∆bi = 1) · π(t−1)

b
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(a = 1, . . . , k; i = 1, . . . , n). For each i, π(t)
ai is proportional to the numer-

ator, where

P(M (t−1)|∆ai = 1)

=

k∏
b=1

(p
(t−1)
ab )

∑
j 6=i ∆

(t−1)
bj aij · (1− p(t−1)

ab )
∑
j 6=i ∆

(t−1)
bj (1−aij)

is the part of the likelihood (18) effecting vertex i under the condition
∆ai = 1.

• M-step: we maximize the truncated binomial likelihood

p
∑
i6=j π

(t)
ai π

(t)
bj aij

ab · (1− pab)
∑
i6=j π

(t)
ai π

(t)
bj (1−aij)

with respect to the parameter pab, for all a, b pairs separately. Obviously,
the maximum is attained by the following estimators of pab’s comprising

the symmetric matrix P(t): p
(t)
ab =

∑
i,j: i6=j π

(t)
ai π

(t)
bj aij∑

i,j: i6=j π
(t)
ai π

(t)
bj

(1 ≤ a ≤ b ≤ k),

where edges connecting vertices of clusters a and b are counted fractionally,
multiplied by the membership probabilities of their endpoints.

The maximum likelihood estimator of π in the t-th step is π(t) of coordinates
π

(t)
a = 1

n

∑n
i=1 π

(t)
ai (a = 1, . . . , k), while that of the membership vector ∆i is

obtained by discrete maximization: ∆
(t)
ai = 1 if π(t)

ai = maxb∈{1,...,k} π
(t)
bi and 0,

otherwise. (In case of ambiguity, the cluster with the smallest index is selected.)
This choice of π will increase (better to say, not decrease) the likelihood function.
Note that it is not necessary to assign vertices uniquely to the clusters, the
responsibility πai of a vertex i can as well be regarded as the intensity of vertex
i belonging to cluster a.

According to the general theory of the EM algorithm, in exponential families
(as in the present case), convergence to a local maximum can be guaranteed
(depending on the starting values), but it runs in polynomial time in the number
of vertices n. However, the speed and limit of the convergence depends on the
starting clustering, which can be chosen by means of preliminary application of
some nonparametric multiway cut algorithm of the preceding lessons.

The above algorithm gives so-called fuzzy clusters (vertices belong with cer-
tain probabilities to them). It is also possible to just relocate the vertices be-
tween the clusters in the E-step, such that a vertex is assigned to the cluster
where its likelihood (with the actual cluster’s parameters) is the largest. In this
case the membership probabilities are not estimated during the iteration, they
will be just the final relative frequencies.

2 α–β models
We will amalgamate the Rash model (for rectangular binary tables) and the
newly introduced α-β models (for random undirected graphs) in the framework
of a semiparametric probabilistic graph model. Our purpose is to give a parti-
tion of the vertices of an observed graph so that the generated subgraphs and
bipartite graphs obey these models, where their strongly connected parameters

3



give multiscale evaluation of the vertices at the same time. In this way, a hetero-
geneous version of the stochastic block model is built via mixtures of loglinear
models and the parameters are estimated with a special EM iteration. In the
context of social networks, the clusters can be identified with social groups and
the parameters with attitudes of people of one group towards people of the
other, which attitudes depend on the cluster memberships. The algorithm is
applied to randomly generated and real-word data.

So far many parametric and nonparametric methods have been proposed for
community detection in networks. In the nonparametric scenario, hierarchical
or spectral methods were applied to maximize the two- or multiway Newman–
Girvan modularity [1, 2, 3, 4]; more generally, spectral clustering tools, based
on Laplacian or modularity spectra, proved to be feasible to find community,
anticommunity, or regular structures in networks [5]. In the parametric setup,
certain model parameters are estimated, usually via maximizing the likelihood
function of the graph, i.e., the joint probability of our observations under the
model equations. This so-called ML estimation is a promising method of sta-
tistical inference, has solid theoretical foundations [6, 7], and also supports the
common-sense goal of accepting parameter values based on which our sample is
the most likely.

In the 2010s, α-β-models [8, 9] were developed as the unique graph models
where the degree sequence is a sufficient statistic: given the degree sequence,
the distribution of the random graph does not depend on the parameters any
more (microcanonical distribution over the model graphs). This fact makes it
possible to derive the ML estimate of the parameters in a standard way [10].
Indeed, in the context of network data, a lot of information is contained in the
degree sequence, though, perhaps in a more sophisticated way. The vertices
may have clusters (groups or modules) and their memberships may affect their
affinity to make ties. We will find groups of the vertices such that the within-
and between-cluster edge-probabilities admit certain parametric graph models,
the parameters of which are highly interlaced. Here the degree sequence is not
a sufficient statistic any more, only if it is restricted to the subgraphs. When
making inference, we are partly inspired by the stochastic block model, partly
by the Rasch model, the rectangular analogue of the α-β models.

The first type of block models is the homogeneous one: the probability to
make ties is the same within the clusters or between the cluster-pairs. Although
this probability depends on the actual cluster memberships, given the member-
ships of the vertices, the probability that they are connected is a given constant
(parameter to be estimated). This stochastic block model, sometimes called
generalized random graph or planted partition model, is thoroughly discussed
in [11, 12, 13, 14, 15].

Here we propose a heterogeneous block model by carrying on the Rasch
model developed more than 50 years ago for evaluating psychological tests [16,
17]. Given the number of clusters and a classification of the vertices, we will
use the Rasch model for the bipartite subgraphs, whereas the α-β models for
the subgraphs themselves, and process an iteration (inner cycle) to find the ML
estimate of their parameters. Then, based on the overall likelihood, we find a
new classification of the vertices via taking conditional expectation and using
the Bayes rule. Eventually, the two steps are alternated, giving the outer cycle
of the iteration. Our algorithm fits into the framework of the EM algorithm, the
convergence of which is proved in exponential families under very general con-
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ditions [18, 7]. The method was originally developed for missing data, and the
name comes from the alternating expectation (E) and maximization (M) steps,
where in the E-step (assignment phase) we complete the data by substituting
for the missing data via taking conditional expectation, while in the M-step
(estimation phase) we find the usual ML estimate of the parameters based on
the so completed data. The algorithm naturally extends to situations, when
not the data itself is missing, but it comes from a mixture, and the grouping
memberships are the missing parameters. This special type of the EM algo-
rithm developed for mixtures is often called collaborative filtering [19, 20] or
Gibbs sampling [21], the roots of which method can be traced back to [22]. In
the context of social networks, the clusters can be identified with social strata
and the parameters with attitudes of people of one group towards people of the
other, which attitude is the same for people in the second group, but depends
on the individual in the first group. The number of clusters is fixed during the
iteration, but an initial number can be obtained by spectral clustering tools. To-
gether with the proof of the convergence, the algorithm is applied to randomly
generated and real-word data.

This kind of model building is originated both in the statistics literature,
e.g., [23, 24, 25] and in the physics literature, e.g., [2, 26, 27]. In [28], the
author already considers mixing according to vertex degree. In [13] the authors
introduce the degree-corrected variant of the stochastic block model, but they
use Poisson edge-probabilities. In [27] the likelihood, depending on Poisson
parameters, is maximized with the trick that first a likelihood maximization is
performed, then the problem is traced back to the minimum-cut objective. This
is not the EM algorithm, though the idea of mixed tools resembles that.

In [29], without giving an algorithm, the authors maximize the so-called
likelihood modularity over k-partitions of vertices, for given k. This is rather
a non-parametric way of model fitting, since, instead of parameters, they sub-
stitute the relative frequency of the edges for their Bernoulli parameters, and
theoretically maximize their profile likelihood with respect to the memberships
of the vertices, which is considered as unknown parameter. They also prove
the consistency of their estimates. [30] considers bipartition and multiparti-
tion of dense graphs with arbitrary degree distribution. In [15], based on the
adjacency matrix as a statistical sample, the authors estimate the underlying
partition of the vertices, given an upper bound for the number of blocks, in the
stochastic block model. They prove that the suitably modified spectral par-
titioning procedure is consistent. Before fitting a model, its complexity may
also be investigated. In [31], the authors give the quantification of the intrin-
sic complexity of undirected graphs and networks, via distinguishing between
randomness complexity and statistical complexity.

2.1 Multiclass binary model
Loglinear type models to describe contingency tables were proposed, e.g., by [23,
24] and widely used in statistics. Together with the Rasch model, they give the
foundation of our unweighted graph and bipartite graph models, the building
blocks of our EM iteration. Note that in [23], the authors also extend their
model to directed graphs.
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2.2 α-β models for undirected random graphs
With different parameterization, [8] and [9] introduced the following random
graph model, where the degree sequence is a sufficient statistic. We have an
unweighted, undirected random graph on n vertices without loops, such that
edges between distinct vertices come into existence independently, but not with
the same probability as in the classical Erdős–Rényi model [32]. This random
graph can uniquely be characterized by its n × n symmetric adjacency matrix
A = (Aij) which has zero diagonal and the entries above the main diagonal
are independent Bernoulli random variables whose parameters pij = P(Aij = 1)
obey the following rule. Actually, we formulate this rule for the pij

1−pij ratios,
the so-called odds:

pij
1− pij

= αiαj (1 ≤ i < j ≤ n), (3)

where the parameters α1, . . . , αn are positive reals. This model is called α
model in [9]. With the parameter transformation βi = lnαi (i = 1, . . . n), it is
equivalent to the β model of [8] which applies to the log-odds:

ln
pij

1− pij
= βi + βj (1 ≤ i < j ≤ n) (4)

with real parameters β1, . . . , βn.
Conversely, the probabilities pij and 1−pij can be expressed in terms of the

parameters, like

pij =
αiαj

1 + αiαj
and 1− pij =

1

1 + αiαj
(5)

which formulas will be intensively used in the subsequent calculations.
We are looking for the ML estimate of the parameter vector α = (α1, . . . , αn)

or β = (β1, . . . , βn) based on the observed unweighted, undirected graph as
a statistical sample. (It may seem that we have a one-element sample here,
however, there are

(
n
2

)
independent random variables, the adjacencies, in the

background.)
Let D = (D1, . . . , Dn) denote the degree-vector of the above random graph,

where Di =
∑n
j=1Aij (i = 1, . . . n). The random vector D, as a function of the

sample entries Aij ’s, is a sufficient statistic for the parameter α, or equivalently,
for β. Roughly speaking, a sufficient statistic itself contains all the information
– that can be retrieved from the data – for the parameter. More precisely, a
statistic is sufficient when the conditional distribution of the sample, given the
statistic, does not depend on the parameter any more. By the Neyman–Fisher
factorization theorem [6], a statistic is sufficient if and only if the likelihood
function of the sample can be factorized into two parts: one which does not
contain the parameter, and the other, which includes the parameter, contains
the sample entries merely compressed into this sufficient statistic. Consider this
factorization of the likelihood function (joint probability of Aij ’s) in our case.
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Because of the symmetry of A, this is

Lα(A) =

n−1∏
i=1

n∏
j=i+1

p
Aij
ij (1− pij)1−Aij

=


n∏
i=1

n∏
j=1

p
Aij
ij (1− pij)1−Aij


1/2

=


n∏
i=1

n∏
j=1

(
pij

1− pij

)Aij n∏
i=1

n∏
j=1

(1− pij)


1/2

=


n∏
i=1

α
∑n
j=1 Aij

i

n∏
j=1

α
∑n
i=1 Aij

j

∏
i 6=j

(1− pij)


1/2

=

∏
i 6=j

1

1 + αiαj


1/2

n∏
i=1

αDii

n∏
j=1

α
Dj
j


1/2

=

∏
i<j

1

1 + αiαj


{

n∏
i=1

αDii

}
= Cα ×

n∏
i=1

αDii

where we used (5) and the facts that Aij = Aji, pij = pji (i < j) and Aii = 0,
pii = 0 (i = 1, . . . , n); further, used the convention 00 = 1. Here the parti-
tion function Cα =

∏
i<j

1
1+αiαj

only depends on α, and the whole likelihood
function depends on the Aij ’s merely through Di’s. Therefore, D is a sufficient
statistic. The other factor is constantly 1, indicating that the conditional joint
distribution of the entries – given D – is uniform, but we will not make use of
this fact. Note that in [13], the authors call the uniform distribution on graphs
with fixed degree sequence microcanonical. In [8, 10] the converse statement is
also proved: the above α model (reparametrized as β model) is the unique one,
where the degree sequence is a sufficient statistic.

Let (aij) be the matrix of the sample realizations (the adjacency entries of the
observed graph), di =

∑n
j=1 aij be the actual degree of vertex i (i = 1, . . . , n)

and d = (d1, . . . , dn) be the observed degree-vector. The above factorization
also indicates that the joint distribution of the entries belongs to the exponential
family, and hence, with natural parameterization [18], the maximum likelihood
estimate α̂ (or equivalently, β̂) is derived from the fact that, with it, the observed
degree di equals the expected one, that is E(Di) =

∑n
i=1 pij . Therefore, α̂ is

the solution of the following maximum likelihood equation:

di =

n∑
j 6=i

αiαj
1 + αiαj

(i = 1, . . . , n). (6)

The ML estimate β̂ is easily obtained from α̂ via taking the logarithms of its
coordinates.

Before discussing the solution of the system of equations (6), let us see,
what conditions a sequence of nonnegative integers should satisfy so that it
could be realized as the degree sequence of a graph. The sequence d1, . . . , dn
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of nonnegative integers is called graphic if there is an unweighted, undirected
graph on n vertices such that its vertex-degrees are the numbers d1, . . . , dn in
some order. Without loss of generality, di’s can be enumerated in non-increasing
order. The Erdős–Gallai theorem [33] gives the following necessary and sufficient
condition for a sequence to be graphic. The sequence d1 ≥ · · · ≥ dn ≥ 0 of
integers is graphic if and only if it satisfies the following two conditions:

∑n
i=1 di

is even and

k∑
i=1

di ≤ k(k − 1) +

n∑
i=k+1

min{k, di}, k = 1, . . . , n− 1. (7)

Note that for nonnegative (not necessarily integer) real sequences a continu-
ous analogue of (7) is derived in [8]. For given n, the convex hull of all possible
graphic degree sequences is a polytope, to be denoted by Dn. Its extreme points
are the so-called threshold graphs [34]. It is interesting that for n = 3 all undi-
rected graphs are threshold, since there are 8 possible graphs on 3 nodes, and
there are also 8 vertices of D3; the n = 2 case is also not of much interest,
therefore we will treat the n > 3 cases only. The number of vertices of Dn
superexponentially grows with n [35], therefore the problem of characterizing
threshold graphs has a high computational complexity. Its facial and cofacial
sets are fully described in [10]. Apart from the trivial cases (when there is at
least one degree equal to 0 or n − 1), in [36], the authors give the following
equivalent characterization of a threshold graph for n ≥ 4: it has no four dif-
ferent vertices a, b, c, d such that a, b and c, d are connected by an edge, but a, c
and b, d not, i.e., it has no two disjoint copies of the complete graph K2.

The authors of [8, 9] prove that Dn is the topological closure of the set of
expected degree sequences, and for given n > 3, if d ∈ int (Dn) is an interior
point, then the maximum likelihood equation (6) has a unique solution. Later,
it turned out that the converse is also true: in [10] the authors prove that
the ML estimate exists if and only if the observed degree vector is an inner
point of Dn. On the contrary, when the observed degree vector is a boundary
point of Dn, there is at least one 0 or 1 probability pij which can be obtained
only by a parameter vector such that at least one of the βi’s is not finite. In
this case, the likelihood function cannot be maximized with a finite parameter
set, its supremum is approached with a parameter vector β with at least one
coordinate tending to +∞ or −∞. We also remark that, for ‘large’ n, the
condition d ∈ int (Dn) is strongly related to the δ-tameness condition of [37], or
to the fact that d has a ‘scaling limit’ defined in [8], also to the notion of ‘there
are no dominant vertices’ of [38].

The authors in [9] recommend the following algorithm and prove that, pro-
vided d ∈ int (Dn), the iteration of it converges to the unique solution of the
system (6). To motivate the iteration, we rewrite (6) as

di = αi
∑
j 6=i

1
1
αj

+ αi
(i = 1, . . . , n).

Then starting with initial parameter values α(0)
1 , . . . , α

(0)
n and using the observed

degree sequence d1, . . . , dn, which is an inner point of Dn, the iteration is as
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follows:
α

(t)
i =

di∑
j 6=i

1
1

α
(t−1)
j

+α
(t−1)
i

(i = 1, . . . , n) (8)

for t = 1, 2, . . . , until convergence.

2.3 β-γ model for bipartite graphs
This bipartite graph model traces back to Haberman [39], Lauritzen [24], and
Rasch [16, 17] who applied it for psychological and educational measurements,
later market research. The frequently cited Rasch model involves categorical
data, mainly binary variables, therefore the underlying random object can be
thought of as a contingency table. According to the Rasch model, the entries
of an m× n binary table A are independent Bernoulli random variables, where
for the parameter pij of the entry Aij the following holds:

ln
pij

1− pij
= βi − δj (i = 1, . . .m; j = 1, . . . , n) (9)

with real parameters β1, . . . , βm and δ1, . . . , δn. As an example, Rasch in [16]
investigated binary tables where the rows corresponded to persons and the
columns to items of some psychological test, whereas the jth entry of the ith
row was 1 if person i answered test item j correctly and 0, otherwise. He also
gave a description of the parameters: βi was the ability of person i, while δj the
difficulty of test item j. Therefore, in view of the model equation (9), the more
intelligent the person and the less difficult the test, the larger the success/failure
ratio was on a logarithmic scale.

Given an m× n random binary table A = (Aij), or equivalently, a bipartite
graph, our model is

ln
pij

1− pij
= βi + γj (i = 1, . . . ,m, j = 1, . . . , n) (10)

with real parameters β1, . . . , βm and γ1, . . . , γn; further, pij = P(Aij = 1).
In terms of the transformed parameters bi = eβi and gj = eγj , the model (10)

is equivalent to

pij
1− pij

= bigj (i = 1, . . . ,m, j = 1, . . . , n) (11)

where b1, . . . , bm and g1, . . . , gn are positive reals.
Conversely, the probabilities can be expressed in terms of the parameters:

pij =
bigj

1 + bigj
and 1− pij =

1

1 + bigj
. (12)

Observe that if (10) holds with the parameters βi’s and γj ’s, then it also holds
with the transformed parameters β′i = βi + c (i = 1, . . . ,m) and γ′j = γj − c
(j = 1, . . . , n) with some c ∈ R. Equivalently, if (11) holds with the positive
parameters bi’s and gj ’s, then it also holds with the transformed parameters

b′i = biκ and g′j =
gj
κ

(13)

9



with some κ > 0. Therefore, the parameters bi and gj are arbitrary to within a
multiplicative constant.

Here the row-sums Ri =
∑n
j=1Aij and the column-sums Cj =

∑m
i=1Aij

are the sufficient statistics for the parameters collected in b = (b1, . . . , bm) and
g = (g1, . . . , gn). Indeed, the likelihood function is factorized as

Lb,g(A) =

m∏
i=1

n∏
j=1

p
Aij
ij (1− pij)1−Aij

=


m∏
i=1

n∏
j=1

(
pij

1− pij

)Aij
m∏
i=1

n∏
j=1

(1− pij)

=

{
m∏
i=1

b
∑n
j=1 Aij

i

}
n∏
j=1

g
∑m
i=1 Aij

j


m∏
i=1

n∏
j=1

(1− pij)

=


m∏
i=1

n∏
j=1

1

1 + bigj


{

m∏
i=1

bRii

}
n∏
j=1

g
Cj
j

 .

Since the likelihood function depends on A only through its row- and column-
sums, by the Neyman–Fisher factorization theorem, R1, . . . , Rm, C1, . . . , Cn is
a sufficient statistic for the parameters. The first factor (including the parti-
tion function) depends only on the parameters and the row- and column-sums,
whereas the seemingly not present factor – which would depend merely on A –
is constantly 1, indicating that the conditional joint distribution of the entries,
given the row- and column-sums, is uniform (microcanonical) in this model.
Note that in [37], the author characterizes random tables sampled uniformly
from the set of 0-1 matrices with fixed margins. Given the margins, the con-
tingency tables coming from the above model are uniformly distributed, and a
typical table of this distribution is produced by the β-γ model with parameters
estimated via the row- and column sums as sufficient statistics. In this way,
here we obtain another view of the typical table of [37].

Based on an observed binary table (aij), since we are in exponential family,
and β1, . . . , βm, γ1, . . . , γn are natural parameters, the likelihood equation is
obtained by making the expectation of the sufficient statistic equal to its sample
value. Therefore, with the notation ri =

∑n
j=1 aij (i = 1, . . . ,m) and cj =∑m

i=1 aij (j = 1, . . . , n), the following system of likelihood equations is yielded:

ri =

n∑
j=1

bigj
1 + bigj

= bi

n∑
j=1

1
1
gj

+ bi
, i = 1, . . .m;

cj =

m∑
i=1

bigj
1 + bigj

= gj

m∑
i=1

1
1
bi

+ gj
, j = 1, . . . n.

(14)

Note that for any sample realization of A,
m∑
i=1

ri =

n∑
j=1

cj (15)

holds automatically. Therefore, there is a dependence between the equations
of the system (14), indicating that the solution is not unique, in accord with
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our previous remark about the arbitrary scaling factor κ > 0 of (13). We will
prove that apart from this scaling, the solution is unique if it exists at all. For
our convenience, let (b̃, g̃) denote the equivalence class of the parameter vector
(b,g), which consists of parameter vectors (b′,g′) satisfying (13) with some
κ > 0. So that to avoid this indeterminacy, we may impose conditions on the
parameters, for example,

m∑
i=1

βi +

n∑
j=1

γj = 0. (16)

Like the graphic sequences, here the following sufficient conditions can be
given for the sequences r1 ≥ · · · ≥ rm > 0 and c1 ≥ · · · ≥ cn > 0 of integers to
be row- and column-sums of an m× n matrix of 0-1 entries (see, e.g., [40]):

k∑
i=1

ri ≤
n∑
j=1

min{cj , k}, k = 1, . . . ,m;

k∑
j=1

cj ≤
m∑
i=1

min{ri, k}, k = 1, . . . , n.

(17)

Observe that the k = 1 cases imply r1 ≤ n and c1 ≤ m; whereas the k = m
and k = n cases together imply

∑m
i=1 ri =

∑n
j=1 cj . This statement is the

counterpart of the Erdős-Gallai conditions for bipartite graphs, where – due to
(15) – the sum of the degrees is automatically even. In fact, the conditions
in (17) are redundant: one of the conditions – either the one for the rows, or
the one for the columns – suffices together with (15) and c1 ≤ m or r1 ≤ n.
The so obtained necessary and sufficient conditions define bipartite realizable
sequences with the wording of [36]. Already in 1957, the author [41] determined
arithmetic conditions for the construction of a 0-1 matrix having given row-
and column-sums. The construction was given via swaps. More generally, [42]
referred to the transportation problem and the Ford–Fulkerson max flow–min
cut theorem [43].

The convex hull of the bipartite realizable sequences r = (r1, . . . , rm) and c =
(c1, . . . , cn) form a polytope in Rm+n, actually, because of (15), in an (m+n−1)-
dimensional hyperplane of it. It is called polytope of bipartite degree sequences
and denoted by Pm,n in [36]. It is the special case of the transportation polytope
describing margins of contingency tables with nonnegative integer entries. There
is an expanding literature on the number of such matrices, e.g., [44], and on the
number of 0-1 matrices with prescribed row and column sums, e.g., [45].

Analogously to the considerations of the α-β models, and applying the
thoughts of the proofs in [8, 9, 10], Pm,n is the closure of the set of the ex-
pected row- and column-sum sequences in the above model. In [36] it is proved
that an m×n binary table, or equivalently a bipartite graph on the independent
sets of m and n vertices, is on the boundary of Pm,n if it does not contain two
vertex-disjoint edges. In this case, the likelihood function cannot be maximized
with a finite parameter set, its supremum is approached with a parameter vector
with at least one coordinate βi or γj tending to +∞ or −∞, or equivalently,
with at least one coordinate bi or gj tending to +∞ or 0. Based on the proofs
of [10], and stated as Theorem 6.3 in the supplementary material of [10], the
maximum likelihood estimate of the parameters of model (11) exists if and only
if the observed row- and column-sum sequence (r, c) ∈ ri (Pm,n), the relative
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interior of Pm,n, satisfying (15). In this case for the probabilities, calculated by
the formula (12) through the estimated positive parameter values b̂i’s and ĝj ’s
(solutions of(14)), 0 < pij < 1 holds ∀i, j.

Under these conditions, we define an algorithm that converges to the unique
(up to the above equivalence) solution of the maximum likelihood equation (14).
More precisely, we will prove that if (r, c) ∈ ri (Pm,n), then our algorithm gives
a unique equivalence class of the parameter vectors as the fixed point of the
iteration, which therefore provides the ML estimate of the parameters.

Starting with positive parameter values b(0)
i (i = 1, . . . ,m) and g

(0)
j (j =

1, . . . , n) and using the observed row- and column-sums, the iteration is as fol-
lows:

I. b
(t)
i =

ri∑n
j=1

1
1

g
(t−1)
j

+b
(t−1)
i

, i = 1, . . .m

II. g
(t)
j =

cj∑m
i=1

1
1

b
(t)
i

+g
(t−1)
j

, j = 1, . . . n

for t = 1, 2, . . . , until convergence.

2.4 The EM iteration
In the several clusters case, we are putting the bricks together. The above
discussed α-β and β-γ models will be the building blocks of a heterogeneous
block model. Here the degree sequences are not any more sufficient for the
whole graph, only for the building blocks of the subgraphs.

Given 1 ≤ k ≤ n, we are looking for k-partition, in other words, clusters
C1, . . . , Ck of the vertices such that

• different vertices are independently assigned to a cluster Cu with proba-
bility πu (u = 1, . . . , k), where

∑k
u=1 πu = 1;

• given the cluster memberships, vertices i ∈ Cu and j ∈ Cv are connected
independently, with probability pij such that

ln
pij

1− pij
= βiv + βju,

for any 1 ≤ u, v ≤ k pair. Equivalently,

pij
1− pij

= bicj bjci ,

where ci is the cluster membership of vertex i and biv = eβiv .

The parameters are collected in the vector π = (π1, . . . , πk) and the n × k
matrix B of biu’s (i ∈ Cu, u = 1, . . . , k). The likelihood function is the following
mixture: ∑

1≤u,v≤k

πuπv
∏

i∈Cu,j∈Cv

p
aij
ij (1− pij)(1−aij).

Here A = (aij) is the incomplete data specification as the cluster memberships
are missing. Therefore, it is straightforward to use the EM algorithm, proposed
by [18], also discussed in [47, 7], for parameter estimation from incomplete data.
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This special application for mixtures is sometimes called collaborative filtering,
see [20, 19], which is rather applicable to fuzzy clustering.

First we complete our data matrixA with latent membership vectorsm1, . . . ,mn

of the vertices that are k-dimensional i.i.d. Multy(1, π) (multinomially dis-
tributed) random vectors. More precisely, mi = (mi1, . . . ,mik), where miu = 1
if i ∈ Cu and zero otherwise. Thus, the sum of the coordinates of any mi is 1,
and P(miu = 1) = πu.

Note that, if the cluster memberships where known, then the complete like-
lihood would be

k∏
u=1

n∏
i=1

k∏
v=1

n∏
j=1

[p
mjvaij
ij · (1− pij)mjv(1−aij)]miu (18)

that is valid only in case of known cluster memberships.
Starting with initial parameter values π(0), B(0) and membership vectors

m
(0)
1 , . . . ,m

(0)
n , the t-th step of the iteration is the following (t = 1, 2, . . . ).

• E-step: we calculate the conditional expectation of each mi conditioned
on the model parameters and on the other cluster assignments obtained
in step t− 1, and collectively denoted by M (t−1).

The responsibility of vertex i for cluster u in the t-th step is defined as the
conditional expectation π(t)

iu = E(miu |M (t−1)), and by the Bayes theorem,
it is

π
(t)
iu =

P(M (t−1)|miu = 1) · π(t−1)
u∑k

v=1 P(M (t−1)|miv = 1) · π(t−1)
v

(u = 1, . . . , k; i = 1, . . . , n). For each i, π(t)
iu is proportional to the numer-

ator, therefore the conditional probabilities P(M (t−1)|miu = 1) should be
calculated for u = 1, . . . , k. But this is just the part of the likelihood (18)
effecting vertex i under the condition miu = 1. Therefore,

P(M (t−1)|miu = 1)

=

k∏
v=1

∏
j∈Cv, j∼i

b
(t−1)
iv b

(t−1)
ju

1 + b
(t−1)
iv b

(t−1)
ju

∏
j∈Cv, j�i

1

1 + b
(t−1)
iv b

(t−1)
ju

=

k∏
v=1

{
b
(t−1)
iv b

(t−1)
ju

1 + b
(t−1)
iv b

(t−1)
ju

}evi {
1

1 + b
(t−1)
iv b

(t−1)
ju

}|Cv|·(|Cv|−1)/2−evi

,

where evi is the number of edges within Cv that are connected to i.

• M-step: We update π(t) and m(t): π
(t)
u := 1

n

∑n
i=1 π

(t)
iu and m

(t)
iu = 1

if π(t)
iu = maxv π

(t)
iv and 0, otherwise (in case of ambiguity, we select the

smallest index for the cluster membership of vertex i). This is an ML
estimation (discrete one, in the latter case, for the cluster membership).
In this way, a new clustering of the vertices is obtained.

Then we estimate the parameters in the actual clustering of the ver-
tices. In the within-cluster scenario, we use the parameter estimation of
model (3), obtaining estimates of biu’s (i ∈ Cu) in each cluster separately
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(u = 1, . . . , k); as for cluster u, biu corresponds to αi and the number of
vertices is |Cu|. In the between-cluster scenario, we use the bipartite graph
model (11) in the following way. For u < v, edges connecting vertices of
Cu and Cv form a bipartite graph, based on which the parameters biv
(i ∈ Cu) and bju (j ∈ Cv) are estimated with the above algorithm; here
biv’s correspond to bi’s, bju’s correspond to gj ’s, and the number of rows
and columns of the rectangular array corresponding to this bipartite sub-
graph of A is |Cu| and |Cv|, respectively. With the estimated parameters,
collected in the n× k matrix B(t), we go back to the E-step, etc.

By the general theory of the EM algorithm, since we are in exponential family,
the iteration will converge. Note that here the parameter βiv with ci = u
embodies the affinity of vertex i of cluster Cu towards vertices of cluster Cv;
and likewise, βju with cj = v embodies the affinity of vertex j of cluster Cv
towards vertices of cluster Cu. By the model, this affinities are added together
on the level of the log-odds. This so-called k-β model, introduced in [48], is
applicable to social networks, where attitudes of individuals in the same social
group (say, u) are the same toward members of another social group (say, v),
though, this attitude also depends on the individual in group u. The model may
also be applied to biological networks, where the clusters consist, for example,
of different functioning synopses or other units of the brain, see [49].

After normalizing the βiv (i ∈ Cu) and βju (j ∈ Cv) to meet the requirement
of (16) for any u 6= v pair, the sum of the parameters will be zero, and the sign
and magnitude of them indicates the affinity of nodes of Cu to make ties with
the nodes of Cv, and vice versa:∑

i∈Cu

βiv +
∑
j∈Cv

βju = 0.

This becomes important when we want to compare the parameters correspond-
ing to different cluster pairs. For selecting the initial number of clusters we
can use considerations of [46], while for the initial clustering, spectral clustering
tools of [5].

3 Biclassified blockmodels and mixtures of stan-
dardized contingency tables with continuously
distributed entries

The blockmodel defined here is built of standardized random contingency table
models, where the entries are independent beta-distributed with parameters
depending on their row and column labels. Sufficient statistics are specified,
and based on them, a convergent algorithm is introduced to find the MLE of
the parameters. The model is extended to the multiclass scenario, where for
fixed number of biclusters, the parameters of the beta-distributed entries also
depend on their row and column cluster memberships. To find the clusters and
estimate the parameters, an EM iteration for mixtures of exponential-family
distributions is used. The algorithm is applicable to microarrays, and a genetic
example is presented.
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3.1 The model
Let W = (wij) be an n ×m contingency table of entries transformed into the
(0,1) interval. Our model is the following: wij obeys beta-distribution with
parameters ai > 0 and bj > 0. The parameters are collected in the vectors
a = (a1, . . . an) and b = (b1, . . . bm), or briefly, in (a,b). Here ai can be thought
of as the potential of row-item i to be connected to the column-items, and bj as
the resistance of column-item j to be connected to the row-items; whereas, wij
is the weight of their connection.

The likelihood function is factorized as

La,b(W) =

n∏
i=1

m∏
j=1

Γ(ai + bj)

Γ(ai)Γ(bj)
wai−1
ij (1− wij)bj−1

= C(a,b)

n∏
i=1

m∏
j=1

exp[(ai − 1) lnwij + (bj − 1) ln(1− wij)]

= exp

 n∑
i=1

(ai − 1)

m∑
j=1

lnwij +

m∑
j=1

(bj − 1)

n∑
i=1

ln(1− wij)− Z(a,b)

 ,
where C(a,b) is the normalizing constant, and Z(a,b) = − lnC(a,b) is the
log-partition (cumulant) function. Since the likelihood function depends on W
only through the row-sums si’s of the n×m matrix U = U(W) of general entry
lnwij and the column-sums zj ’s of the n×m matrix V = V(W) of general entry
ln(1 − wij), by the Neyman–Fisher factorization theorem, the row-sums of U
and column-sums of V are sufficient statistics for the parameters. In formulas,

si =

m∑
j=1

lnwij (i = 1, . . . , n); zj =

n∑
i=1

ln(1− wij) (j = 1, . . . ,m).

With them, the system of likelihood equations is

∂ lnLa,b(W)

∂ai
=

m∑
s=1

Γ′(ai + bs)

Γ(ai + bs)
−mΓ′(ai)

Γ(ai)
+ si = 0, i = 1, . . . , n;

∂ lnLa,b(W)

∂bi
=

n∑
s=1

Γ′(as + bi)

Γ(as + bi)
− nΓ′(bi)

Γ(bi)
+ zi = 0, i = 1, . . . ,m.

(19)

The theory of the exponential families guarantees that the system (19) has
a unique solution (MLE) if the sufficient statistic is an inner point of a closed
manifold (convex hull of all possible sufficient statistics). But in case of ab-
solutely continuous distributions, so in the present situation, it happens with
probability 1. Let θ̂ denote this unique (with probability 1) MLE, where θ is
the shorthand for the parameter pair (a,b) to be estimated.

In practice, we use a fixed point iteration, for which purpose we rewrite the
system (19) in the form θ = f(θ) as follows:

ai = ψ−1

[
1

m
si +

1

m

m∑
s=1

ψ(ai + bs)

]
=: gi(a,b), i = 1, . . . , n;

bi = ψ−1

[
1

n
zi +

1

n

n∑
s=1

ψ(as + bi)

]
=: hi(a,b), i = 1, . . . ,m.

(20)
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Here ψ(x) = d ln Γ(x)
dx = Γ′(x)

Γ(x) for x > 0 is the digamma function; further, f is
the shorthand for the function pair (g, h), g : Rn+m → Rn and h : Rn+m → Rm
with coordinate functions gi’s and hj ’s, as in Equation (20), respectively.

Then, starting with θ(0), we use the successive approximation θ(t) := f(θ(t−1))
for t = 1, 2, . . . until convergence. As for the starting, let

M := max

{
max

i∈{1,...,n}

(
−si
n

)
, max
i∈{1,...,m}

(
− zi
m

)}
and ε > 0 be the solution of the equation ψ(2x) − ψ(x) = M (it is unique as
the function ψ(2x) − ψ(x), x ∈ (0,∞) is strictly decreasing). With this ε, the
convergence of the above iteration follows from the fact that the sequence θ(t)

is coordinate-wise increasing and is bounded from above by θ̂. By continuity of
f , the limit is clearly the fixed point of f . As the MLE is the solution of the
equivalent system (20) of the maximum likelihood equations, this fixed point
cannot be else but the uniquely existing θ̂. This closed neighborhood K of θ̂ is
only theoretically guaranteed. However, the vector ε1 ∈ Rn+m can be a good
starting. Indeed, starting with it, an iterate sooner or later gets into K. From
that point, the iteration speeds up, and converges at a geometric rate.

We also applied the algorithm to migration data between 34 countries. Here
wij is proportional to the number of people in thousands who moved from
country i to country j (to find jobs) during the year 2011, and it is normalized
so that be in the interval (0,1). The estimated parameters are in Table 1.

In this context, ai’s are related to the emigration and and bi’s to the counter-
immigration potentials. When ai is large, country i has a relatively large poten-
tial for emigration. On the contrary, when bi is large, country i tends to have a
relatively large resistance against immigration.

i Country ai bi i Country ai bi
1 Australia 0.26931 1475.75242 18 Japan 0.23211 9926.91644
2 Austria 0.27403 632.81653 19 Korea 0.22310 4199.25005
3 Belgium 0.33380 46.01197 20 Luxembourg 0.17543 107.91399
4 Canada 0.27383 2363.23435 21 Mexico 0.26706 4655.95370
5 Chile 0.21236 28940.59777 22 Netherlands 0.37754 39.52320
6 Czech Rep. 0.31188 470.28651 23 New Zealand 0.20542 2568.00582
7 Denmark 0.26514 847.34887 24 Norway 0.22646 519.12451
8 Estonia 0.23235 25602.33371 25 Poland 0.62846 1106.55946
9 Finland 0.29357 1100.00568 26 Portugal 0.31011 1606.59979
10 France 0.52721 37.92122 27 Slovak Rep. 0.27871 42451.19093
11 Germany 0.62020 1.64064 28 Slovenia 0.19720 6824.54028
12 Greece 0.29708 6319.19184 29 Spain 0.39732 182.47160
13 Hungary 0.31443 32750.88310 30 Sweden 0.39627 57.34509
14 Iceland 0.18051 2950.72653 31 Switzerland 0.33611 4524.67821
15 Ireland 0.27555 364.52781 32 Turkey 0.25900 146175.82805
16 Israel 0.25854 1926.04551 33 United Kingdom 0.49301 48.61626
17 Italy 0.50522 135.14076 34 United States 0.38019 2433.78269

Table 1: Estimated parameters for migration data, 2011

It should be noted again that edge-weighted graphs of this type very fre-
quently model real-world directed networks.

3.2 The multiclass contingency table model
In the several clusters case, we are putting blocks of Section 3.1 together. Here
the statistics are sufficient only within the blocks. Given the integers 1 ≤ k ≤ n
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and 1 ≤ l ≤ m, we are looking for k-partition, in other words, clustersR1, . . . , Rk
of the rows and C1, . . . , Cl of the columns such that the row and column items
are assigned to the clusters independently, and given the cluster memberships,
the weight of the connection of row-item u ∈ Ri to column-item v ∈ Cj is
wuv ∼ Beta(auj , bvi); further, all these assignments are done independently.

The parameters are stored in the n × l matrix A and the m × k matrix B,
where the jth column of A contains the parameters auj in the block u ∈ Ri, for
j = 1, . . . , l; i = 1, . . . , k. Likewise, the ith column of B contains the parameters
bvi in the block v ∈ Cj , for i = 1, . . . , k; j = 1, . . . , l. Here auj can be thought
of as the potential of row-item u of cluster Ri to be connected to Cj , and bvi as
the potential of column-item v of cluster Cj to be connected to Ri.

This is a mixture of exponential-family distributions, and as the mixing can
be supervised by two multinomially distributed random variables (responsible
for the memberships), the general theory of mixtures, and the iteration of the
EM algorithm can be used to estimate the parameters. With the terminology
of the EM algorithm, W is the incomplete data specification. If the missing
memberships were known, we would be able to write the complete log-likelihood
in the following form:

k∑
i=1

l∑
j=1

∑
u∈Ri

∑
v∈Cj

[
ln

Γ(auj + bvi)

Γ(auj)Γ(bvi)
+ (auj − 1) lnwuv + (bvi − 1) ln(1− wuv)

]
.

(21)
Starting with an initial clustering R(0)

1 , . . . , R
(0)
k of the rows and C(0)

1 , . . . , C
(0)
l

of the columns, the t-th step of the iteration is as follows (t = 1, 2, . . . ).

• Maximization step within the blocks: We update estimates of the
parameters A(t), B(t) within the kl blocks, separately. As for the block
R

(t)
i × C

(t)
j , we use the algorithm of Section 3.1 to find the estimates a(t)

uj

for u ∈ R(t)
i and b(t)vi for v ∈ C(t)

j . As each row u and column v uniquely
corresponds to exactly one row- and column-cluster, respectively, in this
way, the parameter blocks, estimated from R

(t)
i × C

(t)
j , for i = 1, . . . , k,

j = 1, . . . , l will fill in the A(t), B(t) parameter matrices.

• Relocation step between the blocks: Given the new estimates of
the parameters A(t), B(t), we relocate u into the row-cluster Ri∗ and
v into the column-cluster Cj∗ for which the contribution of wuv to the
overall likelihood (21) is maximal. We do that separately for the rows
and columns. For this purpose, we write the overall likelihood in terms
of membership vectors. Let the n × k matrix R = (rui) contain the
membership vectors of the rows, i.e., rui = 1 if u ∈ Ri and rui′ = 0 for
i′ 6= i. Likewise, let the m × l matrix C = (cvj) contain the membership
vectors of the columns, i.e., cvj = 1 if v ∈ Cj and cvj′ = 0 for j′ 6= j.

– Relocation of the rows: for each u (u = 1, . . . n), take the maximum
of the following over i (i = 1, . . . , k):

m∑
v=1

l∑
j=1

cvj

[
ln

Γ(auj) + bvi)

Γ(auj)Γ(bvi)
+ (auj − 1) lnwuv + (bvi − 1) ln(1− wuv)

]
.

(22)
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If it is maximum for i∗, then we relocate u into the row-cluster Ri∗ .
This is a discrete maximization. Break ties arbitrarily.

– Relocation of the columns: for each v (v = 1, . . .m), take the maxi-
mum of the following over j (j = 1, . . . , l):

n∑
u=1

k∑
i=1

rui

[
ln

Γ(auj) + bvi)

Γ(auj)Γ(bvi)
+ (auj − 1) lnwuv + (bvi − 1) ln(1− wuv)

]
.

(23)
If it is maximum for j∗, then we relocate v into the column-cluster
Cj∗ . This is a discrete maximization. Break ties arbitrarily.

In this way, we get a new clustering R(t)
1 , . . . , R

(t)
k of the rows and C(t)

1 , . . . , C
(t)
l

of the columns, with which we go back to the maximization step.
As in both steps we increase the likelihood, and the likelihood function is

bounded from above with the sum of the existing maxima over the blocks, the
iteration must converge to a local maximum of it. A good starting, for example,
with spectral biclustering helps a lot.

In fact, the relocation corresponds to the E-step of the classical EM algorithm
. Indeed, given W, k, and l, the complete log-likelihood is

k∑
i=1

l∑
j=1

n∑
u=1

m∑
v=1

ruicvj

[
ln

Γ(auj) + bvi)

Γ(auj)Γ(bvi)
+ (auj − 1) lnwuv + (bvi − 1) ln(1− wuv)

]
.

(24)
If we fix i, j, then we maximize the inner double summation, i.e., we find the ML
estimate of the parameters in the Ri×Cj block (M-step) as in (21). Reordering
the summation as

n∑
u=1

k∑
i=1

rui

 m∑
v=1

l∑
j=1

cvj

(
ln

Γ(auj) + bvi)

Γ(auj)Γ(bvi)
+ (auj − 1) lnwuv + (bvi − 1) ln(1− wuv)

) ,
(25)

for any fixed row u, we maximize the inner double summation, which is in the
brackets and is identical to (22), for i = 1, . . . , k. It is equivalent to maximizing

E(rui |M(t−1)) = P(rui = 1 |M(t−1))

with respect to i, whereM(t−1) contains the model parameters and the cluster
assignments after step t− 1. By the Bayes rule it is equivalent to maximizing

P(M(t−1) | rui = 1)P(rui = 1)

with respect to i. But, under uniform law of prior memberships, by the Bayes
rule, it is obtained by maximizing P(M(t−1) | rui = 1) for i = 1, . . . , k, that is
(25). If it is maximum for i∗, then we relocate u into the row-cluster Ri∗ . It is
also possible to maximize

P(M(t−1) | rui = 1) · n
(t−1)
i

n
,

where n(t−1)
i is the number of rows in the cluster Ri after the (t−1)th iteration.
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Then we do the relocation for the columns:

m∑
v=1

l∑
j=1

cvj

[
n∑
u=1

k∑
i=1

rui

(
ln

Γ(auj) + bvi)

Γ(auj)Γ(bvi)
+ (auj − 1) lnwuv + (bvi − 1) ln(1− wuv)

)]
.

(26)
For any fixed column v, we maximize the inner double summation, which is
in the brackets and is identical to (23), for j = 1, . . . , l. If it is maximum for
j∗, then we relocate v into the column-cluster Cj∗ . It is also equivalent to
maximizing

E(cvj |M(t−1)) = P(cvj = 1 |M(t−1))

with respect to j. Actually, the last maximization already corresponds to the
M-step. Note that similar idea appears in papers related to the collaborative
filtering.
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