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The first random matrix of the history is the Wishart matrix, defined in the
1930ies as the sample covariance matrix of a multivariate Gaussian sample.

Definition 1 Let Z1, . . . ,Zn ∼ Np(0, Ip) be i.i.d. p-dimensional normal sam-
ple. The distribution of the p × p matrix W̃ =

∑n
i=1 ZiZ

T
i is called standard

Wishart with parameters p, n (n is also called degree of freedom as in the p = 1
case this is the χ2 distribution of degree of freedom n). More generally, let
X1, . . . ,Xn ∼ Np(0,C) be i.i.d. p-dimensional normal sample. The distri-
bution of the p × p matrix W =

∑n
i=1 XiX

T
i is called (central) Wishart with

parameters p, n, and C.

In view of the relation between the Zi’s and the Xi’s, the relation W =
C1/2W̃C1/2 also holds, and it can be proved that n times the empirical co-
variance matrix of a p-dimensional normal sample, i.e. the matrix S in Defini-
tion ??, is a (central) Wishart matrix with parameters p, n−1 and the common
covariance matrix. The Wishart matrix is symmetric and positive semidefinite,
and in the p < n case it is positive definite, with probability 1. The Wishart
entries are far not independent (in and above the main diagonal, otherwise the
matrix is symmetric), the joint density of the entries (the density of the matrix)
is revisited by means of easy transformations in [15]. The author of this pa-
per also derived the distribution of eigenvalues and singular values of matrices
arising from matrix factorizations, for fixed n and p, but he did not investigate
asymptotics for the singular values of the p× n data matrix, whose entries are
usually not independent.

The Wigner type matrices were introduced later, in the 1950ies, the eigenval-
ues of which modelled energy levels in slow nuclear reactions. These symmetric
matrices are more easy to treat as their diagonal- and upper-diagonal entries
are independent random variables, however, the distribution of them need not
be defined uniquely. Therefore, there are many variants of theorems applying
to the limiting behavior of the eigenvalues of Wigner type matrices depending
on the assumptions for the entries and the kind of the convergence.

In accord with the description in [11, 16, ?], first we formulate the famous
Wigner Semicircle Law for the bulk spectrum of expanding symmetric matrices
in a more general form than stated in the original papers [20, 21], see also [3].

Theorem 1 Let aij (i ≤ j) be independent real-valued random variables with
the following properties.

• The distribution of aij’s is symmetric.
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• All moments are finite. In view of symmetry, all odd moments vanish,
especially, E(aij) = 0 (i ≤ j).

• E(a2ij) = σ2 (i < j) and E(a2ii) < C (i = 1, 2, . . . ) with 0 < σ,C < ∞
constants.

• E(a2kij ) ≤ (Ck)k (k = 1, 2, . . . ) with 0 < C < ∞ constant (called sub-
Gaussian moments).

Define aij for i > j by aij = aji. Let λ(n)1 ≥ λ
(n)
2 ≥ · · · ≥ λ

(n)
n be the spectrum

of the random symmetric matrix A(n) = (aij)
n,n
i,j=1. Denoting by

λ̃
(n)
i =

1

2σ
√
n
λ
(n)
i , i = 1, . . . , n,

the rescaled eigenvalues of of A(n), their empirical distribution function

Fn(x) =
1

n
|{i : λ̃

(n)
i ≤ x, i = 1, . . . , n}

converges to a non-random limit F (x) =
∫ x
−∞ f(x) dx, which is the c.d.f. corre-

sponding to the semicircle density

f(x) =

{
2
π

√
1− x2 if |x| ≤ 1,

0 if |x| > 1.
(1)

The convergence is understood almost surely (with probability 1) if entries of all
matrices A(n) (n = 1, 2, . . . ) are defined on the same probability space.

We remark that in the original theorem the convergence was understood in dis-
tribution; further, the entries were assumed to have an identical distribution in,
and another identical distribution above the main diagonal. Note that in case of
Gaussian entries, because of the zero expectation and equal variances, the upper
diagonal entries are, indeed, identically distributed. The original proof of the
Semicircle Law used the method of moments. For Gaussian distributed entries
one can find the marginal distribution of the eigenvalues’ joint distribution which
is obtained from the joint distribution of the entries of A(n) by means of the
Jacobian transformation containing the derivatives of the matrix with respect
to its eigenvalues and eigenvectors (with an appropriate parameterization). The
first factor of this determinant is∏

i<j

|λ(n)i − λ(n)j |, (2)

supposing that there are no multiple eigenvalues (which is a zero probability
event), while the second one depends on the eigenvectors (and follows Haar
distribution), but in view of the independence of the two, this last one will
be eliminated after integrating with respect to the eigenvectors to obtain the
joint density of the eigenvalues (more precisely, it will only contribute to the
constant term of the density). This derivation of the proof together with other
generalizations can be found in [14].

In [11] it is concluded that on the conditions of the above theorem, all eigen-
values of A(n) lie in the interval 2σ

√
n[1 − ε, 1 + ε] for any ε > 0 with over-

whelming probability, whereas the spacings between subsequent eigenvalues are
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of order n−1/2 in the bulk of the spectrum and much larger close to the edge.
However, the Semicircle Law applies to the bulk spectrum, and it provides lim-
ited information about the asymptotic behavior of any particular eigenvalue. In
the last decades several finer results have been obtained for the largest eigenval-
ues and the spectral radius ofA(n), sometimes under mildly modified conditions.

Authors in [18, 19] characterized the limiting distribution of the first k eigen-
values (for any fixed k ≥ 1) of the so-called Gaussian Orthogonal Ensemble
(GOE), corresponding to the case when the upper diagonal entries are i.i.d.
normally distributed random variables. The limiting distributions are called
Tracy–Widom type distributions. Later, it turned out that the same distribu-
tions are obtained under the conditions of the Semicircle Law. This so-called
universality at the edge of the spectrum of Wigner random matrices was proved
in [16] in the following sense. After proper rescaling, the first, second, third,
etc. eigenvalues of a random symmetric matrix, meeting the conditions of The-
orem 1, converge to the distributions established by Tracy and Widom for the
GOE, hence giving a generalization of their results.

To investigate the spectral radius of a Wigner type matrix, other authors
relaxed the condition that the entries have symmetric distribution and hence,
zero expectation. In [10] the author considered the case when the entries in
and above the main diagonal are independent, but the diagonal entries have
an identical, and the off-diagonal ones another identical distribution with a
positive expectation. The following more general statement of [7] contains the
aforementioned result as a special case.

Theorem 2 Let aij (i ≤ j) be independent (not necessarily identically dis-
tributed) random variables bounded with a common bound K, i.e. |aij | ≤ K,
∀i, j. Assume that for i < j, E(aij) = µ and Var(aij) = σ2, further that
E(aii) = ν. Define aij for i > j by aij = aji. Let λ(n)1 ≥ λ

(n)
2 ≥ · · · ≥ λ

(n)
n be

the eigenvalues of the random symmetric matrix A(n) = (aij)
n,n
i,j=1. The numbers

K,µ, σ2, ν will be kept fixed as n→∞.

• If µ > 0, then the distribution of λ(n)1 can be approximated in order 1√
n
by

a normal distribution of expectation

(n− 1)µ+ ν +
σ2

µ

and variance 2σ2. Further,

max
2≤i≤n

|λ(n)i | < 2σ
√
n+O(n1/3 lnn)

in probability (with probability tending to 1 as n→∞).

• If µ = 0, then
max
1≤i≤n

|λ(n)i | = 2σ
√
n+O(n1/3 lnn)

in probability.

Note that O(n1/3 lnn) is also o(
√
n), therefore the second term in the above

formulas is negligible compared to the first one. Theorem 2 also implies that the
largest absolute value eigenvalues of a Wigner type matrix A(n) (all entries have
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zero expectation) is exactly of order 2σ
√
n. However, if the common non-zero

expectation of the off-diagonal entries is µ > 0, then there is a large eigenvalue
having an asymptotic normal distribution with bounded variance around its
expectation of order n. The result can easily be extended to the µ < 0 case,
therefore the spectral radius is of order n too. In fact, it is the shift in the
expectation what puts off the edge of the spectrum.

The following sharp concentration result of [?] applies to general random
symmetric matrices with uniformly bounded entries.

Theorem 3 Let aij (1 ≤ i ≤ j ≤ n) be independent random variables with
absolute value at most 1. Define aij for 1 ≤ j < i ≤ n by aij = aji. Let
λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of the random symmetric matrix A =
(aij)

n,n
i,j=1. Then for every positive integer 1 ≤ i ≤ n

2 , the probability that λi

deviates from its median by more than t is at most e−
t2

32i2 . The same estimate
holds for the probability that λn−i+1 deviates from its median by more than t.

Observe that the estimate given in the above theorem does not depend on
n (of course, the median does depend on it). The statement – apart from a
constant factor in the exponent – remains valid if aij ’s are uniformly bounded
with some constant K. The authors of Theorem 3 prove that the eigenvalues
are also highly concentrated on their own expectations, since λi and its median
are O(i) apart. Indeed, let mi denote the median of λi. Then

|E(λi)−mi| ≤ E|λi −mi| =
∫ ∞
0

P(|λi −mi| > t) dt

≤
∫ ∞
0

e−
t2

32i2 dt = 8
√

2πi.

Therefore, for all t� i we have

P (|λi − E(λi)| > t) ≤ e−
(1−o(1))t2

32i2 when 1 ≤ i ≤ n

2
, (3)

and the same estimate holds for the probability P (|λn−i+1 − E(λn−i+1)| > t).
The authors also show that their estimate is sharp for the deviation of λ1.

For this purpose, they consider the following n × n adjacency matrix of an
Erdős–Rényi random graph (see [6]): the diagonal entries are zeros, while the
upper diagonal ones are independent Bernoulli distributed random variables
with parameter 1

2 (vertex pairs are connected with probability 1
2 , independently

of each other), in which case, by Theorem 2, λ1 = n
2 + o(1). The concentration

provided by Theorem 3 for larger values of i is weaker than that provided for
i = 1. The authors also note that for the adjacency matrix of a random graph,
when the entries are in the [0,1] interval, the estimate of their Theorem 3 can

be improved to 4e−
t2

8i2 .
The proof of Theorem 3 is based on the Talagrand inequality (see [17]) which

is an efficient large deviation tool for product spaces. In fact, this technique is
only applicable when the entries are uniformly bounded. Possibly, with other
techniques, similar sharp concentration results can be obtained in case of Gaus-
sian entries or just under the conditions of the Semicircle Law. For example,
under the conditions of Theorem 1, the individual eigenvalues are highly con-
centrated on the expected values of the corresponding order statistics based on
the limiting distribution as follows.
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Proposition 1 With the notation of Theorem 1,

lim
n→∞

max
1≤i≤n

|λ̃(n)i − λ̄(n)i | = 0

almost surely, where λ̄(n)i = F−1( 2i−1
2n ), i = 1, . . . , n, and F is the c.d.f. of the

semicircle density (1).

This issue together with other generalizations for the singular values of square
Gaussian matrices are discussed in the survey of [5].

Analogous estimates for the concentration of different norms of random rect-
angular matrices of complex entries were obtained in [13] also using the Ta-
lagrand inequality. [1] generalized Theorem 2 to rectangular matrices in the
following way.

Theorem 4 Let A be a random m × n matrix with independent, uniformly
bounded entries aij’s such that |aij | ≤ K, E(aij) = 0, and Var(aij) ≤ σ2 with
some constants 0 < K,σ2 < ∞ for i = 1, . . . ,m; j = 1, . . . , n. Under these
conditions, for any α > 1

2 , if

K < σ
√
m+ n(7α ln(m+ n))−3,

then
P
(
‖A‖ > 7

3
σ
√
m+ n

)
< (m+ n)

1
2−α.

The theorem implies that the spectral norm (largest singular value) of the above
type m × n random rectangular matrix is of order

√
m+ n in probability, i.e.

with probability tending to 1 as m,n→∞.
Going back to the Wishart matrices, in the density of which the factor (2)

also appears, the first asymptotic result for the bulk spectrum with appropri-
ate normalization, analogous to the Wigner’s theorem, is due to [12], where
the limiting distribution depends on the ratio γ = p/n when p, n → ∞. [22]
gave the exact almost sure limit (depending on γ) for the largest eigenvalue
of Gram sequences under special conditions. The limiting distribution of the
largest eigenvalue of the sample covariance matrix based on a multivariate nor-
mal distribution was also characterized in [9]. The author proved that the
distribution of the appropriately centered and scaled largest eigenvalue of the
standard Wishart matrix with parameters p and n approaches the Tracy–Widom
law when p, n→∞ in such a way that n

p = γ > 1 is a fixed constant.
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