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1 Metric, normed vector, and Euclidean spaces
Theory of real matrices will be discussed in the more general framework of
linear operators between Hilbert spaces. Linear operators, sometimes between
infinite dimensional spaces, will be intensively used throughout the book. For
this purpose, we first introduce the notion of some abstract spaces. We suppose
that the reader is familiar with the notion of a vector space (in other words,
linear space). Here we only consider real vector spaces, for the elements of
which the operation of addition and the multiplication with a real number is
defined together with the usual commutativity, associativity, and distributivity
properties; further, there is a distinguished zero element which is, in fact, equal
to the real zero times any element of the vector space.

Definition 1 (X , d) is a metric space if a metric d is defined on the set X by
the following properties: ∀x, y, z ∈ X

• d(x, y) = d(y, x) ≥ 0,

• d(x, y) = 0 if and only if x = y,

• d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

By means of the metric d, a natural topology can be established via the
notion of open and closed sets; further, convergence facts and continuity of real
valued functions on X can be stated. We say that the set K ⊂ X is complete
if every Cauchy sequence in it converges to a limit belonging to K. The metric
space (X , d) is complete if X itself is complete. The set K ⊂ X is compact if
every (infinite) sequence in K has (at least one) point of accumulation in K, and
it is precompact if for any r > 0 can be covered with finitely many spheres of
radius r. Any compact set in a metric space is closed; further, the compactness
of the subset K of a metric space is equivalent to any of the following facts:

• K is precompact and complete;

• Any open cover of K has a finite cover. (If we cover K with open sets,
then a finite number of them can be selected which also cover K).

In a complete metric space a set is compact if and only if it is precompact
and closed. The metric space (X , d) itself is compact if X is compact. The
Weierstrass theorem states the following.
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Theorem 1 Any continuous function X → R defined on a compact, non-empty
metric space is bounded, and it takes on a maximal and minimal value.

A metric space is called separable if it contains a countable dense set.
A normed vector space is a vector space endowed with a metric compatible

with its linear structure.

Definition 2 (X , ‖.‖) is a normed vector space if X is a vector space and the
norm ‖ · ‖ defined on it satisfies the following conditions: ∀x, y ∈ X and c ∈ R

• ‖x‖ ≥ 0,

• ‖x‖ = 0 if and only if x = 0,

• ‖cx‖ = |c| · ‖x‖,

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

A normed vector space is also a metric space with the metric d(x, y) =
‖x − y‖. A complete normed vector space is called Banach space, see [14]. It
can be shown that every finite dimensional normed vector space is complete,
and hence, it is a Banach space. A subspace of a normed vector space consists
of a subset of X which is a subspace of the original vector space together with
the same norm restricted to the subset.

Definition 3 A real Euclidean space (in other words, inner product space) is
a vector space X endowed with a bilinear function 〈., .〉 (called inner product)
which satisfies the following requirements: ∀x, y, z ∈ X and a, b ∈ R

• 〈x, x〉 ≥ 0,

• 〈x, x〉 = 0 if and only if x = 0,

• 〈x, y〉 = 〈y, x〉,

• 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉.

We will only consider real Euclidean spaces, and simply call them Euclidean
spaces. Any Euclidean space is a normed vector space with the natural norm

‖x‖ =
√
〈x, x〉.

This norm satisfies the Cauchy–Schwarz inequality as follows.

Proposition 1 For any two elements x, y in a Euclidean space

|〈x, y〉| ≤ ‖x‖ · ‖y‖

holds, where equality is attained if and only if x and y are linearly dependent.

If we think of x and y as vectors, and neither of them is the zero element of
the underlying Euclidean space, then their linear dependence means that y = cx
with some real constant c 6= 0. Visually, they are parallel vectors (may be of
opposite direction). The meaning of two- or three-dimensional perpendicular
vectors can also be generalized. We say that x and y are orthogonal if 〈x, y〉 = 0
(the zero element is at the same time orthogonal and parallel to any other
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element of the Euclidean space). The notion of angle extends to the following:
the angle between the non-zero elements x and y is

cos−1
〈x, y〉
‖x‖ · ‖y‖

.

Further, for given non-zero x, any element y can uniquely be decomposed as
y = y1 + y2, where y1 is parallel and y2 is orthogonal to x. Namely,

y1 =
〈x, y〉
‖x‖2

x

and y2 = y − y1.

2 Hilbert spaces
A Hilbert space is a complete Euclidean space. In fact, every Euclidean space
can be completed (in other words, imbedded) into a Hilbert space of which it
is a dense subspace. Therefore, Euclidean spaces are also called pre-Hilbert
spaces. This distinction between a Hilbert and pre-Hilbert space makes sense
only in the infinite dimensional case; every finite dimensional Euclidean space is
a Hilbert space, and of course a normed vector space, Banach space, and metric
space, at the same time. Whenever we write Rn we think of the n-dimensional
real vector space in all of these senses. Every subspace of a Euclidean space
is again a Euclidean space with the induced inner product, while every closed
subspace of a Hilbert space is a Hilbert space.

It can be shown that all separable Hilbert spaces are isomorphic as they
are, in fact, L2 spaces. We can think of them as countably infinite dimensional
vectors. Let us see some examples.

(a) Countably infinite dimensional vectors x = (x1, x2, . . . ) form a so-called
l2 space if

∑∞
i=1 x

2
i < ∞. In this case 〈x, y〉 =

∑∞
i=1 xiyi (which is finite

by the Cauchy–Schwarz inequality) and ‖x‖ =
√∑∞

i=1 x
2
i .

(b) The set C([a, b]) of continuous, real valued functions on the closed interval
[a, b] form a Euclidean space with the inner product

〈f, g〉 =
∫ b

a

f(x)g(x) dx, f, g ∈ C([a, b].

However, this space is not complete, therefore C([a, b]) is not a Hilbert
space, see the example on page 6 of [5].

(c) The L2(X ) space of real-valued, square-integrable functions with respect
to some finite measure µ on a compact set X is a separable Hilbert space
with the inner product

〈f, g〉 =
∫
X
f(x)g(x) dµ(x), f, g ∈ L2(X ).

The induced norm is ‖f‖ =
√∫
X f

2(x) dµ(x).

It can be shown that if µ is the Lebesgue measure on R, then L2([a, b]) is
the completion of the pre-Hilbert space C([a, b]) into a Hilbert space.
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The separability of a Hilbert space H means that – as a vector space – it
is spanned by countably many elements of it, the linear independence of which
can be assumed (such a set is called a basis); or else – by virtue of the Schmidt
orthogonalization procedure – there exists an orthonormal basis b1, b2, · · · ∈ H
such that 〈bi, bj〉 = δij (∀i, j), where δij is the Kronecker-delta. For example,
in (a), the infinite dimensional vectors e1, e2, . . . form an orthonormal basis if
the ith component of ei is 1, and the others are all zeros (this is the canonical
basis); in (c), there are many orthonormal bases, they can be constructed by
means of orthogonal systems of polynomials or trigonometric functions.

The linearity of a Hilbert space (which is defined over R) is somehow com-
patible with the set of real-valued linear functions – called functionals – on it.
A linear functional F on the Hilbert space H assigns the real number F (x) to
any x ∈ H and this assignment is linear. The continuity (in the usual sense) of
such an F is equivalent to its boundedness, i.e. there is a constant C such that

|F (x)| ≤ C‖x‖, ∀x ∈ H.

The dual of a Hilbert space consists of the continuous linear functionals on
it, which also form a Hilbert space. The famous Riesz–Fréchet representation
theorem, published by the two authors in the same issue of the C. R. Acad. Sci.
Paris (see [8, 3]), states the following.

Theorem 2 (Riesz–Fréchet representation theorem) A Hilbert space and
its dual are isomorphic. Namely, the effect of any F : H → R continuous linear
functional can be written as

F (x) = 〈x, y〉, ∀x ∈ H

with an appropriate y ∈ H. Moreover, y is uniquely determined by F .

In the sequel, we will investigate linear maps between two Hilbert spaces H
and H′ which are bounded, i.e. there is a constant C ≥ 0 such that

‖Ax‖ ≤ C‖x‖, ∀x ∈ H. (1)

The A : H → H′ bounded linear maps are called operators, and the boundedness
of them also implies their continuity in the usual sense. The operator norm of
A is the smallest bound C in (1), and by the linearity, it has the equivalent form

‖A‖ = sup
‖x‖H=1

‖Ax‖H′ .

We will be mainly interested in completely continuous (with other words, com-
pact) operators. We will see that they can be well approximated by means of
finite rank ones, hence the important facts about them are reminiscent of those
of linear algebra. Here the rank of an operator is the dimension of its range
(image space) in H′.

Definition 4 The operator A : H → H′ is said to be compact or completely
continuous if it maps bounded sets of H into precompact sets of H′; or equiva-
lently, for any bounded sequence (xn) ⊂ H, the image sequence (Axn) ⊂ H′ has
a convergent subsequence.
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Frequently, H = H′, and in this situation, we can define the identity operator
I such that Ix = x, ∀x ∈ H. The identity operator in an infinite dimensional
Hilbert space is not compact, since the sequence (en) of an orthonormal basis
is bounded, still, it does not have a convergent subsequence.

Any operator between finite dimensional Hilbert spaces is compact, and
it can be identified with a matrix as we will see in the linear algebra part.
Analogously, an operator between the separable Hilbert spaces H and H′ is
described with a special infinite matrix in the following way. Let (ei) ⊂ H and
(fj) ⊂ H′ be canonical bases and for the real numbers aij the condition

∞∑
i=1

∞∑
j=1

a2ij <∞ (2)

hold. Then the formula

A

( ∞∑
i=1

ciei

)
=

∞∑
j=1

( ∞∑
i=1

ajici

)
fj

defines a compact operator A : H → H′. Such an operator is called Hilbert–
Schmidt operator. Soon, we will see that there are compact operators which are
not of Hilbert–Schmidt type.

Definition 5 The adjoint A∗ of the operator A : H → H′ is defined by

〈Ax, y〉H′ = 〈x,A∗y〉H, ∀x ∈ H, y ∈ H′.

Therefore, A∗ is aH′ → H operator, and if necessary, we will denote in the lower
index that in which Hilbert space the inner product is understood. The inner
product 〈Ax, y〉H is called bilinear form as it is linear (and also continuous) in
both variables x and y.

Definition 6 The operator A : H → H is said to be self-adjoint if A = A∗.

Recall that we only deal with Hilbert spaces over R, therefore we sometimes call
a self-adjoint operator symmetric, especially in the finite rank case.

Compact operators can be decomposed as weighted sums of special rank
one operators, where the weights tend to zero, and therefore keeping the most
important ones, we obtain low rank approximation of them. More precisely, the
following statements are true.

The spectral theorem of Hilbert and Schmidt states a very important property
of compact, self-adjoint operators in a separable Hilbert space.

Theorem 3 Let H be a separable Hilbert space and A : H → H be a compact,
self-adjoint operator. Then there exist an orthonormal basis (ψi) ⊂ H and a
sequence (λi) of real numbers such that

Aψi = λiψi, i = 1, 2, . . . . (3)

Further, if H has infinite dimension, then limi→∞ λi = 0.

5



The element ψi ∈ H in (3) is called eigenfunction corresponding to the eigen-
value λi (i = 1, 2, . . . ). If there are no multiple eigenvalues then the unit-norm
eigenfunctions are unique up to orientation (multiplication with ±1). To multi-
ple eigenvalues there corresponds a unique eigenspace of dimension equal to the
multiplicity of this eigenvalue. Within the eigenspace any orthonormal system
can embody the eigenfunctions corresponding to the equal eigenvalues.

The Hilbert–Schmidt theorem gives rise to the following spectral decomposi-
tion (briefly SD) of the self-adjoint, compact operator A:

A =

∞∑
i=1

λi〈., ψi〉ψi. (4)

Consequently, the effect of A on x ∈ H can be written as

Ax =

∞∑
i=1

λi〈x, ψi〉ψi

meaning the pointwise convergence of the sequence
∑n
i=1 λi〈x, ψi〉ψi. This im-

plies the convergence of (4) in operator norm too. That is, with the notation
An =

∑n
i=1 λi〈., ψi〉ψi, the relation ‖A−An‖ → 0 also holds as n→∞. Thus, in

the self-adjoint case, we have shown that compact operators can be approached
by finite rank ones.

Note that the spectral theorem naturally extends to non-compact, self-
adjoint H → H operators which can be decomposed as A + cI, where A is
compact, self-adjoint and c is a non-zero constant. Then the eigenvalues of
A+ cI are the numbers λi+ c with the eigenfunctions ψi (i = 1, 2, . . . ), and the
spectrum of A+ cI converges to the constant c.

The whole machinery can be extended to general compact operators as fol-
lows.

Theorem 4 Let H and H′ be separable Hilbert spaces and A : H → H′ be a
compact operator. Then there exist orthonormal bases (ψi) ⊂ H and (φi) ⊂ H′
together with a sequence (si) of nonnegative real numbers such that

Aψi = siφi, A∗φi = siψi, i = 1, 2, . . . . (5)

Further, if H and H′ have infinite dimension, then limi→∞ si = 0.

The elements ψi ∈ H and φi ∈ H′ in (5) are called singular function pairs
(or left and right singular functions) corresponding to the singular value si
(i = 1, 2, . . . ). About the uniqueness the same can be said as in case of the SD.
We remark that the singular values of a self-adjoint operator are the absolute
values of its eigenvalues. In case of a positive eigenvalue, the left and right singu-
lar functions are the same (they coincide with the corresponding eigenfunction
with any, but the same orientation). In case of a negative eigenvalue, the left
and right singular functions are opposite (any of them can be the correspond-
ing eigenfunction of bivalent orientation). In case of a zero singular value the
orientation is immaterial as it does not contribute to the decomposition of the
underlying operator.
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The above theorem gives rise to the following singular value decomposition
(briefly, SVD) of the compact operators A and A∗:

A =

∞∑
i=1

si〈., ψi〉Hφi, A∗ =

∞∑
i=1

si〈., φi〉H′ψi. (6)

Consequently, the effect of A on x ∈ H can be written as

Ax =

∞∑
i=1

λi〈x, ψi〉φi,

while the effect of A∗ on y ∈ H′ as

A∗y =

∞∑
i=1

λi〈y, φi〉H′φi.

The convergence in (6) is also meant in spectral norm. That is, with the notation
An =

∑n
i=1 si〈., ψi〉Hφi, the convergence fact ‖A−An‖ → 0 gives rise to a finite

rank approximation of a general compact operator.
For a Hilbert–Schmidt operator,

∑∞
i=1 s

2
i < ∞ (also

∑∞
i=1 λ

2
i < ∞ if it

is self-adjoint) in accord with the requirement (2). These convergences imply
that limi→∞ si = 0 (also limi→∞ λi = 0 in the self-adjoint case). Therefore a
Hilbert-Schmidt operator is always compact, but the converse is not true: if
only limi→∞ si = 0 holds and

∑∞
i=1 s

2
i = ∞, then our operator is compact but

not Hilbert–Schmidt.
It can be shown that for a general compact operator with SVD in (6)

‖A‖ = max
i
si

and for a self-adjoint one with SD in (4)

‖A‖ = max
i
|λi|.

Therefore, the operator norm of compact operators is also called spectral norm.
We will frequently use the following propositions for compact operators.

Proposition 2 Let A : H → H′ be a compact operator with SVD in (6). As-
sume that its singular values are enumerated in non-increasing order (s1 ≥ s2 ≥
. . . ). Then

max
‖x‖H=1, ‖y‖H′=1

〈Ax, y〉 = s1

and it is attained with the choice x = ψ1 and y = φ1 (uniquely if s1 > s2). This
was the k = 1 case. Further, for k = 2, 3, . . .

max
‖x‖H=1, ‖y‖H′=1

〈x,ψi〉H=0 (i=1,...,k−1)
〈y,φi〉H′=0 (i=1,...,k−1)

〈Ax, y〉 = sk

and it is attained with the choice x = ψk and y = φk (uniquely if sk > sk+1).

A bit more is true.
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Proposition 3 Let A : H → H′ be a compact operator with SVD in (6). As-
sume that its singular values are enumerated in non-increasing order and k > 0
is an integer such that sk > sk+1. Then

max
〈xi,xj〉H=δij
〈yi,yj〉H′=δij

k∑
i=1

〈Axi, yi〉 =
k∑
i=1

si

and it is attained with the choice xi = ψi and yi = φi (i = 1, . . . , k).

Proposition 4 Let A : H → H be a self-adjoint compact operator with SD
in (4). Assume that its eigenvalues are enumerated in non-increasing order
(λ1 ≥ λ2 ≥ . . . ). Then

max
‖x‖=1

〈Ax, x〉 = λ1

and it is attained with the choice x = ψ1 (uniquely if λ1 > λ2). This was the
k = 1 case. Further, for k = 2, 3, . . .

max
‖x‖=1

〈x,ψi〉=0 (i=1,...,k−1)

〈Ax, x〉 = λk

and it is attained with the choice x = ψk (uniquely if λk > λk+1).

A bit more is true.

Proposition 5 Let A : H → H be a self-adjoint compact operator with SD
in (4). Assume that its eigenvalues are enumerated in non-increasing order and
k > 0 is an integer such that λk > λk+1. Then

max
〈xi,xj〉=δij

k∑
i=1

〈Axi, xi〉 =
k∑
i=1

λi

and it is attained with the choice xi = ψi (i = 1, . . . , k).

Integral operators between L2 spaces (see [9, 10]) are important examples of
Hilbert–Schmidt operators. In Example (c) we introduced the H = L2(X ) space
of real-valued, square-integrable functions with respect to some finite measure
µ on the compact set X . Likewise, consider H′ = L2(Y) with the finite measure
ν, and let K : X × Y → R be a kernel such that for it∫

X

∫
Y
K2(x, y)µ(dx) ν(dy) <∞ (7)

holds. With the kernel K, the integral operator AK : H ′ → H is defined in
the following way: to the function g ∈ H′ the operator AK assigns the function
f ∈ H such that

f(x) = (AKg)(x) =

∫
Y
K(x, y)g(y) ν(dy), x ∈ X .

It is easy to see that AK is linear, further it is a Hilbert–Schmidt operator,
therefore compact with

‖AK‖ ≤ ‖K‖2 (8)
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where ‖K‖2 is the squareroot of the finite expression in (7), that is the L2-norm
of K in the product space.

Say, AK has the SVD

AK =

∞∑
i=1

si〈., φi〉H′ψi (9)

where for the singular values

∞∑
i=1

s2i = ‖K‖22 <∞

also holds, implying that limi→∞ si = 0 (if si’s are really countably infinitely
many).

It is easy to see that the adjoint of AK is the integral operator A∗K : H → H′
with SVD

A∗K =
∞∑
i=1

si〈., ψi〉Hφi,

and
‖AK‖ = ‖A∗K‖ = s1.

Remark that ‖K‖2 = (
∑∞
i=1 s

2
i )

1/2 is called the Hilbert–Schmidt norm of AK
(in finite dimension it will be called Frobenius norm) denoted by ‖AK‖2, and
for it, ‖AK‖2 ≥ ‖AK‖ due to Inequality (8).

With a symmetric kernel K : X × X → R (K(x, y) = K(y, x) ∀x, y), the
induced integral operator AK becomes self-adjoint, therefore it also admits an
SD

AK =

∞∑
i=1

λi〈., ψi〉ψi

with real eigenvalues such that
∑∞
i=1 λ

2
i < ∞ and corresponding orthonormal

eigenvectors ψ1, ψ2, . . . . Under some additional condition, the kernel itself can
be expanded, see the upcoming Mercer theorem.

Definition 7 The integral operator AK corresponding to the symmetric kernel
K is said to be positive semidefinite if it has all nonnegative eigenvalues.

The SD of the self-adjoint AK gives rise to the following, so-called Karhunen–
Loève expansion of K: K(x, y) =

∑∞
i=1 λiψi(x)ψi(y), where the convergence is

understood in the L2-norm of the product space. The following theorem states
more, namely, uniform pointwise convergence.

Theorem 5 (Mercer theorem) If K is a symmetric, continuous kernel of
a positive semidefinite integral operator on L2(X ), where X is some compact
space, then it can be expanded into the following uniformly convergent series:

K(x, y) =

∞∑
i=1

λiψi(x)ψi(y), ∀x, y ∈ X

by the eigenfunctions ψi and the eigenvalues λi ≥ 0 of the integral operator
induced by the kernel K.
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Finally, we will use the following uniform boundedness principle concerning
a collection of linear operators between Hilbert spaces. In fact, the forthcoming
Banach–Steinhaus theorem is stated more generally, for normed vector spaces.

Theorem 6 (Banach–Steinhaus theorem) Let X be a Banach space and Y
a normed vector space; further, let A be a collection of X → Y continuous linear
operators. If for all x ∈ X we have

sup
A∈A
‖Ax‖ <∞,

then
sup
A∈A
‖A‖ <∞

too.

3 Matrices
From now on, we will confine ourselves to finite dimensional real Euclidean
spaces which are also Hilbert spaces. Linear operations between these spaces
can be described by matrices of real entries. To stress that the elements of the
Euclidean space are finite dimensional vectors, we will use bold-face lower-case
letters, further vectors are treated as column-vectors. The inner product of
the vectors x,y ∈ Rn is therefore written with matrix multiplication, like xTy,
where T stands for the transposition, hence xT is a row-vector. Matrices will
be denoted by bold-face upper-case letters. An m× n matrix A = (aij) of real
entries aij ’s corresponds to an Rn → Rm linear transformation (operator). Its
transpose, AT , is an n×m matrix. An n× n matrix is called quadratic and it
maps Rn into itself. The identity matrix is denoted by I or In if we want to
refer to its size.

The quadratic matrix A is symmetric if A = AT and orthogonal if AAT =
I. The orthogonal matrix P is a permutation matrix if, in each row and column,
exactly one of its entries differs from 0, and this non-zero entry is 1.

The n×nmatrixA has an inverse if and only if its determinant, |A| 6= 0, and
its inverse is denoted byA−1. In this case, the linear transformation correspond-
ing to A−1 undoes the effect of the Rn → Rn transformation corresponding to
A, i.e. A−1y = x if and only if Ax = y for any y ∈ Rn. It is important that
in case of an invertible (regular) matrix A, the range (or image space) of A
– denoted by R(A) – is the whole Rn, and in exchange, the kernel of A (the
subspace of vectors that are mapped into the zero vector by A) consists of the
only 0.

Note that for an m× n matrix A, its range is

R(A) = Span{a1, . . . ,an}

where a1, . . . ,an are the column vectors of A for which fact the notation A =
(a1, . . . ,an) will be used; further, Span{. . . } is the subspace spanned by the
vectors in its argument. The rank of A is the dimension of its range:

rank(A) = dimR(A),
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and it is also equal to the maximum number of linearly independent rows of A;
trivially, rank(A) ≤ min{m,n}. In case of m = n, A is regular if and only if
rank(A(= n, and singular, otherwise.

An orthogonal matrix A is always regular and A−1 = AT ; further its rows
(or columns) constitute a complete orthonormal set in Rn. Let k (1 ≤ k < n)
be an integer; an n× k matrix A is called suborthogonal if its columns form (a
not complete) orthonormal set in Rn. For such an A, the relation ATA = Ik
holds, but AAT 6= In. In fact, the n × n matrix P = AAT is symmetric and
idempotent (P 2 = P ), hence, it corresponds to the orthogonal projection onto
R(A). The trace of the n× n matrix A is

tr(A) =

n∑
i=1

aii.

How the above matrix–matrix and matrix–scalar functions will look like if
the underlying matrix is a product? If A and B can be multiplied together (A
is m×n and B is n× k type), then their product corresponds to the succession
of linear operations B and A in this order, therefore

(AB)T = BTAT

and if A and B are regular n× n matrices, then so is AB, and

(AB)−1 = B−1A−1.

Further, (A−1)T = (AT )−1, and vice versa. If A and B are n × n matrices,
then

|AB| = |A| · |B|.
Therefore, the determinant of the product of several matrices of the same size
does not depend on the succession of the matrices, however, the matrix multi-
plication is usually not commutative. The trace is commutative in the following
sense: if A is an n× k and B is a k × n matrix, then

tr(AB) = tr(BA).

For several factors, the trace is accordingly, cyclically commutative:

tr(A1A2 . . .An) = tr(A2 . . .AnA1) = · · · = tr(AnA1 . . .An−1)

when, of course, the sizes of the factors are such that the successive multiplica-
tions in A1 . . .An can be performed and the number of rows in A1 is equal to
the number of columns in An. Further,

rank(AB) ≤ min{rank(A), rank(B)},

consequently, the rank cannot be increased in course of matrix multiplications.
Given an n×n symmetric real matrix A, the quadratic form in the variables

x1, . . . , xn is the homogeneous quadratic function of these variables:
n∑
i=1

n∑
j=1

aijxixj = xTAx,

where x = (x1, . . . , xn)
T , hence the matrix multiplication results in a scalar. The

possible signs of a quadratic form (with different x’s) characterize the underlying
matrix. Accordingly, they fall into exactly one of the following categories.
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Definition 8 Let A be n× n symmetric real matrix.

• A is positive (negative) definite if xTAx > 0 (xTAx < 0), ∀x 6= 0.

• A is positive (negative) semidefinite if xTAx ≥ 0 (xTAx ≤ 0), ∀x ∈ Rn,
and xTAx = 0 for at least one x 6= 0.

• A is indefinite if xTAx takes on both positive and negative values (with
different, non-zero x’s).

The positive and negative definite matrices are all regular, whereas the pos-
itive and negative semidefinite ones are singular. The indefinite matrices can
be either regular or singular. To more easily characterize the definiteness of
symmetric matrices, we will use their eigenvalues.

In analogy with the spectral theory of compact operators, the notion of an
eigenvalue and eigenvector is introduced: λ is an eigenvalue of the n × n real
matrix A with corresponding eigenvector u 6= 0 if Au = λu. If u is an eigen-
vector of A, it is easy to see that for c 6= 0, cu is also an eigenvector with the
same eigenvalue. Therefore, it is better to speak about eigen-directions instead
of eigenvectors; or else, we will consider specially normalized, e.g. unit-norm
eigenvectors, when only the orientation is bivalent. It is well known that an
n× n matrix A has exactly n eigenvalues (with multiplicities) which are (pos-
sibly complex) roots of the characteristic polynomial |A − λI|. Knowing the
eigenvalues, the corresponding eigenvectors are obtained by solving the system
of linear equations (A − λI)u = 0 which must have a non-trivial solution due
to the choice of λ. In fact, there are infinitely many solutions (in case of single
eigenvalues they are constant multiples of each other). An eigenvector corre-
sponding to a complex eigenvalue must also have complex coordinates, but in
case of our main interest (the symmetric matrices) this cannot occur.

The notion of an eigenvalue and eigenvector extends to matrices of complex
entries in the same way. As for the allocation of the eigenvalues of a quadratic
matrix (even of complex entries), the following result is known.

Theorem 7 (Gersgorin disc theorem) Let A be an n×n matrix of entries
aij ∈ C. The Gersgorin disks of A are the following regions of the complex
plane:

Di = {z ∈ C : |z − aii| ≤
∑
j 6=i

|aij |}, i = 1, . . . n.

Let λ1, . . . , λn denote the (possibly complex) eigenvalues of A. Then

{λ1, . . . , λn} ⊂ ∪ni=1Di.

Furthermore, any connected component of the set ∪ni=1Di contains as many
eigenvalues of A as the number of discs that form this component.

We will introduce the notion of normal matrices which admit a spectral de-
composition (briefly, SD) similar to that of compact operators. The real matrix
A is called normal if AAT = ATA. Among real matrices, only the symmet-
ric, anti-symmetric (AT = −A), and orthogonal matrices are normal. Normal
matrices have the following important spectral property: to their eigenvalues
there corresponds an orthonormal set of eigenvectors; choosing this as a new
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basis, the matrix becomes diagonal (all the off-diagonal entries are zeros). Here
we only state the analogous version of the Hilbert–Schmidt theorem 3 for sym-
metric matrices which, in addition, have all real eigenvalues, and consequently,
eigenvectors of real coordinates.

Theorem 8 The n × n symmetric, real matrix A has real eigenvalues λ1 ≥
· · · ≥ λn (with multiplicities), and the corresponding eigenvectors u1, . . . ,un
can be chosen such that they constitute a complete orthonormal set in Rn.

This so-called Spectral Decomposition theorem implies the following SD of the
n× n symmetric matrix A:

A =

n∑
i=1

λiuiu
T
i = UΛUT , (10)

where Λ = diag(λ1, . . . , λn) is the diagonal matrix containing the eigenvalues –
called spectrum – in its main diagonal, while U = (u1, . . . ,un) is the orthogonal
matrix containing the corresponding eigenvectors ofA in its columns in the order
of the eigenvalues. Of course, permuting the eigenvalues in the main diagonal
of Λ, and the columns of U accordingly, will lead to the same SD, however – if
not otherwise stated – we will enumerate the real eigenvalues in non-increasing
order. About the uniqueness of the above SD we can state the following: the
unit-norm eigenvector corresponding to a single eigenvalue is unique (up to
orientation), whereas to an eigenvalue with multiplicity m there corresponds a
unique m-dimensional so-called eigen-subspace within which any orthonormal
set can be chosen for the corresponding eigenvectors.

It is easy to verify that for the eigenvalues of the symmetric matrix A

n∑
i=1

λi = tr(A) and
n∏
i=1

λi = |A|

hold. Therefore A is singular if and only if it has a 0 eigenvalue, and

r = rank(A) = rank(Λ) = |{i : λi 6= 0}|;

moreover, R(A) = Span{ui : λi 6= 0}. Therefore, the SD of A simplifies to

r∑
i=1

λiuiu
T
i .

Its spectrum also determines the definiteness of A in the following manner.

Proposition 6 Let A be n× n symmetric real matrix.

• A is positive (negative) definite if and only if all of its eigenvalues are
positive (negative).

• A is positive (negative) semidefinite if and only if all of its eigenvalues
are nonnegative (nonpositive), and its spectrum includes the zero.

• A is indefinite if its spectrum contains at least one positive and one neg-
ative eigenvalue.
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The matrix of an orthogonal projection PF onto the r-dimensional subspace
F ⊂ Rn has the following SD (only the r < n case is of importance, since in the
r = n case PF = In):

PF =

r∑
i=1

uiu
T
i = AAT ,

where u1, . . . ,ur is any orthonormal set in F which is the eigen-subspace cor-
responding to the eigenvalue 1 of multiplicity r. Note that the eigenspace cor-
responding to the other eigenvalue 0 of multiplicity n − r is the orthogonal
complementary subspace F⊥ of F in Rn, but it has no importance, as only the
eigenvectors in the first r columns of U enter into the above SD of PF . With
the notation A = (u1, . . . ,ur), the SD of PF simplifies to AAT , indicating that
A is a suborthogonal matrix.

Now the analogue of Theorem 4 for rectangular matrices is formulated.

Theorem 9 Let A be an m× n rectangular matrix of real entries, rank(A) =
r ≤ min{m,n}. Then there exist an orthonormal set (v1, . . . ,vr) ⊂ Rm and
(u1, . . . ,ur) ⊂ Rn together with the positive real numbers s1 ≥ s2 ≥ · · · ≥ sr > 0
such that

Aui = sivi, A∗vi = siui, i = 1, 2, . . . , r. (11)

The elements vi ∈ Rm and ui ∈ Rn (i = 1, . . . , r) in (11) are called relevant
singular vector pairs (or left and right singular vectors) corresponding to the
singular value si (i = 1, 2, . . . , r). The transformations in (11) give a one-to
one mapping between R(A) and R(AT ), all the other vectors of Rn and Rm
are mapped into the zero vector of Rm and Rn, respectively. However, the
left and right singular vectors can appropriately be completed into a complete
orthonormal set {v1, . . . ,vm} ⊂ Rm and {u1, . . .un} ⊂ Rn, respectively, such
that, the so introduced extra vectors in the kernel subspaces in Rm and Rn are
mapped into the zero vector of Rn and Rm, respectively. With the orthogonal
matrices V = (v1, . . . ,vm) and U = (u1, . . .un), the following SVD of A and
AT holds:

A = V SUT =

r∑
i=1

siviu
T
i and AT = USTV T =

r∑
i=1

siuiv
T
i , (12)

where S is an m × n so-called generalized diagonal matrix which contains the
singular values s1, . . . , sr in the first r positions of its main diagonal (starting
from the upper left corner) and zeros otherwise. We remark that there are other
equivalent forms of the above SVD depending on, whether m < n or m ≥ n.
For example, in the m < n case, V can be an m×m orthogonal, S an m×m
diagonal, and U an n×m suborthogonal matrix with the same relevant entries.
About the uniqueness of the SVD the following can be stated: to a single positive
singular value there corresponds a unique singular vector pair (of course, the
orientation of the left and right singular vectors can be changed at the same
time). To a positive singular value of multiplicity say k > 1 a k-dimensional left
and right so-called isotropic subspace corresponds, within which, any k-element
orthonormal sets can embody the left and right singular vectors with orientation
such that the requirements in (11) are met.

We also remark that the singular values of a symmetric matrix are the abso-
lute values of its eigenvalues. In case of a positive eigenvalue, the left and right
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singular vectors are the same (they coincide with the corresponding eigenvector
with any, but the same orientation). In case of a negative eigenvalue, the left
and right side singular vectors are opposite (any of them is the corresponding
eigenvector which have a bivalent orientation). In case of a zero singular value
the orientation is immaterial, as it does not contribute to the SVD of the un-
derlying matrix. Numerical algorithms for SD and SVD of real matrices are
presented in [4, 15].

Assume that the m× n matrix A of rank r has SVD (12). It is easy to see
that the matrices AAT and ATA are positive semidefinite (possibly, positive
definite) matrices of rank r, and their SD is

AAT = V (SST )V T =

r∑
i=1

s2iviv
T
i and ATA = U(STS)UT =

r∑
i=1

s2iuiu
T
i

where the diagonal matrices SST and STS both contain the numbers s21, . . . , s2r
in the leading positions of their main diagonals as non-zero eigenvalues.

These facts together also imply that the only positive singular value of a
suborthogonal matrix is the 1 with multiplicity of its rank.

Definition 9 We say that the n × n symmetric matrix G = (gij) is a Gram-
matrix if its entries are inner products: there is a dimension d > 0 and vectors
x1, . . . ,xn ∈ Rd such that

gij = xTi xj , i, j = 1, . . . n.

Proposition 7 The symmetric matrix G is a Gram-matrix if and only if it is
positive semidefinite or positive definite.

Proof 1 If G is a Gram-matrix, then it can be decomposed as G = AAT , where
AT = (x1, . . . ,xn). With this,

xTGx = xTAATx = (ATx)T (ATx) = ‖ATx‖2 ≥ 0, ∀x ∈ Rn.

Conversely, if G is positive semidefinite (or positive definite) with rank r ≤ n,
then its SD – using (10) – can be written as

G =

r∑
i=1

λiuiu
T
i .

Let the n× r matrix A be defined as

A = (
√
λ1u1, . . . ,

√
λrur). (13)

Then the row vectors of the matrix A will be r-dimensional vectors reproducing
G. Of course, such a decomposition is not unique: first of all, instead of A
the matrix AQ will also do, where Q is an arbitrary r × r orthogonal matrix
(obviously, xi’s can be rotated); and xi’s can also be put in a higher (d > r)
dimension with attaching any (but the same) number of zero coordinates to them.

The spectral norm (operator norm) of an m × n real matrix A of rank r,
with positive singular values s1 ≥ · · · ≥ sr > 0, is

‖A‖ = max
‖x‖=1

‖Ax‖ = s1,

15



and its Frobenius norm, denoted by ‖.‖2, is

‖A‖2 =

 m∑
i=1

n∑
j=1

a2ij

1/2

=
√

tr(AAT ) =
√
tr(ATA) =

(
r∑
i=1

s2i

)1/2

.

The Frobenius norm is sometimes called Euclidean norm and corresponds to
the Hilbert–Schmidt norm of operators between separable Hilbert spaces. Ac-
cordingly, the operator Rn → Rm corresponding to A, can be considered as an
integral operator with kernel (aij), hence, ‖A‖2 is the L2-norm of this kernel,
which is expressed in the above formula. For a symmetric real matrix A,

‖A‖ = max
‖x‖=1

‖Ax‖ = max
i
|λi| and ‖A‖2 =

(
r∑
i=1

λ2i

)1/2

.

Obviously, for a real matrix A of rank r,

‖A‖ ≤ ‖A‖2 ≤
√
r‖A‖. (14)

More generally, a matrix norm is called unitary invariant if

‖A‖un = ‖QAR‖un
with any m × m and n × n orthogonal matrices Q and R, respectively. It is
easy to see that a unitary invariant norm of a real matrix merely depends on
its singular values (or eigenvalues if it is symmetric). For example, the spectral
and Frobenius norms are such, and the Schatten norm (sometimes called trace
norm) defined by

‖A‖4 =

(
r∑
i=1

s4i

) 1
4

(15)

is also unitary invariant.
By means of SD or SVD we are able to define so-called generalized inverses

of singular square or rectangular matrices: in fact, any matrix that undoes the
effect of the underlying linear transformation between the ranges of AT and A
will do. A generalized inverse is far not unique as any transformation operating
on the kernels can be added. However, the following Moore–Penrose inverse is
uniquely defined and it coincides with the usual inverse if exists.

Definition 10 The Moore–Penrose inverse of the n×n symmetric matrix with
SD (10) is

A+ =

r∑
i=1

1

λi
uiu

T
i = UΛ+UT ,

where Λ+ = diag( 1
λ1
, . . . , 1

λr
, 0, . . . , 0) is the diagonal matrix containing the re-

ciprocals of the non-zero eigenvalues, otherwise zeros, in its main diagonal.
The Moore–Penrose inverse of the m × n real matrix is the n × m matrix

A+ with SVD (12)

A+ =

r∑
i=1

1

si
uiv

T
i = US+V T ,

where S+ is n×m generalized diagonal matrix containing the reciprocals of the
non-zero singular values of A in the leading positions, otherwise zeros, in its
main diagonal.
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Note that, analogously, any analytic function f of the symmetric real matrix
A can be defined by its SD, A = UΛUT , in the following way:

f(A) := Uf(Λ)UT (16)

where f(Λ) = diag(f(λ1), . . . , f(λn)), of course, only if every eigenvalue is in
the domain of f . In this way, for a positive semidefinite (or positive definite)
A, its squareroot is

A1/2 = UΛ1/2UT , (17)

and for a regular A its inverse is obtained by applying the f(x) = x−1 function
to it:

A−1 = UΛ−1UT .

For a singular A, the Moore–Penrose inverse is obtained by using Λ+ instead of
Λ−1. Accordingly, for a positive semidefinite matrix, its −1/2 power is defined
as the squareroot of A+.

We will frequently use the following propositions, called separation theorems
for singular values and eigenvalues. These are special cases of Propositions 2,
3, 4, and 5. About the applications of these theorems in multivariate statistical
analysis see [7].

Proposition 8 Let A be an m×n real matrix with SVD in (12). Assume that
its non-zero singular values are enumerated in non-increasing order (s1 ≥ s2 ≥
. . . sr > 0). Then

max
x∈Rn,y∈Rm

‖x‖=1, ‖y‖=1

yTAx = s1

and it is attained with the choice x = u1 and y = v1 (uniquely if s1 > s2). This
was the k = 1 case. Further, for k = 2, 3, . . . , r

max
x∈Rn,y∈Rm

‖x‖=1, ‖y‖=1

xTui=0 (i=1,...,k−1)
yTvi=0 (i=1,...,k−1)

yTAx = sk

and it is attained with the choice x = uk and y = vk (uniquely if sk > sk+1).

A bit more is true.

Proposition 9 Let A be an m × n real matrix with SVD in (12). Assume
that its singular values are enumerated in non-increasing order and k > 0 is an
integer such that sk > sk+1. Then

max
X isn×k,Y ism×k
XTX=Ik,Y

TY =Ik

tr(Y TAX) = max
xT
i xj=δij

yT
i yj=δij

k∑
i=1

yTi Axi =

k∑
i=1

si

and it is attained with the suborthogonal matrices X = (x1, . . . ,xk) and Y =
(y1, . . . ,yk) such that xi = ui and yi = vi (i = 1, . . . , k).
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Proposition 10 Let A be n×n real symmetric matrix with SD in (10). Assume
that its eigenvalues are enumerated in non-increasing order (λ1 ≥ λ2 ≥ · · · ≥
λn). Then

max
‖x‖=1

xTAx = λ1

and it is attained with the choice x = u1 (uniquely if λ1 > λ2). This was the
k = 1 case. Further, for k = 2, 3, . . . , n

max
x∈Rn, ‖x‖=1

xTui=0 (i=1,...,k−1)

xTAx = λk

and it is attained with the choice x = uk (uniquely if λk > λk+1).

A bit more is true.

Proposition 11 Let A be n×n real symmetric matrix with SD in (10). Assume
that its eigenvalues are enumerated in non-increasing order and k > 0 is an
integer such that λk > λk+1. Then

max
X isn×k
XTX=Ik

tr(XTAX) = max
xi∈Rn (i=1,...,k)

xT
i xj=δij

k∑
i=1

xTi Axi =

k∑
i=1

λi

and it is attained with the suborthogonal matrix X = (x1, . . . ,xk) such that
xi = ui (i = 1, . . . , k).

Applying the above statements for the symmetric real matrix −A, similar
statements can be proved. Note that these minima and maxima are attained as
we optimize over convex sets.

Proposition 12 Let A be n×n real symmetric matrix with SD in (10). Assume
that its eigenvalues are enumerated in non-increasing order (λ1 ≥ · · · ≥ λn−1 ≥
λn). Then

min
‖x‖=1

xTAx = λn

and it is attained with the choice x = un (uniquely if λn < λn−1). This was the
k = 1 case. Further, for k = 2, 3, . . . , n

min
x∈Rn, ‖x‖=1

xTui=0 (i=n−k+2,...,n)

xTAx = λn−k+1

and it is attained with the choice x = un−k+1 (uniquely if λn−k+2 < λn−k+1).

Proposition 13 Let A be n×n real symmetric matrix with SD in (10). Assume
that its eigenvalues are enumerated in non-increasing order and k > 0 is an
integer such that λn−k+1 < λn−k. Then

min
X isn×k
XTX=Ik

tr(XTAX) = min
xi∈Rn (i=1,...,k)

xT
i xj=δij

k∑
i=1

xTi Axi =

n∑
i=n−k+1

λi

and it is attained with the suborthogonal matrix X = (x1, . . . ,xk) such that
xi = un−k+i (i = 1, . . . , k).
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Many of the above propositions follow from the forthcoming so-called mini-
max principle.

Theorem 10 (Courant–Fischer–Weyl theorem) Let A be an n × n sym-
metric real matrix with eigenvalues λ1 ≥ · · · ≥ λn. Then

λk = max
F⊂Rn

dim(F )=k

min
x∈F
‖x‖=1

xTAx = min
F⊂Rn

dim(F )=n−k+1

max
x∈F
‖x‖=1

xTAx (k = 1, . . . , n).

The statement naturally extends to singular values of rectangular matrices.

Theorem 11 Let A be an m×n real matrix with positive singular values s1 ≥
· · · ≥ sr, where r = rank(A). Then

sk = max
F⊂Rn

dim(F )=k

min
x∈F

‖Ax‖
‖x‖

(k = 1, . . . , r).

Theorem 10 is, in turn, implied by the upcoming separation theorem. In
the sequel, we will denote by λi(.) the ith largest eigenvalue of the symmetric
matrix in the argument (they are enumerated in non-increasing order).

Theorem 12 (Cauchy–Poincaré separation theorem) Let A be an n× n
symmetric real matrix and B be an n× k suborthogonal matrix (k ≤ n). Then

λi(A) ≥ λi(BTAB) ≥ λi+n−k(A), i = 1, . . . , k.

The first inequality is attained with equality if B contains the eigenvectors cor-
responding to the k largest eigenvalues of A in its columns; whereas, the second
inequality is attained with equality if B contains the eigenvectors corresponding
to the k smallest eigenvalues of A in its columns.

Note that the first inequality makes sense for a k such that λk > λk+1, whereas
the second inequality makes sense for a k such that λn−k+1 < λn−k.

The Cauchy–Poincaré theorem implies the following important inequalities
due to H. Weyl.

Theorem 13 (Weyl’s perturbation theorem) Let A and C be n× n sym-
metric matrices. Then

λj(A+C) ≤ λi(A) + λj−i+1(C) if i ≤ j,
λj(A+C) ≥ λi(A) + λj−i+n(C) if i ≥ j.

The above inequalities give rise to the following perturbation result for symmet-
ric matrices we will intensively use in the lessons. Here we consider symmetric
matrices such that A = B +C, where C is a ’small’ perturbation on B.

Theorem 14 Let A and B be n× n symmetric matrices. Then

|λi(A)− λi(B)| ≤ ‖A−B‖, i = 1, . . . , n.

A similar statement is valid for rectangular matrices.
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Theorem 15 Let A and B be m×n real matrices with singular values s1(A) ≥
· · · ≥ smin{m,n}(A) and s1(B) ≥ · · · ≥ smin{m,n}(B). Then

|si(A)− si(B)| ≤ ‖A−B‖, i = 1, . . . ,min{m,n}.

Applying the above theorems for rank k matrices B we can solve the fol-
lowing optimization problems stated in a more general form, for rectangular
matrices.

Theorem 16 Let A be an arbitrary m×n real matrix with SVD
∑r
i=1 siuiv

T
i ,

where r is the rank of A. Then for any positive integer k ≤ r such that sk >
sk+1,

min
B ism×n
rank(B)=k

‖A−B‖ = sk+1 and min
B ism×n
rank(B)=k

‖A−B‖2 =

(
r∑

i=k+1

s2i

)1/2

hold, and both minima are attained with the matrix Bk =
∑k
i=1 siuiv

T
i .

Note that Bk is called the best rank k approximation of A, and the aforemen-
tioned theorem guarantees that it is the best approximation both in spectral
and Frobenius norm. In fact, it is true for any unitary invariant norm:

min
B ism×n
rank(B)=k

‖A−B‖un = ‖A−Bk‖un.

The next theorem is about perturbation of eigenvectors of symmetric ma-
trices. In fact, the original theorem, due to [2], applies to complex self-adjoint
(Hermitian) matrices and to spectral subspaces spanned by eigenvectors corre-
sponding to a set of eigenvectors separated from the others, see [12]. Here we
follow the formalism of [1].

Theorem 17 (Perturbation of spectral subspaces) Let A and B be sym-
metric matrices; S1 and S2 are subsets of R or C such that dist(S1, S2) = δ > 0.
Let PA(S1) and PB(S2) be orthogonal projections onto the subspace spanned by
the eigenvectors of the matrix in the lower index, corresponding to the eigenval-
ues within the subset in the argument. Then with any unitary invariant norm:

‖PA(S1)PB(S2)‖un ≤
c1
δ
‖PA(S1)(A−B)PB(S2)‖un ≤

c1
δ
‖A−B‖un

where c1 is a constant.

Remark 1 In another context, [13] proves that c1 = π/2. When S1 and S2 are
separated by an annulus, then the constant improves to c1 = 1; further, with the
Frobenius norm, c1 = 1 will always do, see [1]. If PA(S1) and P⊥B (S2) project
onto subspaces of the same dimension, then either the spectral- or the Frobenius
norm of PA(S1)PB(S2) can be expressed in terms of the sines of the so-called
canonical (principal) angles between these subspaces and ‖PA(S1)PB(S2)‖2 is
considered as the distance between them. This is why the special case of Theo-
rem 17, when Frobenius norm is used, is called Davis–Kahan sin(θ) theorem.

We will also need the following statements concerning relations between
singular values, eigenvalues, and traces.
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Proposition 14 Let A be an n× n matrix and Q be an n× n orthogonal one.
Then tr(AQ) is maximal if AQ is symmetric, and in this case the trace of this
symmetric matrix is equal to the sum of the singular values of A.

Proposition 15 Let A and B be n × n symmetric, positive semidefinite ma-
trices with eigenvalues λi(A)’s and λi(B)’s. Then

tr(AB) ≤
n∑
i=1

λi(A) · λi(B),

with equality if and only if A and B commute, i.e. AB = BA.

Note that a necessary and sufficient condition for A and B commute is that
they have the same system of eigenvectors (possibly, eigenspaces).

Proposition 16 Let A and B be n × n real matrices with singular values
s1(A) ≥ · · · ≥ sn(A) ≥ 0 and s1(B) ≥ · · · ≥ sn(B) ≥ 0. Then

k∏
i=1

si(AB) ≤
k∏
i=1

[si(A) · si(B)], k = 1, . . . , n.

Especially, for k = 1, this implies that

smax(AB) ≤ smax(A) · smax(B),

which is not surprising, since the maximal singular value is the operator norm
of the matrix.

The next part will be devoted to the Perron–Frobenius theory of matrices
with nonnegative entries. First we define the notion of the irreducibility for a
quadratic matrix, and a similar notion for rectangular matrices.

Definition 11 A quadratic matrix A is called reducible if there exists an ap-
propriate permutation of its rows and columns, or equivalently, the exists a
permutation matrix (see Section 3) P such that, with it, A can be transformed
into the following block-matrix form:

PAP T =

(
B O
D C

)
or PAP T =

(
B D
O C

)
,

where A and B are quadratic matrices, whereas O is the zero matrix of appro-
priate size. A quadratic matrix is called irreducible if it is not reducible.

Note that the eigenvalues of a quadratic matrix are unaffected under the
same permutation of its rows and columns, while the coordinates of the cor-
responding eigenvectors are subject to the same permutation. Since in Defi-
nition 11, the same permutation is applied to the rows and columns, and the
spectrum of the involved block-matrix consists of the spectra of B and C, the
SD of a reducible matrix can be traced back to the SD of some smaller matrices.
Now we want to create a similar notion for rectangular matrices in terms of their
SVD.
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Definition 12 An m × n real matrix A is called decomposable if there exist
appropriate permutations of its rows and columns, or equivalently, the exist
permutation matrices P and Q of sizes m × m and n × n, respectively, such
that, with them, A can be transformed into the following block-matrix form:

PAQT =

(
B O
O C

)
.

The real matrix A is non-decomposable if it is not decomposable.

Note that the singular values of a real matrix are unaffected under appro-
priate permutation of its rows and columns, while the coordinates of the corre-
sponding singular vectors are subject to the same permutations. Since in Def-
inition 12, the singular spectrum of the matrix A is composed of the singular
spectra of B and C, only SVD of non-decomposable matrices is of importance.

When we apply Definition 12 to a symmetric matrix A, the matrices B and
C of Definition 11 are also symmetric, whereas D becomes the zero matrix.
As the singular values of a symmetric matrix are the absolute values of its
eigenvalues, a reducible symmetric matrix is also decomposable. However, the
converse is not true: there exist quadratic (even symmetric) real matrices which
are decomposable, still irreducible. The easiest example is the(

0 1
1 0

)
matrix which has eigenvalues 1,−1 and singular values 1, 1. The former ones
cannot be concluded from the spectra of smaller matrices, while the latter ones
can, as the above matrix can be transformed into the identity matrix with
interchanging its rows or columns (but not both of them). Though, for positive
semidefinite matrices, the two notions are equivalent. We also remark that the
rectangular matrix A is non-decomposable if and only if the symmetric matrix
AAT (or, equivalently, ATA) is irreducible.

The block-matrix of the following statement (see e.g. [1]) is also decompos-
able and irreducible at the same time.

Proposition 17 Let A be an m×n real matrix of rank r. Then the (m+n)×
(m+ n) symmetric matrix

Ã =

(
O A
AT O

)
has the following spectrum: its largest and smallest non-zero eigenvalues are

λi(Ã) = −λn+m−i+1(Ã) = si(A), i = 1, . . . , r,

while the others are zeros, where λi(.) and si(.) denote the ith largest eigenvalue
and singular value of the matrix in the argument, respectively.

Hence, the spectrum of Ã is symmetric about the 0, and its rank is 2r; moreover,
the relevant eigenvectors can be composed of the singular vector pairs of A.

The subsequent theorems apply to matrices of nonnegative entries.

Theorem 18 (Frobenius theorem) Any irreducible, quadratic real matrix of
nonnegative entries has a single positive eigenvalue among its maximum absolute
value ones with corresponding eigenvector of all positive coordinates.
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Remark 2 More precisely, there may be k ≥ 1 complex eigenvalues of maxi-
mum absolute value r, allocated along the circle of radius r in the complex plane.
In fact, those complex numbers are vertices of a regular k-gone, but the point
is that exactly one of these vertices is allocated on the positive part of the real
axis, see [11] for the proof.

The Perron theorem is the specialized version of the Frobenius theorem,
applicable to matrices of strictly positive entries.

Theorem 19 (Perron theorem) Any irreducible, quadratic real matrix of pos-
itive entries has only one maximum absolute value eigenvalue which is positive
with multiplicity one, and the corresponding eigenvector has all positive coordi-
nates.

As a byproduct of the proof of the above theorems, the following useful
bounds for the maximum absolute value positive eigenvalue – guaranteed by
the Frobenius theorem – can be obtained.

Proposition 18 Let A be an irreducible n×n real matrix of nonnegative entries
and introduce the following notation for the maxima and minima of the row-sums
of A:

m := min
i∈{1,...,n}

n∑
j=1

aij and M := max
i∈{1,...,n}

n∑
j=1

aij .

Then the single positive eigenvalue λ with maximum absolute value admits the
following lower and upper bound:

m ≤ λ ≤M,

where either the lower or the upper bound is attained if and only if m =M , i.e.
the row-sums of A have a constant value.

Finally, we introduce the Kronecker-sum and Kronecker-product of matrices.

Definition 13 Let Ai be ni × ni matrix (i = 1, . . . , k), n :=
∑k
i=1 ni. The

Kronecker-sum of A1, . . . ,Ak is the n×n block-diagonal matrix A the diagonal
blocks of which are the matrices A1, . . . ,Ak in this order. We use the notation
A = A1 ⊕ · · · ⊕Ak for it.

Definition 14 Let A be p× n and B be q ×m real matrix. Their Kronecker-
product, denoted by A ⊗ B, is the following pq × nm block-matrix: it has pn
blocks each of which is a q ×m matrix such that the block indexed by (i, j) is
the matrix aijB (i = 1, . . . , p; j = 1, . . . , n).

This product is associative, for the addition distributive, but usually not com-
mutative. If A is n× n and B is m×m quadratic matrix, then

|A⊗B| = |A|m · |B|n;

further, if both are regular, then so is their Kronecker-product. Namely,

(A⊗B)−1 = A−1 ⊗B−1.

It is also useful to know that – provided A and B are symmetric – the spectrum
of A⊗B consists of the real numbers

αiβj (i = 1, . . . , n; j = 1, . . . ,m),

where αi’s and βj ’s are the eigenvalues of A and B, respectively.
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