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Abstract

High-Dimensional Dynamic Factor Models are presented in detail: The main

assumptions and their motivation, main results, illustrations by means of el-

ementary examples. In particular, the role of singular ARMA models in the

theory and applications of High-Dimensional Dynamic Factor Models is dis-

cussed. The emphasis of the paper is on model classes and their structure

theory, rather than on estimation in the narrow sense. Our aim is not a com-

prehensive survey. Rather we try to point out promising lines of research and

applications that have not yet been sufficiently developed.
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1 Introduction

Analysis and forecasting of high-dimensional time series recently has attracted sub-
stantial interest, see Hallin et al. (2020). However, “classical” multivariate time-
series models such as autoregressive models suffer from the so-called “curse of di-
mensionality”: Unless additional restrictions are imposed, the parameter spaces grow
with the square of the dimension of the time series, N say; thus in many cases, even
for moderate N , the sample size available is not sufficient to guarantee reliable pa-
rameter estimation. This is true in particular for macroeconomic applications. In
this case, on the one hand, the interaction of several variables, disaggregated se-
ries in particular, may be important for modeling and forecasting. On the other
hand, sample size of macroeconomic time series is in many cases rather limited, e.g.
because of structural changes in the underlying economies.

High-dimensional dynamic factor models are one way to overcome this curse
of dimensionality. Factor models for the case of i.i.d. observations have a long
history, dating back to Spearman (1904) and Burt (1909). Factor models in time-
series context have been proposed much later, in particular by Geweke (1977) and
Sargent and Sims (1977), Watson and Engle (1983), Quah and Sargent (1993). The
basic idea is to separately model the comovement between the variables on the one
hand, and the individual, or idiosyncratic movement on the other hand. Equiv-
alently, the variables are decomposed as the sum of a latent variable, or common
component, and an idiosyncratic component.

The above factor models are “exact” in the sense that the idiosyncratic compo-
nents are assumed to be cross-sectionally uncorrelated at all leads and lags. Inspired
by the idea of risk diversification, Chamberlain (1983) and Chamberlain and Rothschild
(1983) introduced the notion of “approximate” factor models, which are high-dimensional
(potentially infinite-dimensional) models where the idiosyncratic terms are allowed
to be cross-sectionally dependent, although in a weak sense. This idea has been
extended to the linear dynamic case by Forni et al. (2000), Forni and Lippi (2001),
Stock and Watson (2002a,b), Bai and Ng (2002), Bai (2003), leading to the class of
linear High-Dimensional Dynamic Factor Models, Dynamic Factor Models for short
(DFM).

The present paper does not contain a comprehensive survey. We go over the
main assumptions and results with the purpose of pointing out lines of research that
have not yet been sufficiently developed.

In Section 2 we describe the model class of DFMs, thus the decomposition of
the observable N -dimensional vector yNt into common and idioyncratic components,
χN
t and ξNt respectively. We assume that χN

t has rational spectral density fN
χ . The

rank q of fN
χ does not depend on N , for N sufficiently large. The state dimension
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of minimal, stable and miniphase state space realization of fN
χ is independent of N .

(This can be rephrased as saying, that there is a finite number of “static” factors,
see Section 3.)

In Section 3 we discuss the model for the process of the common components.
Precisely, the common components are represented as linear combinations of a finite-
dimensional vector process, whose coordinates are called the (minimal) static factors.
The latter are modeled as an ARMA system driven by a vector white noise whose
coordinates are called the dynamic factors. Here we introduce the so-called singular
ARMA (or state-space) systems. These generateN -dimensional stationary processes
with rational spectral density, whose rank is less than N : we call them singular1.
We argue that, under our assumptions, this is obviously the case for the common-
component vector, and is very likely for the factor vector. On the other hand, it has
been shown that singular ARMA processes can (generically) be modeled as finite
AR’s, see Section 3.3, which implies a most important simplification in the modeling
of common components and static factors.

In Section 4 we describe techniques to obtain the common components and fac-
tors from the observable vector yNt , for N and T (the number of observations for
each time series) tending to infinity. In Section 4.1 we show how principal compo-
nents (PCA) can be used. The underlying estimation procedure is to estimate the
static factors by PCA in a first step and then to estimate an ARMA or AR model
in order to describe the dynamics of the static factors. An alternative approach, see
Section 4.3, is to assume a dynamic factor model with autoregressive static factors
and cross-sectionally uncorrelated idiosyncratic components, thus an exact factor
model, and to put this in a state-space framework. In this framework (once the
integer specification parameters have been fixed) an EM algorithm with the E-step
based on Kalman filtering can be applied. That an exact factor model can be used
to estimate a DFM has been shown in Doz et al. (2012), see 4.3.

In the case where no N -independent static factors exist, frequency-domain meth-
ods, as described in Section 4.2, may be applied.

In Section 5.1 we present some applications of the results on singular ARMA
models to empirical macroeconomic analysis, to the so-called fundamentalness prob-
lem in particular. Some results on cointegration for singualar ARIMAs are presented
in Section 5.2.

1Not to be confused with singular processes in the sense of Kolmogorov.
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2 High-Dimensional Dynamic Factor Models (DFM).

The Model Class

The basic idea is to represent the N -dimensional observation vector at time t ∈ Z,
yNt say, as

yNt = χN
t + ξNt , (2.1)

where (χN
t | t ∈ Z) and (ξNt | t ∈ Z) are the N -dimensional processes of common and

idiosyncratic components respectively. The one-dimensional processes (χit, t ∈ Z)
are strongly dependent across the index i, whereas the processes (ξit, t ∈ Z) are
weakly dependent. The precise meaning of strong and weak dependence is given
below.

Throughout, except for Section 5.2, we assume that (χN
t ) and (ξNt ) are wide-sense

stationary. In addition, throughout we assume

EχN
t = EξNt = 0 ∀t (2.2)

EχN
t ξ

N
s

′

= 0 ∀t, s, (2.3)

and that the spectral densities of (χN
t ) and (ξNt ) exist. As a consequence, (yNt ) is

stationary and has a spectral density, which, using an obvious notation, is:

fN
y (λ) = fN

χ (λ) + fN
ξ (λ), λ ∈ [−π, π]. (2.4)

Throughout, z is used for a complex variable as well as for the backward shift
on Z.

The following assumptions constitute the class of DFM’s considered in the present
paper (we follow here Deistler et al. (2010)):

Assumption 1. For all N , fN
χ is a rational spectral density.

An obvious consequence of Assumption 1 is that fN
χ has constant normal rank,

i.e. has the same rank almost everywhere on [−π, π].
Here, for asymptotic analysis not only the sample size T , but also the cross-

sectional dimension N is tending to infinity—this has an empirical motivation in the
study of high-dimensional vector time series, i.e. vector time series whose dimension
is allowed to be close to or even higher than the sample size. Thus the underlying
process considered is a double-indexed stochastic process (yit | i ∈ N, t ∈ Z),
corresponding, as N varies, to a nested sequence of models (2.1), in the sense that
yit, χit, and ξit do not depend on N , for i ≤ N .

Assumption 2. We suppose that there exists N0 ≥ q such that, from N0 onwards,
the rank of fN

χ is independent of N . Such rank is denoted by q.
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As is well known, see e.g. Hannan and Deistler (2012), every rational spectral
density can be described by an ARMA or alternatively a state space system.

Assumption 3. The state dimension of a minimal, stable and miniphase state space
realization corresponding to fN

χ is independent of N from a certain N1 onwards.
Such state dimension is denoted by n.

Of course, without loss of generality, we can assume N0 = N1. Next we define
weak and strong dependence. We use ωN

ξ,s(λ), ω
N
χ,s(λ), ω

N
y,s(λ) to denote the s-th

largest eigenvalue of the Hermitian matrix fN
ξ (λ), fN

χ (λ), fN
y (λ), respectively.

Assumption 4. Weak cross-sectional dependence of (ξNt ). The eigenvalues ωN
ξ,1(λ)

are uniformly bounded, i.e. there exists B > 0 such that ωN
ξ,1(λ) < B for all N and

λ.

Assumption 5. Strong cross-sectional dependence of (χN
t ). The eigenvalues ωN

χ,s(λ),
s = 1, . . . , q, diverge as N → ∞, λ almost everywhere in [−π, π].

Note that Assumptions 4 and 5 place restrictions on the cross-dependence of the
idiosyncratic and common component respectively, not on their autocorrelations.
Note also that the assumptions defining the common and idiosyncratic terms are
asymptotic, for the number N of observable variables tending to infinity, so that in
empirical application the observable vector yNt is supposed to be high dimensional.

Forni and Lippi (2001) prove that representation (2.1) is identified. More pre-
cisely, if χ̃N

t , ξ̃Nt and the integer q̃ fulfill

yNt = χ̃N
t + ξ̃Nt , for all N,

(2.2), (2.3) and Assumptions 1, 2, 4 and 5, then q̃ = q, χ̃N
t = χN

t , ξ̃Nt = ξNt .
DFM’s generalize exact dynamic factor models, considered in Geweke (1977),

Sargent and Sims (1977), where N is fixed andfN
ξ (λ) is diagonal, i.e. the one-

dimensional idiosyncratic processes are mutually uncorrelated at any lead and lag.
Exact dynamic factor models are rather restrictive, in that the class of spectral
densities corresponding to them is restricted, in particular if q is small relative to N
(which is the most important case), see Scherrer and Deistler (1998). On the other
hand, for q small enough in relation to N , identifiability results are available for
fixed N , see again Scherrer and Deistler (1998).

In general, several interpretations for DFM’s are possible. E.g., the components
ξNt may be interpreted as “measurement” error and χN

t as unobserved “true” vari-
ables; this is in line with errors-in-variables models, which, from an abstract point of
view, are the same as factor models. An alternative interpretation of (2.1) is the de-
composition of observations into a part (χN

t ) representing the comovements between
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the variables (for instance representing the “market” effect on all stock prices) and
individual movements (ξNt ) (representing the firm’s specific effect). The compo-
nents ξit are usually called the idiosyncratic components, while the latent variables
χit are referred to as the common components.

It is easy to see that, given a bijective map g : N → N, if Assumption 5 holds
for the process (χit | i ∈ N, t ∈ Z), then it holds for (χg(i),t | i ∈ N, t ∈ Z), because

the vector χN
t is nested in the vector χg,M

t = (χg(1),t · · · χg(M),t) for some M . As
a consequence, ωN

χ,s(λ) ≤ ωg,M
χ,s (λ), see e.g. Forni and Lippi (2001), Fact M, (b), p.

1121. Thus Assumption 5 holds irrespective of the order of the variables yit (and
thus χit).

However, the speed of divergence of the eigenvalues ωN
χ,s(λ), s = 1, . . . , q, depends

on that order. A simple example is the following. Let (as, s ∈ N) be a square
summable sequence of real numbers and (js, s ∈ N) a sequence of positive integers.
Then let

χit = bivt,

where vt is a unit-variance scalar white noise and the coefficients bi are the following:

1, a1, . . . aj1, 1, aj1+1, . . . aj1+j2, 1, aj1+j2+1, . . . (2.5)

In this case we have

ωN
χ,1(λ) =

N
∑

h=1

b2h.

In particular, if N = K + j1 + . . .+ jK ,

ωN
χ,1(λ) = K + a21 + a22 + · · ·+ a2j1+···+jK

.

Assuming that js = 1 for all s, we see that, for N odd,

lim
N→∞

ωN
χ,1(λ)

N
= lim

N→∞

K + a21 + · · ·+ a2K
2K

=
1

2
.

On the other hand, assuming that js = s, we obtain a reordering of the coefficients
bi, with ones appearing at linearly increasing intervals. It is easy to see that in this
case the eigenvalue ωN

χ,1(λ) grows asymptotically at speed N1/2. DFM’s in which
the eigenvalues are assumed to diverge with rates Nα, 0 < α < 1, known as models
with “weak factors”, necessarily rely on a particular assumption on the order of the
variables, see Onatski (2012) and related literature.
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3 Modeling the Latent Process

3.1 Singular ARMA and state space systems

By Assumptions 1 and 2, the latent process (χN
t ) has a rational and, for N > N0 ≥ q,

singular spectral density. By its rationality, it can be represented by a singular
ARMA or state space system, i.e. an ARMA or state space system with a singular
innovation variance. For regular ARMA or state space systems, i.e. systems whose
output has an a.e. nonsingular spectral density, we refer to Hannan and Deistler
(2012), Deistler and Scherrer (2019); for the singular case see Section 3.3.

Hereafter, unless strictly necessary, we omit the superscript N . For the ARMA
system, assuming that N ≥ N0, we have

P (z)χt = Q(z)vt, P (z) = P0 −
S
∑

j=1

Pjz
j , Q(z) =

S′

∑

j=0

Qjz
j , (3.1)

where vt is an orthonormal q-dimensional white noise, with Pj ∈ RN×N , Qj ∈ RN×q.
Moreover,

detP (z) 6= 0 for |z| ≤ 1, (3.2)

which is the stability condition, and

rankQ(z) = q, for |z| ≤ 1, (3.3)

which is the strict miniphase condition.
Thus the steady state solution of (3.1) is

χt = P−1(z)Q(z)vt = k(z)vt=
∞
∑

j=0

kjvt−j . (3.4)

Due to the stability and the miniphase conditions, (3.4) is a Wold representation,
vt are innovations and the one-step ahead prediction error for χt, given its past χs,
s < t, is k0vt, see below. The spectral density of (χt) is of the form

fχ(λ) = (2π)−1k(e−iλ)k(e−iλ)∗ (3.5)

where ∗ denotes the Hermite conjugation. fχ(λ) has rank q for all λ ∈ [−π, π].
Given fχ, under conditions (3.2) and (3.3), k(z) is unique up to postmultiplication
by (constant) orthogonal matrices. Moreover:

Assumption 6. We suppose that P0 = IN and that P (z) and Q(z) are left coprime
(see Hannan and Deistler, 2012, p.41)), i.e. the matrix (P (z) Q(z)) has rank N
for all z ∈ C.
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Alternatively, by Assumptions 2 and 3, for N ≥ N0, to fχ(λ) there corresponds
a minimal state-space realization

xt+1 = Fxt +Gwt+1 (3.6)

χt = Hxt, (3.7)

where xt is an n-dimensional state, wt is a q-dimensional orthonormal white noise,
where n and q are independent of N , F ∈ R

n×n, G ∈ R
n×q, H ∈ R

N×n are
parameter matrices. The stability condition is

ρ(F ) < 1, (3.8)

where ρ(F ) denotes the spectral radius of F , and

rank

(

I − Fz −G
H 0

)

= n+ q, for |z| ≥ 1 (3.9)

is the strict miniphase condition.
Under conditions (3.8) and (3.9), wt is an innovation for χt. Moreover, setting

K(z) = H(z−1I − F )−1G,

we have
χt = H(I − Fz)−1Gwt = K(z)wt. (3.10)

Under our assumptions, the innovations and the transfer function are unique up
to premultiplication and postmultiplication by orthogonal matrices, respectively, so
that we can assume with no loss of generality that wt = vt and K(z) = k(z), where
vt and k(z) are defined in (3.1) and (3.4) respectively.

Representation (3.6)–(3.7) implies that, for N ≥ N0, the dimension of the space
spanned by χ1t, χ2t, . . . , χNt, call it SN

t , for any given t, does not exceed n.
Therefore there exists Ñ ≥ N0 and r ≤ n such that for N ≥ Ñ ,

dim(SN
t ) = r. (3.11)

With no loss of generality we can assume that Ñ = N0. By (3.11), χN0+k,t, k > 0,
is a linear combination of χ1t, χ2t, . . . , χN0,t, so that χN0+k,t = Hixt, Hi ∈ R1×n,
where xt is the state vector of the minimal state-space realization for N = N0.
Thus, representation (3.6)–(3.7) holds for all N ≥ N0 with the same xt, wt, F and
G, and nested matrices H . Otherwise stated, (3.6)–(3.7) hold with (3.7) replaced
by χit = Hixt, where Hi is the i-row of the matrix H .

7



Note that there is a Hilbert space (in the Hilbert space L2 of square integrable
random variables) construction of a state-space system, obtained by projecting all
future values of the output process (χt) on the Hilbert space spanned by its past
(see e.g. Akaike 1974). Then, by the rationality of the spectral density, the space
spanned by these projections is finite dimensional and every basis is a minimal state,
see e.g. Hannan and Deistler (2012), Deistler and Scherrer (2018). We will call this
the Kalman-Akaike realization of a state-space system.

The state space system (3.6)–(3.7) corresponds to a definition of past and future,
respectively, as χs, s ≤ t and χs, s ≥ t. If we, however, define the past as χs, s < t,
the Kalman-Akaike realization leads to a system of the form

x̄t+1 = F̄ x̄t + Ḡvt (3.12)

χt = H̄x̄t +B0vt (3.13)

and the corresponding representation of the transfer function is

H̄(Iz−1 − F̄ )−1Ḡ+B0. (3.14)

Note that now we impose a stability and a minimum phase condition analogous to
(3.8) and (3.9) respectively, for (F̄ , Ḡ, H̄, B0). Moreover, H̄x̄t is the one-step ahead
forecast for χt and B0vt the corresponding one-step ahead prediction error.

When N > N0 ≥ q, so that (χt) is a singular stochastic process, i.e. a process
with a singular spectral density, the left inverse of k(z) is not unique. To see this,
consider the Smith-McMillan form (see e.g. Hannan and Deistler (2012))

k(z) = u(z)d(z)v(z), (3.15)

where u(z) and v(z) are N × N and q × q, respectively, unimodular polynomial
matrices (i.e. their determinants are non-zero constants) and

d(z) =

























ǫ1(z)
ψ1(z)

0 · · · 0

. . .

0 0 · · · ǫq(z)
ψq(z)

0 0 · · · 0
...
0 0 · · · 0

























,

where the matrix of zeros at the bottom is (N − q)× q, ǫi and ψi, for i = 1, . . . , q,
are relatively prime monic polynomials, ǫi divides ǫi+1 and ψi+1 divides ψi. Then
a particular causal left inverse is given by

h−(z) = v−1(z)(d′(z)d(z))−1d′(z)u−1(z). (3.16)
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As is easily seen, h−(z) has no poles or zeros for |z| ≤ 1 so that

vt = h−(z)χt (3.17)

is a causal relation and thus (vt) are indeed innovations.
In order to uniquely determine k(z) corresponding to the Wold decomposition

from fχ (compare (3.5)), in addition to stability and the miniphase assumption, we
have to remove its non-uniqueness caused by post-multiplying by a q× q orthogonal
matrix. This leads to the following assumption guaranteeing uniqueness of k(z):

Assumption 7. For q = r, we assume that k(0) = IN , i.e. Q0 = IN holds. For
q < r, we assume that the top q × q submatrix of k(0) is (1) non-singular (which is
the case generically) and (2) lower triangular (with non-zero diagonal elements).

3.2 Static and dynamic factors

In Section 3.1 we have argued that by Assumption 3, under a suitable choice of N0,
for N ≥ N0 the dimension of the space SN

t spanned by χit, i = 1, . . . , N is r. Let
(ft) be an r-dimensional process such that
(i) ft forms a basis in SN

t ,
(ii) ft = Sχt, with S independent of t.
Of course (i) and (ii) imply that (ft) is weakly stationary with a rational spectral
density and that

χt = Lft, (3.18)

where L is an N × r matrix independent of t. The vector ft is called a vector of
(minimal) static factors and L the corresponding loading matrix.

As is easy to see, a minimal static factor is unique up to premultiplication by
a constant non-singular matrix T and the factor loading matrix L is unique up to
postmultiplication by T −1. By (3.7), the state xt is a static factor, though in general
not a minimal one.

In particular, let (ft) be a process of static factors corresponding to N0. Because
dimSN

t = dimSN0

t for all N > N0, ft is a basis in SN
t for all N > N0. Thus there

exists a representation (3.18) in which the factors are independent of N and the
matrix L corresponding to N is nested in the matrix L corresponding to M , for
M > N . In other words, there exist an r-dimensional vector of factors ft and a
matrix L ∈ R∞×r such that χit = Lift, for all i ∈ N, where Li is the i-th row of L.

Of course, for estimation uniqueness of ft and L is desirable. A common normal-
ization is to assume that the top r× r submatrix of L, L1 say, is nonsingular (which
is the case, generically) and then to impose L1 = Ir. Clearly this corresponds to the
selection of the first r elements of χt as (minimal) static factors. In this case the on-
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and above-diagonal entries of Eftf
′

t are additional free parameters. We will refer to
this normalization as the standard normalization. Another common normalization is
to assume that Eftf

′

t = Ir. Then L is unique up to multiplication by an orthogonal
matrix, which is made unique by assuming appropriate Q − R decompositions for
L1.

A special explicit form of the static factors can be obtained in the following way.
Let R be an N × r matrix such that RR′ = γχ(0), the expected value of χtχ

′

t. As
γχ(0) has rank r for N ≥ N0, we have rankR = r for N ≥ N0 as well. Now define

ft = (R′R)−1R′χt (3.19)

= (R′R)−1R′k(z)vt = w(z)vt, (3.20)

(see (3.4) for the first equality in (3.20)). Note that ft is orthonormal and that
L = R.

When R = P , where P has the first r normalized eigenvectors of γχ(0) on the
columns, the factors are the first r principal components of χt. Note that if we take,
for each N , ft as the first r principal components of χN

t , the factors depend on N
and the matrices L are not nested. The same occurs if the principal components are
normalized, that is if R =

√
Λ−1P, where Λ is the diagonal matrix with the first r

eigenvalues of γχ(0) on the diagonal.
Obviously, if the rank of the r× r spectral density of (ft) were less than q, then

by (3.18) Assumption 2 would be violated, so that r ≥ q must hold. The spectral
density of (ft) is then nonsingular or singular, for r = q or r > q respectively. Thus
the dynamics of the static factor process (ft) can be represented by a nonsingular or
singular ARMA process of type (3.1), respectively. By (3.18) and (3.20), the Hilbert
spaces spanned by χt and ft are the same and therefore, vt is an innovation for ft
as well and k(z) = Lw(z) is the corresponding transfer function.

The innovations (vt) in (3.4), and (3.20), are called the (minimal) dynamic fac-
tors. As has been stated already, under our assumptions, for given (ft) they are
unique up to premultiplication by a non-singular matrix or by an orthogonal matrix
if we assume orthonormality of vt.

Piecing together what we have seen here and in the previous section, under
Assumption 3 the latent variables can be represented as follows:

χit = Lift (3.21)

α(z)ft = β(z)vt, (3.22)

for i ∈ N, where Li is the i-th row of the matrix L ∈ R∞×r and

α(z) = Ir −
p

∑

j=1

Ajz
j , Aj ∈ R

r×r, β(z) =

m
∑

j=0

Bjz
j , Bj ∈ R

r×q,
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and where we assume that α(z) satisfies the stability condition, β(z) satisfies the
the miniphase condition (that is, respectively, (3.2) with P (z) replaced by α(z) and
(3.3) with Q(z) replaced by β(z)) and that α(z) and β(z) are left coprime as P (z)
and Q(z) in Assumption 6.

Lastly, let us point out that normally the literature on DFM’s assumes, rather
than our Assumption 3, the existence of representation (3.21)–(3.22), that is the
existence of N -independent static factors, see the seminal papers Stock and Watson
(2002a,b), Bai and Ng (2002), Bai (2003).

As is seen below, Assumption 3 and representation (3.21)–(3.22) are equivalent.
That Assumption 3 implies representation (3.21)–(3.22) has been proved above.
Conversely, if (ft) fulfills equation (3.22), then it has the minimal state-space rep-
resentation

x̃t+1 = F̃ x̃t + G̃vt

ft = H̃x̃t,

where x̃t is a ñ-dimensional state vector. Thus the N -dimensional vector χt has the
minimal state-space representation

x̃t+1 = F̃ x̃t +Gvt

χt = LH̃x̃t,

where ñ is independent of N , so that representation (3.21)–(3.22) implies Assump-
tion 3.

Another assumption on the static factors is usually imposed, i.e. that the first
r eigenvalues of the covariance matrix γχ(0) diverge as N → ∞. Its introduction
and motivation are better discussed in Section 4.1, where we deal with estimation
of DFM’s.

The advantage of a static factor process (ft) for (χt) is that modeling the dy-
namics of (χt) can be done by modeling the dynamics of (ft), so that the dimension
of the parameter space can be reduced and is independent of N . However, even
for q < N we may have r = N , see Section 4.1. This is the case when there is no
non-trivial constant (i.e. independent of λ) element in the left kernel of fχ(λ), as
this is equivalent to

γχ(0) =

∫ π

−π

fχ(λ)dλ

being nonsingular (for more details see Deistler (2019)).

3.3 Singular ARMA systems: The genericity of the AR case

In this section we explain that for the case r > q “generically”, in a sense to be
described below, the static factor process (ft) in (3.22) is an AR process. This
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is important because estimation in the AR case is much simpler compared to the
ARMA case.

Consider the ARMA system (3.22)

α(z)ft = β(z)vt,

where r > q and thus β(z) is a “tall” matrix. As is intuitively clear, β(z) is generically
zeroless (i.e. in the Smith-McMillan form (3.15) the ǫi are generically constant), since
e.g. the zeros of a suitably chosen nonsingular q × q submatrix of β(z) “typically”
can be compensated by another q × q submatrix of β(z). In other words, and to be
more precise, for given p and m (the orders of the AR and MA matrix polynomials
respectively), generically, i.e. for an open and dense subset in the parameter space,
β(z) has no zeros. This implies that generically the ARMA system (3.22) fulfills the
minimum phase condition or that, equivalently, vt is an innovation process for ft.

As is well known, every zeroless r × q polynomial matrix, with q < r, can be
extended to a unimodular r× r matrix β̃(z) = (β(z) δ(z)), say. Now write (3.22) as

β̃−1(z)α(z)ft =

(

vt
0

)

. (3.23)

Since β̃(z) is unimodular, β̃−1(z) is unimodular too and thus (3.23) is a (singular)
autoregression, additionally satisfying the stability condition (3.2). Multiplying both
sides of (3.23) by (β(0) δ(0))−1, which is of course nonsingular, we obtain:

a(z)ft = bvt, a(z) = Ir −
p̃

∑

j=0

Ajz
j , b ∈ R

r×q, (3.24)

where b = β(0), see e.g. Anderson and Deistler (2008), Anderson et al. (2016).
Thus, in a certain sense, for r > q, “almost every” factor process (ft) can be assumed
to be generated by a singular AR process.

As opposed to regular AR processes (where r = q and b = I hold), here the
assumption a(0) = I does not guarantee identifiability, unless the assumptions that
(a(z) b) is left coprime and that rank (Ap̃, b) = r are imposed.

In this AR setting, the factor process is described by the integer-valued param-
eters r, q and p̃ (the latter being the autoregression order) and the parameter space
guaranteeing identifiability is

Θ = {vec(A1, . . . , Ap̃, b), where (3.2) holds, Ap̃ and b are left coprime

and rank(Ap̃, b) = r } . (3.25)
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However, not every singular AR system can be described in such a parameter space.
For more general parameter spaces see Deistler et al. (2011), where it has been shown
that by prescribing the column degrees of a(z) and by assuming rank (Ac, b) =
r, where Ac denotes the column end matrix, every singular AR system can be
parameterized (see also Section 4.3.2).

It is important to point out that r > q has been invariably observed in empirical
applications of DFM’s to large macroeconomic datasets, see Barigozzi et al. (2021)
for a review. A very interesting consequence of singularity is briefly accounted for
in Section 5.1.

4 Separation of the Common Components. Esti-

mation

4.1 Principal components

We start by illustrating estimation of the latent variables χit, given the observables
yit, by means of this simplest example. Assume that

yit = χit + ξit, χit = Livt, (4.1)

where (vt) and (ξit) are scalar unit-variance white noise processes, fulfilling (2.2)
and (2.3). Moreover, assume that the processes (ξit) are mutually orthogonal at all
leads and lags. We have:

γχ(0) = Eχtχ
′

t =
(

L1 L2 · · · LN

)

′
(

L1 L2 · · · LN

)

γy(0) = E yty
′

t = γχ(0) + IN

The model is static and fχ(λ) = (2π)−1γχ(0) for all λ’s. All assumptions 1 through
4 and 6 are obviously fulfilled. Regarding Assumption 5, the rank of fχ(λ) is 1 so
that q = 1. We have

ωN
χ,1 = (2π)−1

N
∑

i=1

L2
i ,

(which is independent of λ) so that assuming that
∑

L2
i → ∞, Assumption 5 is also

fulfilled. Lastly, observe that the first eigenvalue of the matrix γy(0) is

µN
y,1 = (2π)ωN

χ,1 + 1 =
N
∑

i=1

L2
i + 1,
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with left eigenvector (L1 L2 · · · LN ). Now consider the following average of the
observable variables yit, i = 1, · · · , N :

pNy,t =
1

√

µN
y,1

N
∑

i=1

Liyit,

which is known as the first principal component of the N -dimensional vector with
coordinates yit, i = 1, . . . , N , and define

AN
y,t =

1
√

µN
y,1

pNy,t. (4.2)

We see that

AN
y,t =

1

µN
y,1

N
∑

i=1

Liχit +
1

µN
y,1

N
∑

i=1

Liξit =
1

µN
y,1

N
∑

i=1

L2
i vt +

1

µN
y,1

N
∑

i=1

Liξit

=

∑

i=1 L
2
i

∑N
i=1 L

2
i + 1

vt +
1

∑N
i=1 L

2
i + 1

N
∑

i=1

Liξit,

which implies that

E(AN
y,t − vt)

2 =

[

∑

i=1 L
2
i

∑N
i=1 L

2
i + 1

− 1

]2

+

∑N
i=1 L

2
i

[

∑N
i=1 L

2
i + 1

]2 ,

and therefore that the limit in mean square of AN
y,t, as N → ∞, is vt. Also, in mean

square, the projection of yit on AN
y,t converges to χit and the regression coefficient to

Li.
Example (4.1) illustrates the basic features of the estimation techniques used in

DFM’s. The weighted average AN
y,t, which is the rescaled first principal component of

the observable variables yit, does both the “cleaning” of the y’s, in that it averages
out the idiosyncratic components, and the consistent estimation of the common
components.

However, the estimate AN
y,t is defined using the population covariances of the y’s—

as though, so to speak, T were infinite—and is therefore unfeasible. In empirical
situations, such covariances are estimated and depend both on N and T . Moreover,
the principal-component technique must be extended to the general case, in which,
firstly, r, the number of static factors, can be greater than q and q can be greater
than unity and, secondly, the static factors depend on the dynamic factors through
an ARMA model. Before we go over the estimation procedure in the general case
we must however introduce another assumption.
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Assumption 8. The r largest eigenvalues of the covariance matrix γχ(0) diverge as
N → ∞.

We show below, by means of an example, that Assumption 8 is not a consequence
of Assumption 5 and that it is necessary for consistent estimation of the space
spanned by the factors ft.

Note that if the static factors are orthonormal, γχ(0) = LL′. In any case, as the
covariance matrix of ft is nonsingular, Assumption 8 is equivalent to asssuming that
the first r eigenvalues of LL′ diverge as N → ∞.

Under the assumptions 1 through 8, the first step of the procedure consists in
the estimation of the integers q and r. This is a non-standard problem because,
firstly, both T and N tend to infinity, and, secondly, the factors are estimated,
not observed. Bai and Ng (2002) provide a class of information criteria allowing
to consistently estimate r. In the same vein see Hallin and Liška (2007) for the
estimation of q.

The second step estimates the static factors ft. By (2.1) and (3.21), setting
Li = (Li1 Li2 · · · Lir),

yit = Lift + ξit = Li1f1t + Li2f2t + · · ·+ Lirfrt + ξit.

The first r principal components of the observable variables yit, rescaled as in (4.2),
are computed, based on their estimated covariances, and used to estimate the space
spanned by the factors ft. The common components χit and the loadings Li are
estimated by regressing the y’s on the estimated factor space. Bai (2003) proves,
under some additional technical assumptions, that these estimates of the common
components converge in probability to their population counterparts, as both N and
T tend to infinity, with rate

max

(

1√
N
,

1√
T

)

.

In the third step an ARMA model for the estimated static factors is estimated,
see equation (3.22), this leading to the estimation of the dynamic factors as the
innovations of the ARMA model. When r > q the ARMA can be replaced by a
singular AR, see Section 3.3. For this approach see Forni et al. (2009).

Some observations are in order.
(I) Firstly, let us show by an example that Assumption 8, which is the static coun-
terpart of Assumption 5, is necessary for consistent estimation by means of principal
components. Let us slightly modify model (4.1) in the following way:

y1t = vt + vt−1 + ξ1t

yit = vt + ξit, for i > 1.
(4.3)
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The space SN
t , spanned by χit, i ≤ N , for N > 1, has dimension 2, so that r = 2, a

basis being f1t = vt, f2t = vt−1. It is fairly easy to see that both the first eigenvalue
of γχ(0) and of fχ(λ) diverge at rate N . However, the second eigenvalue of γχ(0)
is bounded. Thus Assumption 5 holds with q = 1 but Assumption 8 does not. It
also easy to see that the first rescaled principal component converges to vt, but
the second does not “clean” the variables yit from the idiosyncratic component and
therefore does not converge to the space spanned by the factors. The consequence
is that the common and idiosyncratic components of yit, as estimated by principal
components, are, respectively:

vt and vt−1 + ξ1t for i = 1,

vt and ξ1t for i > 1.

For another example consider

χit = vt +Mivt−1 (4.4)

with
∑

∞

i=1M
2
i < ∞. In this case the common and idiosyncratic components of yit

estimated by the principal components are vt and Mivt−1 + ξit, respectively.
(II) What examples (4.3) and (4.4) show is that in order to “finally” (i.e. forN → ∞)
separate the idiosyncratic from the common components it is necessary that each
factor is loaded infinitely often and that the loading coefficients, if declining, do
not decline too fast. This is usually rendered by saying that the factors must be
“pervasive” and has a precise formulation in Assumption 8.

4.2 Generalized Dynamic Factor Models

Let us conclude this section by mentioning a strand of literature in DFMs in which
Assumption 3 does not necessarily hold. As we have seen, Assumption 3 is equivalent
to assuming that the dynamics of the latent variables χit are completely accounted
for by the dynamics of the finite-dimensional, N -independent vector ft, via the static
loadings Li. The following factor model is an elementary example in which no static
factors exist. Let

χit =
1

1− αiz
vt, (4.5)

where vt is scalar unit-variance white noise, −0.8 ≤ αi ≤ 0.8, αi 6= αj for all i and
j, i 6= j. We have fχ(λ) = (2π)−1HN (λ)H

∗

N(λ), where

HN(λ) =
(

(1− α1e
−iλ)−1 · · · (1− αNe

−iλ)−1
)

′

.
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As fχ(λ) has rank one for all λ, the first eigenvalue of fχ(λ) is its trace, that is

ωN
χ,1(λ) = (2π)−1

N
∑

j=1

|1− αie
−iλ|−2.

Because ωN
χ,1(λ) diverges for all λ, we have q = 1. On the other hand,

χit = vt + αivt−1 + · · ·+ αN−1
i vt−N+1 + · · · .

If the matrix γχ(0) = Eχtχ
′

t were singular then the N × N matrix with αm−1
i in

entry (i, m), with i,m = 1, . . . N should be singular. But the determinant of the
latter is the Vandermonde determinant of α1, . . . , αN−1, which vanishes only if at
least two of the α’s are equal. Thus the dimension of the space SN

t is N , not some
N -independent r, and Assumption 3 does not hold. As a consequence the estimation
technique based on a fixed finite number of principal components does not apply.

The DFM without Assumption 3 has been studied by means of frequency-domain
methods in Forni et al. (2000), Forni and Lippi (2001), Hallin and Lippi (2013),
Forni et al. (2015), Forni et al. (2017), Forni et al. (2018), and called Generalized
Dynamic Factor Model. The main tool is the dynamic principal component analysis
introduced in Brillinger (1981), which consist of linear combinations of current, past
and future values of the observable variables yit (instead of just current values as in
the standard principal components).

We cannot discuss here the merits of this “dynamic” approach relative to the one
adopted in the present paper. We limit ourselves to observing that by means of the
dynamic principal components the latent variables in model (4.5) can be consistently
estimated. Moreover, by means of the dynamic principal components, the common
and idiosyncratic components of the variable y1t in example (4.3) would be correctly
estimated as vt+ vt−1 and ξ1t respectively. The same holds for example (4.4), where
by means of the dynamic principal components we estimate the latent variables
vt +Mivt−1. Thus the approach based on the dynamic principal components gives
the correct results even when Assumption 3 does not hold, or when Assumption 3
holds but not Assumption 8.

4.3 A State-Space Formulation of a DFM. Generic Identifi-

ability and Maximum Likelihood Estimation

4.3.1 The State-Space Formulation

A different approach to estimation of DFM’s has been introduced in Doz et al.
(2012). The paper employs a maximum likelihood estimator for the DFM resulting
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from the assumption that the idiosyncratic components are cross-sectionally uncor-
related, and shows that this misspecification has no effect on the estimated common
components as N → ∞. See also Bai and Li (2016), Barigozzi and Luciani (2019)
and Poncela et al. (2021). This motivates the following formulation of a DFM in
state space.

To repeat, it is assumed that the underlying model is an exact factor model, i.e.
that the univariate idiosyncratic components are mutually uncorrelated; in addition
we assume that they are of AR(1) type (the latter can easily be generalized). Both
assumptions of course restrict generality, but are nevertheless appropriate for many
applications. An advantage of the state-space formulation is that an EM algorithm of
Shumway-Stoffer type, see Shumway and Stoffer (2000), can be used for parameter
estimation by means of the Kalman smoother. Clearly in this case identifiability is
an important advantage.

We retain the assumption that N > r ≥ q and as earlier, we have the latent
variables and minimal static factors related by (3.18). Further, in case r > q, and
relying on an assumption of genericity, there is no loss of generality in working with
an AR model for the minimal static factor process as given by (3.24). Indeed, even
if r = q, we shall assume that such a model is valid. This, of course, is not a
consequence of genericity, and is restrictive.

Next, we shall assume that the i-th entry of the idiosyncratic component, ξit, is
the first order AR process:

ξi,t = δiξit−1 + ηit (4.6)

where |δi| < 1, i = 1, 2, . . . , N , and (ηit) are mutually uncorrelated zero-mean
white noise processes, and also uncorrelated with the process vt driving the factor
process model.

These assumptions follow the construction of a state-space model, where the
(rp̃+N)-dimensional state vector is taken to be

xt =















ft
ft−1

...
ft−p̃+1

ξt















(4.7)
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The model is given by

xt+1 =



















A1 A2 . . . Ap̃−1 Ap̃ 0
I 0 . . . 0 0 0
0 I . . . 0 0 0
...

...
0 0 . . . I 0 0
0 0 . . . 0 0 δ



















xt +



















b 0
0 0
0 0
...
0 0
0 IN



















(

vt+1

ηt

)

= Axt +B

(

vt+1

ηt

)

yt = [L 0 IN ]xt = Cxt

(4.8)

Here,

δ = diag(δ1, δ2, . . . , δN), ηt = (η1t η2t · · · ηNt)
′, ξt = (ξ1t ξ2t · · · ξNt)

′

and, to repeat,

a(z)ft+1 = bvt+1, a(z) = Ir −
p̃

∑

j=1

Ajz
j . (4.9)

Of course, we retain the stability requirement that det(Ir −
∑

j Ajz
j) 6= 0 for z ≤ 1.

Note that the dimension of the state depends on N and that this may cause
problems in proving consistency, see Bańbura and Modugno (2014).

4.3.2 Generic Identifiability

In studying identifiability of such a model, one should eliminate unnecessary param-
eters. Hence we shall assume, as in Section 3.2, the standard normalization for L
(the top r × r submatrix of L is equal to Ir), in order to uniquely obtain L from
Eχtχ

′

t.
We shall assume, using a further appeal to genericity, that none of the quantities

δ−1
i is a zero of det(Ir −

∑

j Ajz
j).

The first step in establishing generic identifiability, is to explain how the sepa-
ration of common and idiosyncratic components can be achieved, or, equivalently,
how we can separate the spectrum matrix fy into its two additive components fχ
and fξ. There are in fact two ways in which this can be done.

First, since the power spectrum fy is rational, it has a partial fraction expansion.
By genericity, each pole is simple. Each δi gives rise to a pole δ−1

i and appears
in the i-th diagonal entry of fξ, but not in fχ, for which all poles are zeros of
det(Ir−

∑

j Ajz
j) 6= 0. Hence the residue matrix associated with the pole δ−1

i in the
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partial fraction expansion of fy is a diagonal matrix of rank 1. On the other hand,
the residue matrix associated with any pole arising as a zero of det(Ir−

∑

j Ajz
j) 6= 0

will generically be a matrix with many, and maybe all, nonzero entries, even should
it have rank 1. Hence the power spectrum fχ can be determined by adding together
those summands of the partial fraction expansion of fy whose residue matrices are
other than diagonal and of rank 1.

For the alternative procedure, let us suppose that N exceeds 2q. We can expect
by genericity that q × q submatrices of fχ obtained by deleting an arbitrary set of
N − q columns and an arbitrary set of N − q rows are nonsingular, while (q + 1)×
(q + 1) submatrices obtained via a like process are necessarily singular. Now for
each diagonal entry of fy, choose a (q+1)× (q+1) matrix of fy by selecting (q+1)
not necessarily continguous rows and (q + 1) not necessarily contiguous columns
containing that diagonal entry but containing no other diagonal entry. Note that
such a choice is possible precisely because N > 2q. The entries of the submatrix will
be identical with the entries of the corresponding submatrix of fχ, save for the entry
corresponding to the single diagonal entry of fN

y . Singularity of the submatrix of fχ
for which all but one entry are known will allow identification of the remaining entry,
which is a diagonal entry of fχ. Since all diagonal entries of fχ can be obtained this
way, and the off-diagonal entries of the matrix are identical with those of fy, again
the separation is achieved.

The next step in establishing generic identifiability is to construct the “real-
valued” parameters L, A1, . . . , Ap̃, b, δ and Eη2it, for given integral-valued specifi-
cation parameters r, q, p̃ from the given spectral density fχ, or, equivalently, from
the second moments of (χt). This is done as follows:
1. From Eχtχ

′

t = LL′, L can be uniquely determined using the standard normaliza-
tion introduced in Section 3.2.
2. The transformation (3.19) then uniquely defines the second moments of the
process (ft).
3. Now consider the autoregression (3.24); then, as well known, the parameters
A1, . . . , Ap̃, b are uniquely defined from the (population) second moments of (ft)
if the following assumption holds:

Assumption 9.

E







ft−1
...

ft−p̃













ft−1
...

ft−p̃







′

> 0 (4.10)

holds.

4. Finally, from (2.4) we obtain fξ from fy and fχ and thus the parameters δ and
Eη2it.
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Note that Assumption 9 is equivalent to controllability of (4.8). Due to our
assumptions, (4.10) is fulfilled, as easily shown, for r = q. For r > q, however, which
in a certain sense is standard, this may not be the case. As shown in Deistler et al.
(2011), see p. 20, in this case a first basis of elements of (f ′

t , . . . , f
′

t−p̃+1) can be
selected and this corresponds to a prescription of column degrees pi ≤ p̃, i = 1, . . . , r,
for a(z) in (4.9). With the corresponding prescription of a state vector, this modified
state space system is controllable (for this argument see also the comment on (3.25)
in Section 3.3).

5 Macroeconomic Applications: Some Consequences

of Singularity

A large literature has used DFM’s as a tool for forecasting key macroeconomic
indicators, see the seminal papers Stock and Watson (2002a,b), see also Forni et al.
(2005) and Stock and Watson (2016). In another important application DFM’s have
been used in structural macroeconomic analysis. It has been shown that by replacing
the macroeconomic variables of interest with their common components, estimated
from a large dataset by the DFM technique, provides a solution to a much-debated
difficulty known among macroeconomists as the “fundamentalness problem”. Such
solution, as we see below, depends on the singularity of the static factors and the
results presented in Section 3.3.

Interesting issues, arising with nonstationarity of the variables yit, which is of
course the case for the majority of the macroeconomic variables, are briefly intro-
duced in Section 5.2.

5.1 Applications to Structural Macroeconomic Analysis

We give here a short illustration of this literature by means of a very simple example.
Consider a DFM with q = 1 and suppose that

yit = vt +Mivt−1 + ξit. (5.1)

Then focus on the vector (χ1t χ2t)
′ :

χ1t = vt +M1vt−1 = (1 +M1z)vt

χ2t = vt +M2vt−1 = (1 +M2z)vt.
(5.2)

This is a singular vector and we see that the 2× 1 matrix
(

1 +M1z
1 +M2z

)
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is zeroless unless M1 = M2, and thus generically zeroless as (M1 M2) varies in an
open set of R2. It is convenient to exclude from the parameter space all points
(M1 M2) with |M1| = 1 or |M2| = 1.

Thus generically the minimum phase condition is fulfilled for (5.2), or, in an
alternate terminology, vt is fundamental in (5.2). Note that this does not imply
that |M1| < 1 or |M2| < 1. In other words, if M1 6= M2, vt is fundamental for the
2-dimensional vector (χ1t) even though it is non-fundamental for each of the scalar
processes χ1t and χ2t taken separately.

Now suppose that an econometrician is interested in y1t and, for the sake of
simplicity, that y1t is observed without error, i.e. y1t = χ1t. We assume also that
y1t = vt+M1vt−1 is a structural equation, i.e. that the parameter M1 and the white
noise vt have a structural interpretation.

Standard Var analysis would estimate a VAR for y1t, which is just an AR in this
case, then the AR would be inverted. As the generating process is an MA(1), this
procedure estimates consistently an MA(1):

y1t = wt +N1wt−1.

Now, wt, being the residual of an AR, is an innovation for y1t, which implies that
|N1| < 1. Thus N1 is equal to M1 only if |M1| < 1, otherwise N1 = 1/M1. The
so-called fundamentalness problem in Structural VAR analysis arises because usually
the econometrician’s information is not sufficient to identify the structural model
among those consistent with the spectral density of the observable vector. In our
case the econometrician is not able to decide between N1, which is by definition less
than unity in modulus, and 1/N1.

The solution of the fundamentalness problem based on DFM’s can be presented,
in the case of our simple example, as follows:
1. We have assumed that y1t, the variable of interest, belongs to a large macroeco-
nomic dataset (yit), i = 1, . . . , N .
2. Assuming that the variables in the dataset have the DFM structure 5.1, with
q = 1 and r = 2, we apply the separation-estimation technique outlined in Section
4, thus obtaining the static factors ft, the loadings Li and the common components
χit.
3. Now consider any 2-dimensional vector (χ1t χit) = (y1t χit), with i 6= 1, for
example χt = (y1t χ2t). An estimate of a singular VAR for χt and its inversion
will consistently estimate a vector MA(1) for χt, with a white noise wt which is
fundamental. On the other hand, vt is generically fundamental in (5.2). Uniqueness
of fundamental representations implies that wt = vt and the first equation in the
estimated vector MA(1) is precisely y1t = vt +M1vt−1.
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Note that in step 3 we estimate a VAR for the common components of χ1t and χ2t.
Alternatively, we can estimate a singular VAR for the factors. For details in the gen-
eral case and macroeconomic applications see Forni et al. (2009), Stock and Watson
(2016), Forni et al. (2020).

5.2 Nonstationary DFMs and cointegration of the factors

In general only some of the processes in an empirical dataset are stationary. Assum-
ing that the nonstationary processes are I(1), the separation-estimation procedure
described in Section 4 applies to the dataset obtained by taking first differences of
the I(1) processes.

Suppose for simplicity that all the processes yit, χit, ft and ξit are I(1). We
consistently estimate (1−z)ft, (1−z)χit and (1−z)ξit. Then the levels are obtained
by integration. This, apart from minor issues regarding the initial conditions, is a
fairly trivial extension. However, if we want to estimate a VAR for the factors ft
or a vector of common components, as in Section 5.1, cointegration must be taken
into account. Indeed, under the assumption r > q, i.e. under singularity of ft, the
spectral density of ft has rank q at all frequencies and therefore at frequency zero,
so that ft is cointegrated with cointegration rank at least r − q.

For cointegration of singular vector processes and the singular version of the
Granger representation theorem, see Deistler and Wagner (2017), Barigozzi et al.
(2020). See also Barigozzi et al. (2021) for estimation and some empirical applica-
tions.
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