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Abstract: We review small- and medium-sized standard and dynamic factor analysis and
include recent asymptotic results on high-dimensional dynamic factor models. The latter
allow the construction of consistent estimators in the factor model, which are based on
principal component analysis techniques either in the time or in the frequency domain.
The point is that when both the number of time series and the number of observations
(time instances) tend to infinity, the error terms become negligible and the spectral gap
in the spectral density decides the number of hidden factors. Althoughmainly developed
within Time Series Econometrics, high-dimensional factor models are quite appealing for
applications to environmental data sets and for expanding (both in time and in the num-
ber of observables) networks. Eventually, in the small word of real-life data (in the pres-
enceof suddeneconomic changes and crises,macroeconomic time series span sometimes
for 10–20 years only), a parametric model with an easily implementable algorithm and a
numerical example is presented.

1 Introduction

In factor analysis, both standard and dynamic, the variability of a set of observed stochastic variables is02443

accounted for by a small (relative to the data set dimension) number of unobservable common factors, plus
variable-specific causes of variation. Factor models belong, therefore, to the wide class of techniques used
to reduce the dimension, hence overcoming the “curse of dimensionality” of observed data sets. In partic-
ular, dynamic factor models can be viewed as representations of high-dimensional stochastic processes03025

that are parsimonious and, therefore, well suited for prediction (see Forecasting, Environmental). On the07702

other hand, depending on the data set under consideration, the factors, after adequate linear transforma-
tion, can be related to causes of variation such as sources of pollution in atmospheric studies, demand and
supply shocks in macroeconomic applications, market confidence and external influences in stock prices,
and so on.
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Dynamic factor analysis (FA) is concerned with a family of stochastic processes, which can be repre-
sented as a common component, driven by the factors plus a process-specific, or idiosyncratic component.
Typically, the factors and the specific components are unobserved mutually orthogonal stochastic pro-
cesses, and the specific components belonging to different processes are orthogonal to each other. Both
assumptions, with some variations, are crucial for identification and estimation of common and specific
components.
In Section 2, the basic notions relative to standard factor models, principal component factor, and the

recently developing independent component analysis (ICA) are recalled. Section 3 is dedicated to dynamic
FA, including the nonparametric setup, the recent studies on high-dimensional dynamic factor models,
and techniques allowing estimation of the factor structure that are alternatives to the standard ones. It
is seen that principal components, which is a valid tool only in special cases within small- or medium-02457

sized factormodels, provide consistent estimators for common and specific components when the number
of observations and the number of variables tend to infinity. A parametric model using finite lags and
applicable for prediction in moderate size time series is also introduced and illustrated via a numerical
example.
Although high-dimensional factormodels have beenmainly developedwithinTime Series Econometrics

(see Econometrics) with applications in macroeconomic analysis, they are perfectly suitable for applica-03440

tions to financial and environmental data as well.

2 Standard Factor Analysis Methods for Reduction of Data Dimension

2.1 Principal Component Analysis (PCA)

Consider an n-dimensional random vector (rv) 𝐗 = (X1, … ,Xn)′ (the vectors are columns, and ′ denotes
the transposition). Let 𝝁 = 𝔼(𝐗) denote its expectation (vector) and C = Var(𝐗) = 𝔼(𝐗 − 𝝁)(𝐗 − 𝝁)′ its
covariance matrix. In many practical applications, 𝐗 has n-dimensional normal (Gaussian) distribution
with parameters 𝝁 and C, denoted by𝒩n(𝝁,C). We usually assume that the distribution of𝐗 is not degen-
erate, that is, rank C = n.
Performing principal component analysis (PCA) on 𝐗means the transformation

𝐗 = U𝐘 + 𝝁 (1)

where the n dimensional rv 𝐘 of the principal components (PCs) has zero expectation and uncorrelated
components, with diagonal covariance matrix 𝚲. Note that U and 𝚲 are obtained from the Spectral
Decomposition C = U𝚲U ′, where the diagonal of 𝚲 contains the eigenvalues 𝜆1 ≥ · · · ≥ 𝜆n ≥ 0 of C,02354

whereas the columns 𝐮1, … ,𝐮n of U are the corresponding orthonormal eigenvectors. As U−1 = U ′, the
PCs are obtained by the transformations

Yi = 𝐮′i(𝐗 − 𝝁), where Var(Yi) = 𝜆i (i = 1, … , n) (2)

As
∑n

i=1 𝜆i = tr C =
∑n

i=1 Var(Xi), in this order, the PCs explain the largest possible part of the total varia-
tion of 𝐗, characterized as follows.

Theorem 1. The variance of Y1 of Equation (2) is the largest possible among the variances of linear combi-
nations 𝐯′(𝐗 − 𝝁), subject to ∥𝐯∥= 1. Successively, the variance of Yk of Equation (2) is the largest possible
among the variances of linear combinations 𝐯′(𝐗 − 𝝁) that are uncorrelated with Y1, … ,Yk−1, subject to
∥𝐯∥= 1, for k = 2, … , n.
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A bit more is true. For every 1 ≤ k ≤ n, the first k PCs give the best k-dimensional approximation of
𝐗 in the following sense: the minimum of 𝔼 ∥ 𝐗 − P𝐗 ∥ with an n × n matrix P of rank k is attained by
the projection P∗ onto the k-dimensional subspace spanned by 𝐮1, … ,𝐮k . In this new coordinate system,
P∗𝐗 = (Y1, … ,Yk , 0, … , 0)′.
We often look for the smallest possible number k of PCs that explain a relatively large part of the total

variance of 𝐗. One can consider the successive ratios
∑k

i=1 𝜆i∑n
i=1 𝜆i

and select a k such that there is a “gap” in the
spectrum of C between 𝜆k and 𝜆k+1.When we have an N-element sample (N > n) from amultivariate nor-
mal distribution (in which case the PCs are not only uncorrelated but also independent), we can perform
a likelihood ratio test for testing the following sequence of null hypotheses:

H0,k ∶ 𝜆k+1 = · · · = 𝜆n for k = 0, 1, … , n − 1

until accepted. By the asymptotic theory of the likelihood ratio tests, the transformed test statistic
−2 ln Tn,k has the form

N(n − k) ln a
g

with a =
�̂�k+1 + · · · + �̂�p

p − k
, g = (�̂�k+1 … �̂�p)

1
p−k

where �̂�is are the eigenvalues of the empirical covariance matrix Ĉ of the sample, and for “large” N , it
asymptotically follows 𝜒2-distribution with degrees of freedom 1

2
(n − k + 2)(n − k − 1) (the decrease in

the number of parameters under the assumption ofH0,k). Given the significance, we stop ifH0,k is accepted,
which can be interpreted as the number of significant PCs is k. The PCs themselves are estimated from the
sample via its mean vector and the spectral decomposition of Ĉ.

2.2 Factor Analysis (FA)

In this article, a smaller number of latent variables explain the correlations between the original ones. We
say that the n-dimensional rv 𝐗 has a factor structure if each variable Xi depends on a small number of
latent common factors plus a component that is specific to Xi. Formally, 𝐗 has a k-factor structure if it
obeys the following model with the integer 1 ≤ k < n:

𝐗 = 𝝁 + B𝐟 + 𝐞 (3)

where the components of the k-dimensional rv 𝐟 = ( f1, … fk)′ are the common factors and the components
of the n-dimensional rv 𝐞 = (𝐞1, … , 𝐞n)′ are the individual factors (disturbances), whereas the n × k matrix
B = (b𝑖𝑗) contains the factor loadings. We make the following assumptions:

𝔼(𝐟) = 𝟎, Var(𝐟) = Ik , 𝔼(𝐞) = 𝟎, Var(𝐞) = D, Cov(𝐟 , 𝐞) = O (4)

where D is an n × n diagonal matrix and the cross-covariance matrix of 𝐟 and 𝐞, denoted by Cov(𝐟 , 𝐞), is
the k × n zero matrix. This means that both the common and the individual factors have uncorrelated
components that are also uncorrelated with each other; further, the factors are normalized so that they
have unit variances. If𝐗 ∼ 𝒩n(𝝁,C), then𝐘 ∼ 𝒩k(𝟎, Ik) is a k-dimensional standard normal rv. However,
its components cannot be obtained with an explicit transformation, like the PCs. The factors are latent
variables that we cannot observe directly, we can only estimate the so-called factor scores.
To identify the model (3), consider the equation

C = BBT + D (5)
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obtained by equating the covariance matrices. This equation is the basis for the maximum likelihood04464

(ML) estimation of the rank k matrix BBT and the diagonal matrix D; further, for testing the hypothesis
that the number of factors is k. For the coordinates and variances of Xis, Equations (3) and (5) provide

Xi = 𝜇i +
k∑

j=1
b𝑖𝑗 fj + ei, Var(Xi) =

k∑
j=1

b2
𝑖𝑗 + Var(ei), i = 1, … , n

That is, every Xi depends on all of the common factors fjs, but only depends on its own individual factor
ei. Here,

∑k
j=1 b2

𝑖𝑗
is the part of the variance of Xi, accounted for the common factors, and it is called com-

munality of Xi; this makes sense when, instead of C, the correlation matrix of Xis is used (it indeed has
rational if Xis are measured on different scales).
In Ref. 1, via counting the number of parameters, it is proved that unique solution to Equation (5) can

be expected with the so-called Lederman bound k ≤ 1
2
(2n + 1 −

√
8n + 1). Also observe that the structure

described in Equations (3) and (4) is not sufficient to identify the factors and the factor loadings: if Q is a
k × k orthogonal matrix, then Q𝐟 and BQ−1 fulfill Equations (3) and (4) as well as 𝐟 and B do. However,
when the factors and factor loadings are linearly transformed as above, the common components

∑k
j=1 b𝑖𝑗 fj

and the specific components ei do not undergo any change. The selection of a particular vector of factors,
that is, the identification of the factors, requires additional criteria. For example, one of the factors has no
impact on some of the variables or the sum of the squares of the loadings of one of the factors is maximum.
Such constraints are discussed in Ref. 1 and they also depend on the particular application.There is a great
variety of FA methods; we consider the following two to be the most important:

• ML-Based FA. If we have an𝒩n(𝝁,C)distributed sample, thenwemaximize its log-likelihood function

−1
2

n ln |C| − 1
2

ntr C−1Ĉ + constant

with respect to B,D subject to C = BB′ + D, where |C| is the determinant of C and Ĉ the sample
covariance matrix, estimated from an independent, identically distributed (iid) sample. To avoid the
ambiguity due to rotation, we also put the constraint that B′D−1B is diagonal. Equivalently, we have
to solve

ln |BB′ + D| + tr (BB′ + D)−1Ĉ → min, subject to B′D−1B diagonal

There are both theoretical results and algorithms based on numerical methods at our disposal to treat
this problem, see Refs 1, 2.

• PC-Based FA. If the variance of ei does not depend on i, that is, D = 𝜎2In with some 𝜎 > 0, then the
columns ofB span the same linear space as the first k eigenvectors ofC do.This is the rationale for using
the first k PCs of 𝐗 to estimate the factors and the factor loadings, a widespread though unwarranted
practice. Actually, Equation (1) yields𝐗 = 𝝁 + U𝐘 = 𝝁 + (U𝚲1∕2)(𝚲−1∕2𝐘), that gives rise to estimate
the factor loading matrix with (

√
�̂�1�̂�1, … ,

√
�̂�k�̂�k), where �̂�is and �̂�is are the first k eigenvalues and

eigenvectors of Ĉ and k is selected according to the spectral gap of Ĉ.

As an example from meteorology, suppose that Xis are the yearly variations of average temperatures,
observed in n = 30 European cities for N = 60 years (this is a sample). The factor structure above, with
k = 1, would explain such a variation as depending on one common stochastic latent variable, plus local
variables that have zero covariance with one another. However, FA was developed by psychometricians in
the first half of the twentieth century (Spearman, Thurstone) and was used to find latent common factors
behind rvs corresponding to results of psychological tests. The very meaning of the factors, like general
intelligence, was established by the experts, based on the loadings of the individual factors in the variables
Xis. The interpretation of the factors is the most straightforward if each variable is loaded highly on at
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most one factor, and if all the factor loadings are either large (in absolute value) or near zero, with few
intermediate values. Then the variables can be divided into disjoint sets, each of which is associated with
one factor, and some variables may be left over. The factor fj can be interpreted as the common feature of
those Xis for which b𝑖𝑗 is large. We can make advantage of a k × k rotation Q such that the factor loading
matrixBQ−1 is the best interpretable in the abovementioned sense. For this convenience, there aremethods
of rotation elaborated, for example, the VARIMAX rotation, see Ref. 2 for details.

2.3 Independent Component Analysis (ICA)

This is a more recent generalization of factoring methods for finding indeed independent and not only
uncorrelated components behind the variables. PCA is mainly applicable to multivariate Gaussian rvs; in
this case, the PCs are not only uncorrelated, but they are also independent. On the contrary, given the
n-dimensional random vector 𝐗 (assume that it is already “whitened,” i.e., Var(𝐗) = In), ICA looks for an
orthogonal transformation, obtained by an n × n orthogonal matrix V such that the mutual information
of the components of the random vector 𝐘 = V𝐗 is minimized. It is defined as

I(𝐘) =
n∑

i=1
H(Yi) − H(𝐘) =

p∑
i=1

H(Yi) − H(𝐗) − log2|V | =
n∑

i=1
H(Yi) − H(𝐗) (6)

where |V | = 1,H(𝐗) = 𝔼(−log2 f (𝐗)) = − ∫ f (𝐱)log2 f (𝐱) d𝐱 is the differential entropy of the continuously
distributed rv 𝐗 with probability density function f . Note that I(𝐘) is also the Kullback–Leibler distance
between the distribution of𝐘 and its independent version, which is the product of its marginals.Therefore,
I(𝐘) is always nonnegative and is zero if and only if the Yis are independent, see Ref. 3.
In view of Equation (6), as H(𝐗) is fixed, the sum of the entropies of Yis should be minimized. Note

that, among the absolutely continuous distributions with equal variance, the Gaussian distribution has the
largest entropy. Therefore, we are looking for the orthogonal transformation V that maximizes the depar-
ture of the distribution of Yis from the Gaussianity. There are algorithms to do so, using the negentropy
measure for this departure or sample entropy estimation.
ICA makes sense if 𝐘 follows a non-Gaussian multivariate distribution, where independence is much

stronger than pairwise uncorrelatedness. If𝐗weremultivariate Gaussian, then the usual PCAwould result
in amultivariate Gaussian𝐘with independent components and I(𝐘) = 0 that cannot be further decreased.
Also note that whitening 𝐗means a preliminary PCA-based FA on it, and via the selection of the orthog-
onal V , ICA can as well be viewed as a method of factor rotation. For further aspects, see Ref. 4.

3 Dynamic Factor Analysis

3.1 Nonparametric View

Standard FA can be generalized to the case of an n-dimensional vector stochastic process 𝐗(t) =
(X1(t),X2(t), … Xn(t))′. Here, t ≥ 0 is the time, and our sample usually consists of observations at discrete
time instances t = 1, … ,T . In the classical FA approach, the data came from iid observations, and
the dimension reduction happened in the so-called cross-sectional dimension, that is, the number n
of variables was decreased. In dynamic FA, the observations 𝐗(t)s are usually not iid, and we want to
compress the information, embodied by them, in the cross-sectional and the time dimension as well.
Sometimes, even the cross-sectional dimension n is large compared to the time dimension T .
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Assume that 𝐗(t) is weakly stationary (see Stationary Processes) with an absolutely continuous spec-04554

trum, that is,𝐗(t) has an n × n spectral densitymatrix𝚺𝐗.With the integer 1 ≤ k < n, the dynamic k-factor
model for 𝐗(t) is

𝐗(t) = 𝝁 + B(L)𝐟(t) + 𝐞(t) = 𝝁 + 𝝌(t) + 𝐞(t) (7)

or with components,
Xi(t) = 𝜇i + bi1(L)f1(t) + · · · + b𝑖𝑘(L)fk(t) + ei(t)

where the k-dimensional stochastic process 𝐟(t) = ( f1(t), … fk(t))′ is the dynamic factor,𝝌(t) is called com-
mon component, the n-dimensional stochastic process 𝐞(t) = (𝐞1(t), … , en(t))T is called noise component,
and the n × k matrix B(L) = (b𝑖𝑗(L)), i = 1, … , n, j = 1, … , k, is the transfer function. Here, L is the lag
operator and b𝑖𝑗(L) is a square-summable one-sided filter, that is, b𝑖𝑗(L) = b𝑖𝑗(0) + b𝑖𝑗(1)L + b𝑖𝑗(2)L2 + …
with

∑∞
𝓁=0 b2

𝑖𝑗
(𝓁) < ∞. Further, the components of Equation (7) satisfy the following requirements:

𝔼(𝐟(t)) = 𝟎, 𝔼(𝐞(t)) = 𝟎, t ∈ ℤ
Cov(ei(t), fj(s)) = 0, i = 1, … , n, j = 1, … , k, t, s ∈ ℤ, s ≤ t
Cov(ei(t), ej(s)) = 0, i, j = 1, … n, i ≠ j, t, s ∈ ℤ, s < t

(8)

If 𝐟(t) and 𝐞(t) are also weakly stationary and they have spectral densities𝚺𝐟 and𝚺𝐞, themodel Equation (7)
extends to the spectral density matrices:

𝚺𝐗(𝜃) = B(e−i𝜃)𝚺𝐟 (𝜃)B(e−i𝜃)∗ + 𝚺𝐞(𝜃), 𝜃 ∈ [−𝜋, 𝜋] (9)

where i is the imaginary unit and ∗ denotes the complex conjugation. Here, we use the representation
theory of weakly stationary processes (as the first and second moments uniquely define the process, we
can use Hilbert spaces for the representation). In this setup, the time-lag can be identified with a unitary
matrix, and the spectral theory of unitary matrices can be used (see Spectral Methods).07422

Very frequently, 𝐟(t) is assumed to be an orthonormal white noise(see Stationary Processes). Then04554

Equation (9) simplifies to
𝚺𝐗(𝜃) = B(e−i𝜃)B(e−i𝜃)∗ + 𝚺𝐞(𝜃) (10)

The so-called static case occurs if, in addition, B is constant (in time). Then with the covariance matrices,
which by slightly abusing the notation are also denoted by 𝚺 (there is indeed a one-to-one correspondence
between them and the spectral density matrices), Equation (10) boils down to

𝚺𝐗 = BB′ + 𝚺𝐞

that resembles Equation (5). Otherwise, Equation (7) is dynamic in that the latent variables fj(t)s can affect
the observables Xi(t)s both contemporaneously and with lags. Using the same example as in the previous
section, here different cities may load the factors with different dynamics, that is, with different loading
polynomials. In case ofmacroeconomic data, the latent dynamic factors are the driving forces of the under-
lying economic stochastic process, describing comovements between the multidimensional and strongly
coherent time series, represented by the variables. It is also noted that estimation of the dynamic model
requires estimation of both the contemporaneous and lagged covariances.Thus, the dynamicmodel, which
yields a richer representation as compared to the standard one, can only be applied when a sufficiently
large data set is available. Like in the standard factor model, neither B(L) nor 𝐟(t) are identified uniquely;
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and given the spectral density 𝚺𝐗, the spectra 𝚺𝝌 and 𝚺𝐞 are generically unique for k ≤ n −
√

n (rem-
iniscent of the Lederman bound). In addition, similar to the standard model, neither the common nor
the specific component change if the factors and the transfer functions are exposed to a regular linear
(dynamic) transformation.
We remark that if conditions are not imposed on the filters b𝑖𝑗(L)s or on the processes 𝐞i(t), the model is

nonparametric. Interesting parametric specifications are obtained by assuming that the vector 𝐞(t) is white
noise and that the filters b𝑖𝑗(L) are finite. See Section 3.3 for this approach.
In the nonparametric setting, the spectral densities can be estimated by ML, using Equation (9) fre-

quency by frequency, that is, using the method employed to estimate Equation (5). Very often, in addition
to the general assumptions (Equation 8), it is assumed that the noise components are uncorrelated, that is,
that 𝚺𝐞 is diagonal, in which case, 𝐞(t) is called idiosyncratic noise. In Ref. 5, it was proved that for dynamic
factor models with idiosyncratic noise, the set of all spectral densities 𝚺𝐗(𝜃) described by Equation (9)
for given k, is a “thin” subset of the set of all spectral densities 𝚺𝐗(𝜃) if k < n −

√
n holds. Our purpose

is to separate this noise component from the common component 𝝌(t) of Equation (7). More specifi-
cally, if 𝚺𝐞(𝜃) = 𝜎2

𝐞 (𝜃)In, the spectral density B(e−i𝜃)𝚺𝐟 (𝜃)B(e−i𝜃)∗ can be estimated by means of Brillinger’s
principal components in the frequency domain, see Ref. 6. This is, in fact, a PCA technique, where we02457

approach the n-dimensional observed process 𝐗(t) by a filtered version of itself, whose spectral density is
of reduced rank (k < n), such that the variance of the residuals is minimized. Akin to the PCAmodel, here
the number of factors k is given and not a property of 𝚺𝐗

[7–10].
In the following sections, we discuss estimation issues in both a nonparametric high-dimensional and a

parametric framework.

3.2 Generalized Dynamic Factor Model (GDFM)

It is often the case that the number ofTime Series available is too large to estimate a dynamic factor model03533

by ML. It can be proved that when the data set is large, PCA is a valid alternative to ML. More precisely,
under suitable assumptions, as bothT (the number of observations) for each time series and n (the number
of time series) tend to infinity, PCs of the observable variables Xi(t)s provide consistent estimators of the
common and specific components.
In a nutshell, the basic idea behind high-dimensional dynamic factor models is that when n → ∞, we

can get rid of the specific components by averaging. As we will see below, the restriction that the specific
components are uncorrelated can even be relaxed so that a “weak” correlation between them is allowed.
Moreover, arithmetic averages are fruitfully replaced by PCs.
Indeed, the assumption that the specific components are uncorrelated is also too restrictive for many

applications., where “local” dependency between the noise components may occur. Moreover, in a num-
ber of applications, for example, in cross-country business cycle analysis, asset pricing, or monitoring
and forecasting economic activity by estimation of common factors (diffusion indices), the cross-sectional
dimension n may be high, possibly exceeding the sample size, see, for example, Ref. 11.
In the subsequent generalmodel, the cross-sectional dimensionn is not fixed, andwe consider the double

sequence {Xi(t) ∶ i ∈ ℕ, t ∈ ℤ}, where the assumption of Equation (7) holds for every vector 𝐗n(t) =
(X1(t), … ,Xn(t))′ with n ∈ ℕ. Thus, we have a sequence of GDFM’s (generalized dynamic factor models)

𝐗n(t) = Bn(L)𝐟(t) + 𝐞n(t) = 𝝌
n(t) + 𝐞n(t), n ∈ ℕ (11)

where the expectations are zeros and the noise vectors 𝐞n(t)s and the transfer functions Bn(L)s are nested;
further, the k-dimensional dynamic factor 𝐟(t) and the dimension k itself do not depend on n. We assume
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that the stochastic process 𝐗n(t) is weakly stationary and has a spectral density (matrix) 𝚺n
𝐗(𝜃), for n =

1, 2, … in a nested way. As 𝚺n
𝐗(𝜃) is Hermitian, its eigenvalues are nonnegative reals, let us denote them

by 𝜆n
𝐗,1(𝜃) ≥ · · · ≥ 𝜆n

𝐗,n(𝜃), which are, in fact, [−𝜋, 𝜋] → ℝ+ functions. Accordingly, 𝚺n
𝐞 (𝜃) will denote the

spectral density matrix of 𝐞n(t) and 𝚺n
𝝌 (𝜃) that of 𝝌n(t).

Weak dependence between the noise components of 𝐞n(t) (instead of the classical assumption of uncor-
relatedness) is formalized by requiring the largest eigenvalue of the spectral density 𝚺n

𝐞 (𝜃) to be uniformly
bounded for all n. At the same time, the first k eigenvalues of 𝚺n

𝝌 (𝜃) diverge almost everywhere in [−𝜋, 𝜋]
as n → ∞. Of course, the conditions of the forthcoming representation result apply to the spectrum of the
observed sequence of time series 𝐗n(t).
Before stating this result, we again emphasize that the basic idea in dealing with GDFMs is to obtain an

increasing amount of information from adding time series by averaging out the noise term. As a simple
example, consider the following one-factor GDFM with Bn = (1, 1, … , 1)T, f (t) iid and ei(t) iid in i and t.
Then, as 1

n
∑n

i=1 ei(t) converges to zero as n → ∞, the noise term is averaged out.
Forni and Lippi[12] provide necessary and sufficient conditions for the existence of an underlying GDFM

in terms of the observable spectral densities 𝚺n
𝐗(𝜃), n ∈ ℕ. Here, we formulate the theorem as is stated in

Ref. 13.

Theorem 2. The double sequence {𝐗n(t) ∶ n ∈ ℕ, t ∈ ℤ} can be represented by a sequence (Equation 11)
of GDFMs if and only if

• the first k eigenvalues, 𝜆n
𝐗,1(𝜃) ≥ · · · ≥ 𝜆n

𝐗,k(𝜃) (in nonincreasing order), of 𝚺n
𝐗(𝜃) diverge almost every-

where in [−𝜋, 𝜋] as n → ∞;
• the (k + 1)th eigenvalue 𝜆n

𝐗,k+1(𝜃) of 𝚺n
𝐗(𝜃) is uniformly bounded for 𝜃 ∈ [−𝜋, 𝜋] almost everywhere

and for all n ∈ ℕ.

In Ref. 14, the authors show that the sequence of PCA models for 𝐗n(t), n ∈ ℕ, approximates the corre-
sponding sequence of GDFMs in probability as n,T → ∞, see also Ref. 13 for details. We saw that in case
of the classical PCA and FA, the PCs do not provide a consistent estimator of the factor structure unless
the specific components have the same variance. However, in the high-dimensional dynamic factor model,
even when the variances of the specific components are not equal and even when the covariance between
them is not zero, the covariances of Xi(t)s are increasingly determined by the covariance of the common
components as n → ∞.
Note that in empirical situations, the number of factors is not known. For further information on this

issue, see Refs 15 and 16. The high-dimensional standard factor model was first introduced in Refs 17
and 18; for extensions to the dynamic case, see Refs 12 and 19.

3.3 Parametric View

Here, under a given number of factors and a finite lag parameter, factor loadings are estimated, while an
autoregression is fitted for the factor process. We present an improved version of the model[20], where the
authors introduced an iteration that uses regression and PCA methods to find the factors one by one; the
method is based on the work of Box and Tiao[7] using canonical transformations for multiple time series.
The improved version[21] is able to extract dynamic factors simultaneously, rather than sequentially.
The input data are n-dimensional observations 𝐗(t) = (X1(t), … ,Xn(t))′, where t is the time and the

process is observed at equidistant instances between T1 and T2. For a given positive integer k < n, we
are looking for (at all leads) uncorrelated factors f1(t), … , fk(t) such that they satisfy the following model
equations.
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1. The first one is the linear model:

fj(t) =
n∑

i=1
b𝑖𝑗Xi(t), t = T1, … ,T2; j = 1, … , k (12)

2. The second one is the dynamic equation of the factors:

f̂j(t) = cj0 +
L∑

𝓁=1
cj𝓁 fj(t − 𝓁), t = T1 + L, … ,T2; j = 1, … , k (13)

where the lag length L is a given positive integer and f̂j(t) is the Lth order auto-regressive prediction
of the jth factor at date t.

3. The third one is the linear prediction of the variables by the factors:

X̂i(t) = d0i +
k∑

j=1
d𝑗𝑖 fj(t), t = T1, … ,T2; i = 1, … , n (14)

The parameters of themodel inmatrix form areB = (b𝑖𝑗), C = (cj𝓁),D = (d𝑗𝑖), i = 1, … ,N , j = 1, … , k,
𝓁 = 1, … L, where the estimates of the parameters cj0, d0i can be expressed in terms of these. The param-
eters are estimated so that the objective function

w0

k∑
j=1

VarL( fj − f̂j) +
n∑

i=1
wiVar(Xi − X̂i) (15)

is minimized on the conditions for the orthogonality and variance of the factors:

Cov( fi, fj) = 0, i ≠ j; Var( fj) = vj, j = 1, … , k (16)

In Equation (15), the subscript L indicates that the time variation is restricted to dates T1 + L, … ,T2 only,
w0,w1, … ,wn are given non-negative constants (balancing between the dynamic and static part), while
the positive numbers vjs are the variances of the individual factors indicating their relative importance.
To estimate the parameters, the covariances between the original and the lagged time series are used.The

estimated covariances between the Xis are collected in the n × n empirical covariance matrix �̂�𝐗 = (𝜎𝑖𝑗).
The lagged time series 𝐙j(t) for j = 1, … , L are defined with the following coordinates:

Zj
i(t) = Xi(t) −

L∑
𝓁=1

cj𝓁Xi(t − 𝓁), t = T1 + L, … ,T2; i = 1, … , n (17)

Let �̂�𝐙j denote the n × n symmetric, positive semidefinite empirical covariance matrix of the lagged time
series 𝐙j(t) of the following entries:

CovL(Z
j
i,Zj

m) =
1

T2 − T1 − L + 1

T2∑
t=t1+L

(Zj
i(t) − Z

j
i)(Z

j
m(t) − Z

j
m) (18)

where Z
j
i =

1
T2−T1−L+1

∑T2
t=T1+L Zj

i(t), i = 1, … , n, j = 1, … , k.
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With these, the objective function (15) to be minimized is

G(B,C,D) = w0

k∑
j=1

𝐛Tj �̂�𝐙j𝐛j +
n∑

i=1
wi𝜎𝑖𝑖 − 2

n∑
i=1

wi

k∑
j=1

d𝑗𝑖

n∑
m=1

b𝑚𝑗𝜎𝑖𝑚

+
n∑

i=1
wi

k∑
j=1

d2
𝑗𝑖vj

where 𝐛j ∈ ℝn is the jth column of the matrix B, and the minimum is taken on the constraints

𝐛Tj �̂�𝐗𝐛h = 𝛿𝑗ℎvj, j, h = 1, … , k (19)

The procedure finding the minimum is based on the following iteration that consists of an outer and
an inner cycle. Choosing an initial B(0) of columns satisfying Equation (19), the following three steps are
alternated in the 𝑖𝑡th outer iteration.

1. Starting with B(𝑖𝑡) we calculate the fjs based on Equation (12), then we fit a linear model to estimate
the parameters of the autoregression (Equation 13). Hence, the current value C(𝑖𝑡) is obtained.

2. On the basis of this C(𝑖𝑡), we find matrices �̂�𝐙j using Equations (17) and (18), j = 1, … , k. Putting this
auxiliary variable into G(B(𝑖𝑡),C(𝑖𝑡),D), we take its minimumwith respect to D, while keeping B and C
fixed. This is done by differentiation. Say, the minimum is taken at D(𝑖𝑡).

3. Now keeping C and D fixed, we minimize G(B,C(𝑖𝑡),D(𝑖𝑡)) with respect to B. This minimization needs
an inner cycle. The B, at which the minimum is attained, will be the next B(𝑖𝑡+1).

With this new B(𝑖𝑡+1), we return to Step 1 of the outer cycle (𝑖𝑡 ∶= 𝑖𝑡 + 1) and proceed until conver-
gence. As the value of the nonnegative objective function is in each step decreased, the convergence of the
algorithm to a local minimum can be guaranteed.
In the inner cycle, we can write G(B,C(𝑖𝑡),D(𝑖𝑡)) as the sum of k inhomogeneous quadratic forms, which

is maximized under orthogonality constraints for the transformed 𝐛js. This problem is solved in Ref. 22
via finding compromise systems of symmetric matrices.
As an application, the authors[21] extracted k = 3 factors out of n = 10 yearly aggregated Hungarian

macroeconomic indicators spanning 1993–2007 with L = 4. As the variables were measured in differ-
ent units, they were normalized; and the reciprocals of their standard deviations were used as weights
w1, … ,wn in the objective function (15). In view of Ref. 20, the authors used the same weights vj =
T2 − T1 + 1 (j = 1, … , k) for the factors and the choice w0 = n∕kv1, ensuring the equilibrium between
the dynamic and static parts.
Figures 1–3 illustrate the dynamic factors in time. The first two factors show some tendency starting

from the year 2000, while the third factor is somewhat antipodal to the first one. Possibly, only the first two
factors are significant, while the next ones are dampened dummies of them. We remark that in our model
k = 3 is, in fact, the maximum number of factors, which does not contradict to certain rank conditions.
The actual number of factors can be less, depending on the least square errors and practical considerations;
it is an expert’s job to decide how many factors to retain.
The coefficients of the matrices B, D, and C are shown in Tables 1–3, respectively. The relatively high

constant terms in the linear prediction of the components by the factors (Table 2) refer to “small” com-
munalities. However, the constant coefficients in the autoregressive model are small (Table 3) and the
coefficient belonging to lag 2 is the largest in all the three factors. Note that since 1990, there are national
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Figure 1. Dynamic factor 1.
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Figure 2. Dynamic factor 2.
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Figure 3. Dynamic factor 3.

Table 1. Factors expressed in terms of the components
(matrix B).

Factor 1 Factor 2 Factor 3

GDP 38.324 −2.541 −6.116
EDU −1.775 5.725 0.015
HEALTH 10.166 0.837 −1.650
IND −0.261 0.255 −0.107
AGR 6.146 2.919 −1.124
ENERGY 24.082 4.592 −4.054
IMP 1.560 −1.209 −0.213
EXP −3.907 −0.233 0.615
INV 2.864 0.038 −0.510
INNOV −0.608 0.197 0.089

elections in every fourth year in Hungary, and lag 2may correspond to themid-period, when themeasures
introduced by the new government could have the higher impact on the economy.
Predictions were also made for 2 years ahead by means of the matrix C. The predicted factor values

for 2008 and 2009 are illustrated by dashed lines and they show decline in all the three factors, possibly
indicating the upcoming economic crisis. The 2008s estimates prohibited a good fit to the factual data in
case of most variables with squared error 1.16 of this only year that is comparable to the MSE 0.82 based
on 15 years.
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Table 2. Components estimated by the factors (matrix D).

Factor 1 Factor 2 Factor 3 Constant

GDP −0.108 −0.025 −0.677 −0.670
EDU −0.142 0.145 −0.877 −8.637
HEALTH 0.115 −0.132 0.656 16.250
IND −0.898 −0.187 −5.784 −14.690
AGR 0.021 0.005 0.137 6.809
ENERGY 0.085 −0.038 0.543 10.055
IMP −0.098 −0.152 −0.868 0.311
EXP −0.516 −0.931 −1.840 109.915
INV −0.209 0.026 −1.341 −6.779
INNOV −0.061 0.121 −0.484 −9.867

Table 3. Dynamic equations of the factors (matrix C).

Lag Factor 1 Factor 2 Factor 3

0 −0.000 0.001 −0.000
1 0.069 0.283 0.117
2 0.473 1.644 0.495
3 0.205 0.229 0.141
4 0.251 −1.168 0.258

4 Conclusion

The basic ideas underlying small- and medium-sized standard and dynamic factor models have been
reviewed. Maximum likelihood is the main estimation tool, whereas the method of PCs is confined to the
special case of equal-variance- specific components.
GDFMs allow for a more general structure for the covariance of the specific components, with zero

covariance between them being no longer necessary. Moreover, as both T and n diverge, PCs, either in the
time or in the frequency domain, provide consistent estimators for the common and specific components.
High-dimensional dynamic factor models exhibit a very general structure, only requiring stationarity

either directly or after a suitable transformation of the data.They are, therefore, a promising tool of analysis
for many empirical situations in which a large evolving data set is available.
A parametric model is also presented which is capable of parameter estimation in small-sized macroe-

conomic problems via techniques of linear models and autoregression. An algorithm is also presented
that uses compromise systems of inhomogeneous quadratic forms and is illustrated via a numerical
example.
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