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In this lesson we collect some basic facts about important classes of 1D
(one-dimensional) stationary time series as a motivation for the multidimen-
sional case. We do it inductively, while proceeding from the simplest 1D
processes to more and more general ones.

Through the technique of linear filtering (i.e. applying a time-invariant
linear filter TLF), parametric families, such as MA (moving average), AR
(autoregressive), and ARMA (both AR and MA) processes are defined. For
any 1D real, weakly stationary process with continuous spectral density f ,
it is possible to find both a causal AR and an invertible MA process with
spectral density arbitrarily close to f . This is because the ARMA processes
have rational spectral densities. Therefore, ARMA processes are vital in
modelling 1D time series. Also, the linear structure of them is in close relation
to the prediction theory of stationary processes.

Under certain conditions, a TLF, applied to a white noise process, results
in a sliding summation (two-sided MA). We will see in the multidimensional
case that these are the processes with spectral density matrix of constant
rank. (In 1D, the spectral density is positive almost surely (a.s.) with respect
to the Lebesgue measure on [−π, π]. The special class of them, the MA(∞)
processes (one-sided MA) are the regular ones.

We also discuss the Wold decomposition of a weakly stationary time series
into a regular and singular part. Again, the regular part is MA(∞), i.e. a
causal (future-independent) TLF. We also consider the spectral form of the
Wold decomposition and the types of singularities. It is important, that in
the frame of non-singular processes, regular processes can coexist only with
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Type (0) singular ones; while adding a regular part to Type (1) or Type (2)
singularities, makes them regular.

1 Time invariant linear filtering

Time invariant linear filters can be used for smoothing the data, estimating
the trend, and eliminating the seasonal and/or trend components of the
data, making it stationary or more conveniently, regular. Latter notion is
introduced in Section 7 of this lesson. The filters in practice are usually
finite, though we first define them as an infinite summation as follows.

Linear filtering of a stationary time series {Xt}t∈Z means applying a TLF
(time-invariant linear filter) to it:

Yt :=
∞∑

j=−∞

ctjXj =
∞∑

k=−∞

bkXt−k (t ∈ Z).

Time-invariance means that the coefficient ctj depends only on t − j, i.e.
ctj = bt−j, giving the final form of a TLF.

The so obtained {Yt} is also a weakly stationary sequence, with spectral
measure

dF Y (ω) = |b̂(ω)|2 dFX(ω) (1)

and the pair (Xt, Yt) (t ∈ Z) has a joint spectral measure (a complex measure
in general)

dF Y,X(ω) = b̂(ω) dFX(ω), (2)

where b̂(ω) =
∑∞

j=−∞ bje
−ijω.

It is important that the above formulas are valid when the sequence of
weights (bj : j ∈ Z) is such that b̂ ∈ L2([−π, π],B, dF ). (When bj = 0 for
|j| > N , the square summability of bjs automatically holds.) In another
wording, the stationary time series {Yt}t∈Z is subordinated to the process
{Xt}t∈Z, i.e., Yt ∈ H(X) for all t.

Proposition 1 (Proposition 3.1.1 of Brockwell & Davis). If {Xt} is any
sequence of random variables such that supt E|Xt| <∞, and if

∑∞
k=−∞ |bk| <

∞, then the series

b(L)Xt :=
∞∑

k=−∞

bkL
kXt =

∞∑
k=−∞

bkXt−k
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converges absolutely with probability 1. If in addition supt E|Xt|2 <∞, then
the series converges in mean square to the same limit.

Here L is the backward shift (lag) operator, so LkXt = Xt−k for any
integer k, and b(z) =

∑∞
j=−∞ bjz

j. In case of a weakly stationary {Xt}, the
sup conditions automatically hold.

The second order, weakly stationary 1D time series {ξt}t∈Z is called white
noise sequence if its autocovariances are c(0) = σ2 and c(h) = 0 for h =
±1,±2, . . . . In other words, ξts are uncorrelated and have variance σ2. We
use the notation ξt ∼ WN(σ2). For example, if ξts are i.i.d., with finite
variance, they constitute a white noise sequence, and in the Gaussian case,
the two notions are the same. When σ2 = 1, we call the white noise sequence
WN(1) orthonormal sequence.

Now the TLF with a white noise sequence is considered, and it is called
causal (future-independent, in other words, regular or purely non-deterministic)
if the so-called sliding summation from −∞ to ∞ is, in fact, one-sided. It
means that Xt depends (randomly) only on the present and past values of
ξt.

2 MA (moving average) processes

Let {ξt : t ∈ Z} be a WN(1) white noise sequence of complex valued random
variables. Recall that its spectral density function is

f ξ(ω) =
1

2π
(ω ∈ [−π, π]). (3)

Define a two-sided infinite complex valued moving average (MA) process
(a so-called sliding summation) by

Xt =
∞∑

k=−∞

bkξt−k, (4)

where the sequence of the non-random complex coefficients {bk} is in `2, that
is,
∑

k |bk|2 < ∞. Then by the Riesz–Fischer theorem, (4) is convergent in
mean square. By Parseval’s theorem, the covariance function is

c(h) = E(Xt+hX̄t) =
∞∑

k=−∞

bkb̄k−h,
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so that {Xt} is a weakly stationary process. It is not difficult to show that
c(h)→ 0 as |h| → ∞. The spectral density of the sliding summation process
(4) is

fX(ω) =
1

2π

∣∣∣∣∣
∞∑

k=−∞

bke
−ikω

∣∣∣∣∣
2

, where
∞∑

k=−∞

|bk|2 <∞. (5)

If bk = 0 whenever k < 0, then one obtains a one-sided (causal, future-
independent) MA(∞) process:

Xt =
∞∑
k=0

bkξt−k, c(h) =
∞∑
k=h

bkb̄k−h (h ≥ 0), c(−h) = c̄(h). (6)

This representation of the process is important as ξt, ξt−1, . . . are considered
as random shocks that influence Xt. In the following definition, finitely many
random shocks suffice.

Definition 1. The qth order moving average process, denoted by MA(q), is
the following finite moving average:

Xt = β(L)ξt =

q∑
k=0

βk ξt−k, (7)

where L is the lag operator and it is substituted for the complex variable z of
the following MA(q) polynomial:

β(z) =

q∑
k=0

βkz
k. (8)

The covariance function of the MA(q) process is

c(h) =

q∑
k=h

βkβ̄k−h (0 ≤ h ≤ q), c(−h) = c̄(h), c(h) = 0 if |h| > q.

Conversely, the following is true.

Remark 1 (Proposition 3.2.1 of Brockwell & Davis). If the autocovariance
function of the zero mean stationary process is such that c(h) = 0 for |h| > q
and c(q) 6= 0, then it is a MA(q) process.
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The spectral density of an MA(q) process is

fX(ω) =
1

2π
|β̂(ω)|2, β̂(ω) = fX|ξ(ω) =

q∑
k=0

βke
−ikω. (9)

Observe that fX(ω) is a 2qth degree polynomial of e−iω. A bit more general,
so-called rational spectral densities come into existence in the subsequent
sections.

3 AR (autoregressive) processes

Next let us consider the first order autoregressive process AR(1), which is, in
fact, a first order stochastic linear difference equation:

Xt = αXt−1 + βξt, t ∈ Z,

where α and β 6= 0 are complex constants. We assume that {ξt} is a WN(1)
(orthonormal) sequence and each Xt depends only on the present and past
values (ξt, ξt−1, . . . ) of the driving white noise process. Iterating the equation
k times we get

Xt = βξt + αβξt−1 + α2βξt−2 + · · ·+ αkβξt−k + αk+1Xt−k−1.

In order that the right side have bounded norm as k →∞, it is necessary that
|α| < 1 (this will be called stability). If that is so, the series

∑∞
k=0 α

kξt−k con-
verges and αk+1Xt−k−1 → 0 as k →∞, since we are looking for a stationary

process, where ‖Xt‖ = (E(|Xt|2))1/2 is constant. Then

Xt = β
∞∑
k=0

αkξt−k, t ∈ Z,

converges in mean square, and it is the only stationary solution of the AR(1)
process. From the above form, we can as well see that it is a causal MA(∞)
process. Its covariance function is

c(h) = |β|2 αh

1− |α|2
(h ∈ Z),

converging to 0 exponentially fast.
Then we generalize the above recursion to the situation, when Xt depends

on its p past values, above the previous white noise term.
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Definition 2. A pth order autoregressive process AR(p), or a pth order
stochastic linear difference equation, is

Xt =

p∑
j=1

αjXt−j + βξt, β 6= 0, t ∈ Z, (10)

or concisely,
α(L)Xt = βξt,

where L is the lag operator and

α(z) = 1− α1z − · · · − αpzp (11)

is the AR(p) polynomial; further, {ξt} ∼WN(1) is white noise sequence.

This means that Xt is determined by finitely many preceding past values
of itself plus a random shock. If the shocks are accumulated in a recursion,
we can write Xt as the infinite summation of those.

To find a stationary solution of this equation, let us look for a causal
MA(∞) solution of form

Xt =
∞∑
k=0

bkξt−k, t ∈ Z, bk ∈ C. (12)

Substitute this in Equation (10) and equate the coefficients of ξ` on both
sides, starting with ξt and working toward the past:

b0 = β,

b1 − α1b0 = 0,

b2 − α1b1 − α2b0 = 0,

...

bp − α1bp−1 − · · · − αpb0 = 0,

bp+k − α1bp+k−1 − · · · − αpbk = 0 (k ≥ 1). (13)

If {αj : j = 1, . . . , p} and β are known, these equations uniquely determine
the coefficients {bk : k ≥ 0} by recursion. The question is whether or not this
sequence will be square-summable, so the proposed solution will converge in
mean square.
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If each (complex) root of the AR(p) polynomial is greater than 1 in abso-
lute value, then the sequence {b0, b1, b2, . . . } will be square summable. Equiv-
alently, if there are no roots of the AR(p) polynomial on the closed unit disc
(|z| ≤ 1), then (12) and (13) give a causal MA(∞) stationary solution of the
AR(p) process (10). In this case we call the AR(p) process stable. Let us
check it for p = 1. The AR(1) polynomial with the only α is 1 − αz. For
its root z, αz = 1, so |z| = 1/|α| > 1 holds if and only if |α| < 1 that was
necessary and sufficient for stability.

The covariance function of AR(p) can be obtained in terms of the coeffi-
cients {bk} by (12):

c(h) = E(Xt+hX̄t) =
∞∑
k=h

bkb̄k−h (h ≥ 0), c(−h) = c̄(h), (14)

and c(h) converges to 0 exponentially fast as |h| → ∞.
However, it is more important to describe the covariance function from

the defining formula (10). Multiply the complex conjugate of (10) by Xt−k,
k ≥ 0, and take expectation. This way we obtain the important Yule–Walker
equations :

c(−k)−
p∑
j=1

c(j − k)ᾱj = δ0kβ̄, k ≥ 0. (15)

The significance of the Yule–Walker equations is that taking them for
0 ≤ k ≤ p, one obtains a system of linear equations for the unknowns
α1, . . . , αp (α0 = 1) and β if the covariances c(0), c(1), . . . , c(p) are known:


c(0) c(1) . . . c(p− 1)
c̄(1) c(0) . . . c(p− 2)

...
...

. . .
...

c̄(p− 1) c̄(p− 2) . . . c(0)



ᾱ1

ᾱ2
...
ᾱp

 =


c̄(1)
c̄(2)

...
c̄(p)

 ,
β̄ = c(0)− c(1)ᾱ1 − c(2)ᾱ2 − · · · − c(p)ᾱp. (16)

The matrix of the system is the p× p Toeplitz matrix Cp, defined in Lesson
1, self-adjoint and non-negative definite. Introducing α := [α1, . . . , αp]

T ,
c := [c(1), . . . , c(p)]T , we can write the above system of linear equations as

Cp ᾱ = c̄. (17)
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If Cp is positive definite, then there exists a unique solution: ᾱ = C−1p c̄.
Otherwise, one may use the Moore–Penrose inverse C−p instead. The system
(17) is always consistent, always has a solution, because it is a Gauss normal
equation, we will further consider in the context of predictions. Indeed,
taking X := [Xp−1Xp−2 . . . X0]

T , we have

Cp = E(XX∗), c̄ = E(XX̄p),

and this shows that the right hand side of (17) is in the column space of the
left hand side.

If the AR(p) process is stable, then rank(Cp) = p, so the system (17) has
a unique solution. In case of a real time series no conjugation is needed, and
α = (CT

p )−1c, which is exactly the same as the solution of the Gauss normal
equation discussed in the subsequent lessons.

Since the autocovariances can be easily estimated from a random sample,
the resulting estimated version of (16) gives a practical method for estimating
the coefficients α1, . . . , αp and β of an AR(p) process. This issue will be
further discussed in the prediction lesson.

On the other hand, if the coefficients α1, . . . , αp and β are known, then
one can determine the covariances c(0), c(1), . . . , c(p) from the first (p + 1)
Yule–Walker equations (15), and then one can determine c(p+1), c(p+2), . . .
recursively.

Let us find the spectral density of an AR(p) process {Xt}, assuming that
no roots of the AR(p) polynomial lie within the closed unit disc. This is

fX(ω) =
1

2π

1

|α(e−iω)|2
. (18)

Observe that fX(ω) is the reciprocal of a 2pth degree polynomial of e−iω.

4 ARMA (both autoregressive and moving

average) processes

The ARMA(p, q) processes (p ≥ 0, q ≥ 0) are generalizations of both AR(p)
and MA(q) processes.

Definition 3. With p, q ≥ 0 integers, {Xt} is a pth order autoregressive and
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qth order moving average process (at the same time) if

Xt =

p∑
j=1

αjXt−j +

q∑
j=0

βjξt−j, t ∈ Z, (19)

or concisely,
α(L)Xt = β(L)ξt,

where L is the lag operator and α(z) and β(z) are the previously defined
AR(p) and MA(q) polynomials, respectively; further, {ξt} ∼WN(1) is white
noise sequence.

Again, we want to find a causal stationary solution {Xt} of this equation,
that is, a MA solution of form (12). The following can be stated.

Theorem 1 (Theorem 3.1.1 of Brockwell & Davis). Let {Xt} be an ARMA(p, q)
process for which the polynomials α(z) and β(z) have no common zeros. Then
{Xt} is causal if and only if α(z) 6= 0 for all |z| ≤ 1 (stability). The coeffi-
cients of the MA(∞) process Xt =

∑∞
j=0 bjξt−j are obtainable by the power

series expansion

b(z) =
∞∑
j=0

bjz
j = α−1(z)β(z), |z| ≤ 1. (20)

The coefficients bjs of the so-called transfer function b(z) are called im-
pulse responses.

In the ARMA model Xt is determined by finitely many preceding past
values of itself plus finitely many random shocks. Here Xt can also be written
as the infinite sum of impulse responses multiplied by random shocks as
follows.

After multiplying both sides of Equation (20) with α(z) (we can do it as
it is not zero for |z| ≤ 1) and equating the coefficients of the z-powers on
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both sides, gives the following recursion for bjs:

b0 = β0,

b1 = β1 + α1b0,

b2 = β2 + α1b1 + α2b0,

...

bq = βq + α1bq−1 + · · ·+ αqb0,

...

bp = α1bp−1 + · · ·+ αpb0,

bp+k = α1bp+k−1 + · · ·+ αpbk (k ≥ 1). (21)

Here we assumed that q < p (in the opposite case, similar formulas are
valid). If {αj : j = 1, . . . , p} and {βj : j = 1, . . . , q} are known, these
equations uniquely determine the coefficients {bk : k ≥ 0} by the above
recursion. Also, the previous Equations (13) are special cases of the present
Equations (21) when q = 0.

The spectral density of {Xt} is

fX(ω) =
1

2π

|β(e−iω)|2

|α(e−iω)|2
. (22)

Observe that this is a rational function (ratio of polynomials) of e−iω. Ra-
tional spectral densities play an important role in state space models and
those belong, in fact, to ARMA models as we will see in the next lesson. It
can also be shown that any continuous spectral density can be approximated
with rational ones with any small error, albeit with possibly large p and/or
q.

Example 1 (Examples 4.2.2 and 4.4.1 from Brockwell and Davis: Introduc-
tion to Time Series and Forecastig, Springer). Yearly sunspot numbers are
observed spanning 1770-1869. Based on experiences (the first two autocovari-
ances are significant), an AR(2) model was fitted. The spectral density with
the estimated parameters on [0, π] had a peak at ω = 0.556 radians per year.
Therefore, the corresponding period is 2π/0.556 = 11.3 years. (This is the
period of the sin(0.556t) function, which is a term of finite sum of simusoids,
see Example 1 of Lesson 2). The model thus reflects the approximating cyclic
behavior of the data with around 11 years of cycles. Also, if we consider
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the 120 Fourier frequencies, the peak happens at about the 11th Fourier fre-
quency. It means that the frequency domain [0, 0.556] roughly explains the
process; extrapolating, about 11 years contain the relevant information.

In another context, based on Equation (2) of Example 1 of Lesson 2:
this finite time series can be approximated with the only sinusoid of form
A sin(ωt), where ω = 0.556. The period of this function is 2π/0.556 = 11.3
in years, approximately. Since F (ω) =

∫ ω
0
f(s) ds, and F (ω) is the variance

of Zω, the majority of the variance of the orthogonal increment process is
explained until the frequency 0.556 in the frequency domain. We may also
think that the principal component Z0.556 explains best the process, and it is
around at the first Fourier-frequency of the time series until the time period
11.3. About principal components (PC) see Remark 2 of Lesson 2.

5 Wold decomposition in 1D

Recall that we use the notation span{Xt : t ∈ A} for the closed linear span
of the random variables {Xt : t ∈ A} ⊂ L2(Ω,F ,P). Then for a weakly
stationary time series {Xt}t∈Z, we define

H−n = span{Xt : t ≤ n} (n ∈ Z), H−∞ =
⋂
n∈Z

H−n .

H−n is called the past of {Xt} until n and H−∞ is the remote past of {Xt}.
Clearly, H(X) = spant∈ZH

−
n and by the weak stationarity of {Xt}t∈Z, H−n =

SnH−0 (t ∈ Z), where S is the unitary operator of right time-shift. The time
series is called singular (deterministic) if H−∞ = H(X), or equivalently, if
H−k = H−k+1 for some k ∈ Z, that is, if H−k = H−k+m for any k,m ∈ Z;
otherwise, it is non-singular. The time series is regular if H−∞ = {0}. We
are going to show that in general, a weakly stationary time series can be
written as an orthogonal sum of a regular and a singular time series. So
regularity means no remote past at all (such sequences are also called purely
non-deterministic), whereas singularity means an overwhelming remote past
(such sequences are also called deterministic). Between these two extremes
there are the non-singular processes that are not purely deterministic. They
can be purely non-deterministic (regular) or must have a regular part. In the
latter case, we will see that the regular part can coexist only with a special
type of singularity.
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Assume that {Xt}t∈Z is non-singular, so H−−1 6= H−0 = span{H−−1, X0}.
Let

X0 = X−0 +X+
0 , X−0 ∈ H−−1, X+

0 ⊥H−−1.

Define the random variable ξ0 := X+
0 /‖X+

0 ‖. Then ξ0 ∈ H−0 , ‖ξ0‖ = 1,
ξ0⊥H−−1. Define ξn := Snξ0 (t ∈ Z). Clearly, ξn ∈ H−n , ξn⊥H−n−1, and H−n =
span{H−n−1, ξn}. Thus {ξn}n∈Z is an orthonormal sequence and ξn⊥H−∞
for each n. This procedure resembles the Gram–Schmidt orthogonalization.
The orthogonal components are sometimes called innovations, and we will
use matrix decompositions to obtain them, in the prediction lesson.

Now let us expand X0 into its orthogonal series w.r.t. {ξn}t∈Z:

X0 =
∞∑
k=0

bkξ−k + Y0. (23)

Here bk = 〈X0, ξ−k〉,
∑

k |bk|2 < ∞, and bk = 0 for k < 0 because ξk⊥H−0
when k ≥ 1. In particular,

b0 = 〈X0, ξ0〉 = 〈X+
0 , X

+
0 /‖X+

0 ‖〉 = ‖X+
0 ‖ > 0. (24)

The vector Y0 is simply the remainder term, which of course is 0 if {ξn}t∈Z
span H(X), but not in general. It is not hard to see that Y0 ∈ H−∞ and
ξ−k⊥H−∞ for any k ≥ 0.

Now apply the operator St to (23):

Xt =
∞∑
k=0

bkξt−k + Yt =: Rt + Yt (t ∈ Z), (25)

where we have defined Yt := StY0 (t ∈ Z). This way we have proved the
important Wold decomposition of {Xt}t∈Z.

Theorem 2. Assume that {Xt}t∈Z is a non-singular weakly stationary time
series. Then we can decompose {Xt} in the form (25), where {Rt}t∈Z is
a regular time series (that is, a causal MA(∞) process) and {Yt}t∈Z is a
singular time series, Yt ∈ H−∞ for all t; the two processes are orthogonal to
each other.

The best linear t-step ahead prediction X̂t of Xt by definition the projec-
tion of Xt to the past until 0, that is, to H−0 . (Time 0 is considered the present
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and X̂t is called a t-step ahead prediction.) By the Wold decomposition (25)
and the projection theorem, the best prediction is

X̂t =
∞∑
k=t

bkξt−k + Yt (t ∈ Z), (26)

since the right hand side of (26) is in H−0 and the difference (Xt − X̂t) is
orthogonal to H−0 . Hence, the prediction error (the mean-square error) of
the t-step ahead prediction is given by

σ2
t := ‖Xt − X̂t‖2 =

t−1∑
k=0

|bk|2. (27)

This implies that

lim
t→∞

σ2
t =

∞∑
k=0

|bk|2 =

∥∥∥∥∥
∞∑
k=0

bkξ`−k

∥∥∥∥∥
2

(` ∈ Z), lim
t→∞

∞∑
k=t

bkξt−k = 0.

Clearly, the MA part {Rt}t∈Z of {Xt}t∈Z is a regular time series. For, the past
H−n (R) := span{Rt : t ≤ n} of {Rt} is spanned by the vectors {ξt : t ≤ n},
so

H−∞(R) :=
⋂
n∈Z

H−n (R) = lim
n→−∞

H−n (R) = {0}.

If the process {Xt}t∈Z itself is regular, then Yt = 0 for each t ∈ Z,

lim
t→∞

σ2
t → ‖X`‖2 (` ∈ Z), and lim

t→∞
X̂t = 0.

It is also easy to see that {Yt}t∈Z is a singular process and spans H−∞.
Clearly, if a process {Xt}t∈Z is singular, then Xt ∈ H−0 for any t ∈ Z, so
perfect linear prediction is possible: X̂t = Xt for any t ∈ Z.
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6 Spectral form of the Wold decomposition

The regular part of a non-singular time series {Xt} is a causal MA(∞) pro-
cess, so by (5) it has an absolutely continuous spectral measure with density

f(ω) =
1

2π

∣∣∣∣∣
∞∑
j=0

bje
−ijω

∣∣∣∣∣
2

=:
1

2π
|B(e−iω)|2, (28)

B(z) =
∞∑
j=0

bjz
j (|z| ≤ 1),

∞∑
j=0

|bj|2 <∞. (29)

Therefore B(z) is analytic in the open unit disc D = {z : |z| < 1} and is in
L2 on the unit circle T . Clearly, these constitute a necessary and sufficient
condition for the regularity of a stationary time series.

By a theorem of Frigyes and Marcel Riesz, an L2(T ) function f of ”power
series type”, that is, with Fourier coefficients bj = 0 when j < 0 and not
identically 0, vanishes only on a set of measure 0, so it is positive a.e. on T .
It means that f ∈ H2 (Hardy space). This applies to the spectral density f
of the regular part of any non-singular process as well; see Theorems 4 and
5 below.

The next lemma shows that the Wold decomposition (25) is a spectral
decomposition in the sense too that the support of the spectral measure
of the singular process {Yt} must be disjoint from the set {ω ∈ [−π, π] :
f(ω) 6= 0}. Consequently, the spectral measure of {Yt} is a singular measure
w.r.t. Lebesgue measure. This way we see that the Wold decomposition
(25) of {Xt} is equivalent to a decomposition of a non-singular process into
an absolutely continuous and a singular part of its spectral measure w.r.t.
Lebesgue measure on [−π, π].

Lemma 1. Assume that {Xt} is a stationary time series, Xt = Ut + Vt,
where Ut, Vt ∈ H(X) for all t ∈ Z, {Ut} and {Vt} are stationary processes,
and 〈Ut, Vt〉 = 0 for all t, s. Then there is a decomposition A ∪ B = [−π, π],
A ∩B = ∅, A and B are measurable, and

Xt =

∫ π

−π
eitωdZω =

∫ π

−π
eitω1AdZω +

∫ π

−π
eitω1BdZω = Ut + Vt (t ∈ Z).

Theorem 3. Assume that the spectral density f of a regular stationary time
series {Xt} has a factorization f = 1

2π
φ · φ, where φ ∈ H2 and 1/ φ ∈ H2.
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Then the orthonormal sequence appearing in the Wold decomposition is given
by the random variables

ξt =

∫ π

−π

eitω

φ(ω)
dZω (t ∈ Z). (30)

Later, φ will be called spectral factor, and will be dealt in more details in
the multidimensional case.

Corollary 1. Under the assumptions of Theorem 3, we have the Fourier
series

φ(ω) =
∞∑
k=0

bke
−ikω, where

∞∑
k=0

|bk|2 <∞, (31)

and this defines the coefficients of the Wold representation:

Xt =
∞∑
k=0

bkξt−k. (32)

Theorem 3 and Corollary 1 together give an explicit solution to causal
MA(∞) representation of regular stationary time series under conditions
that, according to equations (28) and (29) and Lemma 2 below, are almost
necessary. If {Xt} is an arbitrary non-singular time series, then Theorem 3
and Corollary 1 are valid for its regular part.

7 Classification of stationary time series in

1D

The theorems in this section are based on the seminal paper “Stationary
sequences in Hilbert space” by A.N. Kolmogorov from 1941.

Wold decomposition in Section 5 showed that a stationary time series
{Xt}t∈Z is regular if and only if it can be represented as a causal MA process

Xt =
∞∑
j=0

bjξt−j, (33)

with an orthonormal sequence {ξt}t∈Z. In turn, in (28) and (29) we saw that
these are equivalent to the fact that the spectral density function fX of X

15



can be written as fX(ω) = 1
2π
|B(e−iω)|2, where B(z) is analytic in the open

unit disc D and is in L2, more accurately, is in H2, on the unit circle T . The
next lemma gives an even more precise and interesting description of B.

Lemma 2. For any regular stationary time series {Xt}t∈Z, the analytic func-
tion B(z) has no zeros in the open unit disc D.

Theorem 4. A stationary time series {Xt}t∈Z is regular if and only if the
following three conditions hold on [−π, π]:

1. its spectral measure dF is absolutely continuous w.r.t. Lebesgue mea-
sure;

2. its spectral density f is positive almost everywhere;

3. (Kolmogorov’s condition) log f is integrable.

Remark 2. [Kolmogorov–Szegő formula] If {Xt}t∈Z is regular, then

b0 = B(0) =
√

2πeQ(0) =
√

2πeα0 =
√

2π exp

(
1

4π

∫ π

−π
log f(ω)dω

)
,

so

σ2
1 = b20 = 2π exp

∫ π

−π
log f(ω)

dω

2π
.

The next theorem gives the different classes of singular time series.

Theorem 5. Assume that {Xt}t∈Z is a stationary time series with spectral
measure dF on [−π, π]. Then there exists a unique Lebesgue decomposition

dF = dFa + dFs, dFa � dω, dFs⊥dω, (34)

where dω denotes the Lebesgue measure, dFa(ω) = fa(ω)dω is the absolutely
continuous part of dF with density fa and dFs is the singular part of dF ,
which is concentrated on a zero Lebesgue measure subset of [−π, π].

The following three cases are distinguished:

(1) fa(ω) = 0 on a set of positive Lebesgue measure on [−π, π];

(2) fa(ω) > 0 a.e. , but
∫ π
−π log fa(ω)dω = −∞;

(3) fa(ω) > 0 a.e. and
∫ π
−π log fa(ω)dω > −∞.
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Then in cases (1) and (2), the time series X is singular. In case (3), the
time series {Xt} is non-singular, so we may apply the Wold decomposition
to write

Xt = Rt + Yt =
∞∑
j=0

bjξt−j + Yt (t ∈ Z), (35)

where {Rt} is a regular time series with absolutely continuous spectral mea-
sure dFa(ω) = fa(ω)dω and {Yt} is a singular time series with singular spec-
tral measure dFs, as described by (34).

Corollary 2. In the proof of the previous theorem we saw that for any non-
singular time series {Xt} the Wold decomposition Xt = Rt + Yt gives a
regular process {Rt} whose spectral density function fR is a.e. the same as
the spectral density function fa of {Xt}. Thus the Kolmogorov-Szegő formula
(Remark 2) is valid for any non-singular process {Xt} and its spectral density
function fa.

8 Examples for singular time series

8.1 Type (0) singular time series

In the Lebesgue decomposition (34) one can further decompose the singular
spectral measure:

dFs = dFd + dFc,

where dFd is the discrete spectrum corresponding to at most countable many
jumps of the spectral distribution function F , while dFc is the continuous
singular spectrum.
(a) An example for a process with discrete spectrum:

Xt =
n∑
j=1

Aje
itωj (t ∈ Z),

where −π < ω1 < · · · < ωn ≤ π; A1, . . . , An are uncorrelated random vari-
ables with mean 0 and variance σ2

j (j = 1, . . . , n). (The Aj’s can be e.g.
Gaussian random variables.)

This process is weakly stationary with

c(k) = E(Xt+kXt) =
n∑
j=1

E(|Aj|2)eikωj =
n∑
j=1

σ2
j e
ikωj =

∫ π

π

eikω dF (ω),

17



where
F (ω) =

∑
ωj≤ω

σ2
j (ω ∈ [−π, π]).

Observe that the covariance function does not tend to 0 as k →∞.
(b) The standard example for a continuous singular function on [0, 1] is the
Cantor function γ, “the devil’s ladder”. Suppose C is the Cantor set in [0, 1],
that is, x ∈ C if and only if in base 3 expansion,

x =
∞∑
n=1

an3−n, an = 0 or 2.

Then the Cantor function γ : [0, 1]→ [0, 1] can be defined as

γ(x) =

{ ∑∞
n=1

1
2
an2−n, x =

∑∞
n=1 an3−n ∈ C;

sup{γ(y) : y ≤ x, y ∈ C}, x ∈ [0, 1] \ C.

Then γ(0) = 0, γ(1) = 1, γ is non-decreasing on [0, 1], and γ′(x) = 0 for a.e.
x ∈ [0, 1].

The definition

F (ω) = γ

(
ω + π

2π

)
, ω ∈ [−π, π],

gives the spectral distribution function of a singular stationary time series X.
Heuristically, the spectrum of X consists of the points of an uncountable but
zero Lebesgue measure Cantor set, with infinitesimally small amplitudes.

8.2 Type (1) singular time series

A simple example for a singular time series corresponding to case (1) of
Theorem 5 is the one with spectral density function

f(ω) =

{
1
2
, |ω| ≤ 1;

0, 1 < |ω| ≤ π.

With the construction of Lesson 3-4, one can construct a singular stationary
time series with this spectral density.

Its covariance function is

c(k) =

∫ 1

−1
eikω

1

2
dω =

{
1, k = 0;
sin k
k
, k 6= 0.

18



It is an example for an absolutely non-summable covariance function which
still corresponds to an absolutely continuous spectral measure. On the other
hand,

∑
k c(k) converges conditionally; also,

∑
k |c(k)|2 <∞.

Generalizing the previous example, observe the following interesting phe-
nomenon. For any δ > 0 fixed, a time series with spectral density

f(ω) =

{ 1
2(π−δ) , |ω| ≤ π − δ;
0, π − δ < |ω| ≤ π.

is still singular, like the one above. On the other hand, if we take δ = 0, that
is, f(ω) = 1

2π
for any ω ∈ [−π, π], then the time series becomes a regular,

orthonormal series.

8.3 Type (2) singular time series

An example for Case (2) of Theorem 5 is the following spectral density:

f(ω) = e−
1
|ω| , ω ∈ [−π, π] \ {0}, f(0) = 0.

Then f(ω) > 0 almost everywhere and f is continuous everywhere on [−π, π],∫ π

−π
f(ω)dω <∞,

∫ π

π

log f(ω)dω =

∫ π

−π
− 1

|ω|
= −∞.

By the construction of Lesson 3-4, one can construct a singular stationary
time series {Xt} with this spectral density. A theorem later shows that a time
series can be represented as a two-sided infinite MA (a sliding summation) if
and only if it has constant rank, that is, in 1D its spectral density is positive
a.e., like in the case of {Xt}. However, since this {Xt} is singular, it cannot
be represented as a causal (one-sided) infinite MA. In general, in 1D the same
is true for any singular time series of Type (2) and only for these ones.

Corollary 3. Theorem 5 has the following interesting corollary. Any non-
singular process may contain a Type (0) singular component, but cannot con-
tain a Type (1) or (2) singular part. For, if case (1) or (2) of Theorem 5
holds for a time series then that process must be singular. Adding an orthog-
onal regular part to a Type (1) or (2) singular process results in a regular
process.
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9 Summary

Linear filtering of a stationary time series {Xt}t∈Z means applying a TLF
(time-invariant linear filter) to it:

Yt :=
∞∑

j=−∞

ctjXj =
∞∑

k=−∞

bkXt−k (t ∈ Z).

Time-invariance means that the coefficient ctj depends only on t − j, i.e.
ctj = bt−j, giving the final form of a TLF. The so obtained {Yt} is also a
weakly stationary sequence, with spectral measure

dF Y (ω) = |b̂(ω)|2 dFX(ω) (36)

and the pair (Xt, Yt) (t ∈ Z) has a joint spectral measure (a complex measure
in general)

dF Y,X(ω) = b̂(ω) dFX(ω), (37)

where b̂(ω) :=
∑∞

j=−∞ bje
−ijω.

It is important that the above formulas are valid when the sequence of
weights (bj : j ∈ Z) is such that b̂ ∈ L2([−π, π],B, dF ). A sufficient condition
is that

∑∞
k=−∞ |bk| <∞. (When bj = 0 for |j| > N , the square and absolute

summability of bjs automatically holds.) In another wording, the stationary
time series {Yt}t∈Z is subordinated to the process {Xt}t∈Z.

The second order, weakly stationary time series {ξt}t∈Z is called white
noise sequence if its autocovariances are c(0) = σ2 and c(h) = 0 for h =
±1,±2, . . . . In other words, ξts are uncorrelated and have variance σ2. For
example, if ξts are i.i.d., with finite variance, they constitute a white noise
sequence, and in the Gaussian case, the two notions are the same. When
σ2 = 1, we call the white noise sequence orthonormal sequence.

The qth order moving average process, MA(q) process, is defined by

Xt =

q∑
k=0

βkξt−k, c(h) =

q∑
k=h

βkβ̄k−h (0 ≤ h ≤ q), c(−h) = c̄(h),

c(h) = 0 if |h| > q, where {ξn} is an orthonormal sequence. The spectral
density of an MA(q) process is

fX(ω) =
1

2π
|β̂(ω)|2, β̂(ω) = fX|ξ(ω) =

q∑
k=0

bke
−ikω.
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Likewise, the spectral density of the MA(∞) process is

fX(ω) =
1

2π

∣∣∣∣∣
∞∑

k=−∞

bke
−ikω

∣∣∣∣∣
2

, where
∞∑

k=−∞

|bk|2 <∞.

The AR(p), i.e. the pth order autoregressive process {Xt}t∈Z is defined
by

Xt =

p∑
j=1

αjXt−j + βξt =

p∑
j=1

ajXt−j + βξt,

where {ξt} ∼WN(1) is an orthonormal process. This form is well comparable
to the prediction theory of Chapter 5.

Under the stability conditions, the above equation has a causal MA solu-
tion of the form

Xt =
∞∑
k=0

bkξt−k (bk ∈ C)

satisfying the following relations:

b0 = β,

b1 + α1b0 = 0,

b2 + α1b1 + α2b0 = 0,

...

bp + α1bp−1 + · · ·+ αpb0 = 0,

bp+k + α1bp+k−1 + · · ·+ αpbk = 0 (k ≥ 1).

The question is whether the resulting sequence {b0, b1, b2, . . . } will be square
summable. It holds if no roots of the AR polynomial α(z) = 1− α1z − · · · −
αpz

p are on the open unit disc. Knowing the covariances, we get the Yule-
Walker equations for αjs that coincide with the one-step ahead prediction of
Chapter 5, based on the p-length long past. If Cp of Chapter 1 is positive
definite, this condition holds.

The ARMA(p, q) processes (p ≥ 0, q ≥ 0) are generalizations of both
AR(p) and MA(q) processes. The model equation is:

Xt =

p∑
j=1

αjXt−j +

q∑
k=0

βkξt−k, β0 6= 0.

21



With the AR polynomial α(z) = 1−α1z−· · ·−αpzp and the MA polynomial
β(z) =

∑q
`=0 β`z

`, the model equation of the ARMA process can be written
in the simple form

α(L)Xt = β(L)ξt, t ∈ Z,
where L is the left (backward) shift, or in other words, the lag operator.

We want to find a causal stationary solution {Xt} of this equation, that
is a MA(∞) process. Again, no roots of the AR polynomial can be on the
closed unit disc, called stability.

We can state the following. Let {Xt} be an ARMA(p, q) process for which
the polynomials α(z) and β(z) have no common zeros. Then {Xt} is causal if
and only if α(z) 6= 0 for all |z| ≤ 1 (stability). The coefficients of the MA(∞)
process Xt =

∑∞
j=0 bjξt−j are obtainable by the power series expansion

b(z) =
∞∑
j=0

bjz
j = α−1(z)β(z), |z| ≤ 1.

The coefficients bjs of the so-called transfer function b(z) are called impulse
responses.

The spectral density of the ARMA(p, q) process is

fX(ω) =
1

2π

|β̂(ω)|2

|α̂(ω)|2
, β̂(ω) =

q∑
`=0

β`e
−i`ω, α̂(ω) =

p∑
j=0

αje
−ijω.

This is a rational spectral density.
The Wold decomposition in 1D guarantees that any non-singular weakly

stationary time series (not completely determined by the remote past) can
be decomposed into a regular (MA(∞), purely non-deterministic, future in-
dependent) and a singular (purely deterministic, completely determined by a
remote past) process that are orthogonal to each other. The original proof of
Wold is based on the one-step ahead predictions with longer and longer past,
where the prediction errors converge to an optimum value (that is not zero in
the presence of a regular part), see the subsequent lesson about predictions.

The spectral form of the Wold decomposition is

f(ω) =
1

2π

∣∣∣∣∣
∞∑
j=0

bje
−ijω

∣∣∣∣∣
2

=
1

2π
|B(e−iω)|2,

B(z) =
∞∑
j=0

bjz
j (|z| ≤ 1),

∞∑
j=0

|bj|2 <∞.
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By a theorem of A.N. Kolmogorov, a stationary time series is regular if
and only if the following three conditions hold on [−π, π]:

1. its spectral measure dF is absolutely continuous w.r.t. Lebesgue mea-
sure;

2. its spectral density f is positive almost everywhere;

3. (Kolmogorov’s condition) log f is integrable.

Note that we have different classes of singular time series. The spectral
measure of a stationary time series has a unique Lebesgue decomposition

dF = dFa + dFs, dFa � dω, dFs⊥dω,

where dω denotes Lebesgue measure, dFa(ω) = fa(ω)dω is the absolutely
continuous part of dF with density fa and dFs is the singular part of dF ,
which is concentrated on a zero Lebesgue measure subset of [−π, π]. We call
it Type (0) singularity. Apart from this, we distinguish between the following
three cases:

(1) fa(ω) = 0 on a set of positive Lebesgue measure on [−π, π];

(2) fa(ω) > 0 a.e. , but
∫ π
−π log fa(ω)dω = −∞;

(3) fa(ω) > 0 a.e. and
∫ π
−π log fa(ω)dω > −∞.

In cases (1) and (2), the time series is singular, whereas in case (3), the time
series is non-singular and has the Wold decomposition. So a regular (Type
(3)) process can coexist only with a Type (0) singular one, while adding an
orthogonal regular process to a Type (1) or (2) singularity gives a regular
process.
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