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In this lesson we investigate properties of multidimensional, weakly sta-
tionary time series, similarly to the 1D case. In contrast to the 1D situation,
here we proceed deductively: from the most general constant rank processes,
via rational (causal) ones, to the state space models.

Not surprisingly, here the classification is more complicated; for example,
the spectral density matrix can be of reduced rank, but not zero. Linear
filtering and constant rank processes are considered, and we prove that the
spectral density matrix of a d-dimensional process has a constant rank r ≤ d
if and only if the process is a two-sided moving average, obtained as a TLF
with an r-dimensional white noise process; in this way, the spectral density
matrix is also factorized. Special cases are the regular processes, when the
TLF is a one-sided MA process; i.e., a regular process has a causal MA
representation.

A non-singular process has a Wold decomposition in multi-dimension too.
Here only the so-called innovation subspaces are unique, whereas their dimen-
sion is equal to the constant rank of the process. Further subclass of regular
processes are the ones with a rational spectral density matrix. These can be
finitely parametrized, and have either a state space or stable VARMA (Vector
AutoRegressive Moving Average) representation, or an MFD (Matrix Frac-
tional Description). Here, in the factorization of the spectral density matrix,
the so-called spectral factors are also rational matrices. This fact has impor-
tant consequences, for example, in the dynamic factor analysis and relations
in the time domain.
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1 Linear transformations, subordinated and

causally subordinated processes

Here the extension of notions of linear filter and subordinated process from
1D to MD (multi-dimension) follows.

Let {Xt}t∈Z be an d-dimensional stationary time series with spectral rep-
resentation

Xt =

∫ π

−π
eitωdZω

and spectral measure matrix dF = dFX . Assume that we are given a matrix
function

T (ω) = [tjk(ω)]m×d, tjk ∈ L2([−π, π],B, tr(dF)). (1)

By definition, the m-dimensional process {Yt}t∈Z is a linear transform of
or obtained by a time invariant linear filter (TLF) from {Xt} if

Yt =

∫ π

−π
eitωT (ω) dZω (t ∈ Z). (2)

It means that with the random measure

dZY
ω := T (ω) dZω

we have a representation of the process {Yt}:

Yt =

∫ π

−π
eitωdZY

ω (t ∈ Z).

Likrwise,

Cov(Yt+h,Yt) =

[∫ π

−π
eihω

n∑
r,s=1

tpr(ω)tqs(ω)dF rs(ω)

]m
p,q=1

=

∫ π

−π
eihωT (ω)dF(ω)T ∗(ω) (h ∈ Z). (3)

Thus {Yt} is also a stationary time series with spectral measure matrix

dFY = T dFX T ∗. (4)
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Considering Cov(Yt+hXt) = E(Yt+hX
∗
t ), one can similarly obtain that {Xt}

and {Yt} are jointly stationary and their joint spectral density matrix is

dFY,X = T dFX . (5)

It is not difficult to show that the last formula is not only necessary, but
sufficient for obtaining {Yt} from {Xt} by linear transformation. Because of
(5) we may call T the conditional spectral density of {Yt} w.r.t. {Xt} and
denote T = fY |X .

By means of Fourier series, we can rewrite the definition of linear trans-
form in the time domain, assuming that condition (1) holds:

T (ω) =
∞∑

j=−∞

τ (j)e−ijω, τ (j) =
1

2π

∫ π

−π
eijωT (ω)dω,

∞∑
j=−∞

‖τ (j)‖2F <∞.

(6)
Because of the isometry between HX and L2([−π, π],B, tr(dF)), definition
(2) of linear transform is equivalent to

Yt =

∫ π

−π
eitω

∞∑
j=−∞

τ (j)e−ijω dZω =
∞∑

j=−∞

τ (j)

∫ π

−π
ei(t−j)ω dZω

=
∞∑

j=−∞

τ (j)Xt−j, t ∈ Z. (7)

This shows that the linear transform {Yt} is, in fact, obtained by linear
filtering from {Xt}, that is, by a sliding summation with given m× d matrix
weights τ (j).

We call an m-dimensional stationary time series {Yt}t∈Z causally subordi-
nated to an d-dimensional time series {Xt}t∈Z if {Yt} is obtained from {Xt}
by a linear transform (2) or (7), and, also,

H−k (Y) ⊂ H−k (X) for all k ∈ Z. (8)

By stationarity, it suffices if this last relationship holds for a specific value of
k, for example, for k = 0.

In the causally subordinated case (8) if T (ω) has entries tjk ∈ L2([−π, π],B, dω),
the filtering equation (7) modifies as a causal one-sided moving average pro-
cess:

Yt =
∞∑
j=0

τ (j)Xt−j, τ (j) = 0 if j < 0. (9)
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In other words, the Fourier series of T becomes one-sided:

T (ω) =
∞∑
j=0

τ (j)e−ijω,
∞∑
j=0

‖τ (j)‖2F <∞. (10)

2 Stationary time series of constant rank

Assume that Xt = (X1
t , . . . , X

d
t ) (t ∈ Z) is a d-dimensional complex valued

weakly stationary time series with absolutely continuous spectral measure
with density matrix f on [−π, π]. We say that {Xt} has constant rank r if
the matrix f(ω) has rank r for almost all ω ∈ [−π, π].

Theorem 1. We have the following back-and-forth statements.

(a) Assume that the stationary time series Xt = (X1
t , . . . , X

d
t ) (t ∈ Z)

has an absolutely continuous spectral measure with density matrix f of
constant rank r. Then f can be factored as

f(ω) =
1

2π
φ(ω)φ∗(ω) for a.e. ω ∈ [−π, π],

where φ(ω) ∈ Cd×r, r ≤ d, called a spectral factor. Also, X can be
represented as a two-sided infinite MA process (a sliding summation)

Xt =
∞∑

j=−∞

b(j)ξt−j, (11)

where {ξt} is a WN(Ir) (orthonormal) sequence and b(j) = [bk`(j)] ∈
Cd×r (j ∈ Z) is a non-random matrix-valued sequence, the Fourier
coefficients of the spectral factor φ(ω):

φ(ω) =
∞∑

j=−∞

b(j)e−ijω, b(j) =
1

2π

∫ π

−π
φ(ω)dω,

∞∑
j=−∞

‖b(j)‖2F <∞.

(12)
The Fourier series converges to φ in mean square.

(b) Conversely, any stationary time series {Xt}t∈Z represented as a two-
sided infinite MA process (11) has an absolutely continuous spectral
measure with density matrix f of constant rank r, where r is the di-
mension of the white noise process {ξt}.
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We do not prove the theorem, just remark that the proof of statement (a)
depends only on the fact that one has a factorization of the spectral density
of the form

f(ω) =
1

2π
φ(ω)φ∗(ω), φ(ω) ∈ Cd×r, for a.e. ω ∈ [−π, π].

3 Multidimensional Wold decomposition

The multidimensional version of Wold decomposition goes similarly as its
1D case The notations, definitions of remote past and singular, regular, non-
singular processes can be extended to the MD case with no essential change,
therefore will not be repeated here.

Theorem 2. Assume that {Xt}t∈Z is an d-dimensional non-singular station-
ary time series. Then it can be represented in the form

Xt = Rt + Yt =
∞∑
j=0

b(j)ξt−j + Yt (t ∈ Z), (13)

where

1. {Rt} is a d-dimensional regular time series causally subordinated to
{Xt};

2. {Yt} is an d-dimensional singular time series causally subordinated to
{Xt};

3. {ξt} is an r-dimensional (r ≤ d) WN(Ir) (orthonormal) sequence
causally subordinated to {Xt};

4. {Rt} and {Yt} are orthogonal to each other: E(RtY
∗
s) = O for t, s ∈

Z;

5. b(j) = [bk`(j)] ∈ Cd×r for j ≥ 0 and
∑∞

j=0 ‖b(j)‖2F <∞.

As we are going to see in the next section, the orthonormal series {ξt}
can be chosen the same as the orthonormal series in Theorem 1. Also, by
the definition {ξt} in the present theorem, H−k (ξ) ⊂ H−k (X), so {ξt} is also
subordinated to {Xt}. This comes out from the proof of the theorem. It
also follows from the proof that ξ0 is unique up to pre-multiplication by an
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arbitrary r× r unitary matrix U . We do not write the complete proof here,
but discuss some considerations related to predictions (to be introduced in
the next lesson), and what were the base of the original proof of H. Wold in
the 1D case.

For simplicity, let us fix the present time as time 0. Then the best linear
t-step ahead prediction X̂t of Xt is by definition the projection of Xt to the
past until 0 that is, to H−0 :

X̂t =
∞∑
j=t

b(j)ξt−j + Yt (t ∈ Z), (14)

since the right hand side of (14) is in H−0 , whereas the error term of the
t-step ahead prediction,

Xt − X̂t =
t−1∑
j=0

b(j)ξt−j

is orthogonal to H−0 (recall the projection theorem in Hilbert spaces). Hence,
the mean square error of the prediction is given by

σ2
t := ‖Xt − X̂t‖2 =

t−1∑
j=0

‖b(j)‖2F . (15)

Let H−k denote again the Hilbert space spanned by the past of {Xt} until
time k and let ProjH−

t−1
Xt denote the orthogonal projection of Xt to H−t−1

(1-step ahead prediction), which exists uniquely by the projection theorem.
Define the innovation process

ηt := Xt − ProjH−
t−1

Xt, t ∈ Z. (16)

If the covariance matrix of {ηt} is

Σ := E(η0η
∗
0), (17)

then {ηt} is a WN(Σ) process,

E(ηtη
∗
s) = δtsΣ ∀t, s ∈ Z.

The one-step ahead prediction of Xt based on H−t−1 is exactly ProjH−
t−1

Xt,

the prediction error is ηt, and the covariance matrix of this error is Σ.
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It is important that the rank r ≤ d of Σ is the dimension of the innovation
subspace (Hilbert sace approach), and it is the rank of the process {Xt}. If
{Xt} is non-singular, then clearly we must have r ≥ 1. In the special case
when r = d, the process is called full rank. If the process has full rank,
then Σ is invertible, and we can transform the innovation process into an
orthonormal process with the transformation

ξt := Σ−
1
2ηt, t ∈ Z.

Obviously, ξt is an orthonormal WN(Id) process.
In generic, not necessarily full rank case we proceed as follows. If the

rank of Σ is r ≤ d, then it has the Gram decomposition Σ = AAT , where
A is d× r matrix, and it is unique up to post-multiplication by an arbitrary
r × r unitary matrix U . Then ηt = Aξt, where ξt ∼ WN(Ir). The post-
multiplication of A with U causes pre-multiplication of ξt with U ∗, but
U ∗ξ ∼WN(Ir) too.

The Wold decomposition with the innovation process has the following
form (see also the forthcoming lesson about predictons):

Xt = Rt + Yt =
∞∑
j=0

a(j)ηt−j + Yt (t ∈ Z), (18)

where a(j)s are d×d matrices, {Yt} is a singular process, Yt ∈ H−∞, Rs⊥Yt

for any s, t ∈ Z. On the other hand, {Rt} is a regular process of rank r that
can equivalently be written as

Rt =
∞∑
j=0

a(j)Aξt−j =
∞∑
j=0

b(j)ξt−j,

where b(j) = a(j)A is d× r matrix and unique up to post-multiplication by
an arbitrary r× r unitary matrix U , j = 0, 1, . . . . This is the required Wold
decomposition.
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4 Regular and singular time series

Assume that {Xt}t∈Z is a regular stationary time series. By Wold’s decom-
position (13),

Xt =
∞∑
j=0

b(j)ξt−j (t ∈ Z), b(j) = [bk`(j)]d×r, (19)

∞∑
j=0

‖b(j)‖2F <∞, {ξt}t∈Z ∼WN(Ir).

By Theorem 1, this representation of {Xt} implies that {Xt} has an
absolutely continuous spectral measure with density matrix f(ω) and with
constant rank r̃ for a.e. ω ∈ [−π, π],

f(ω) =
1

2π
φ(ω)φ∗(ω), φ(ω) = [φk`(ω)]d×r̃, for a.e. ω ∈ [−π, π] (20)

and

Xt =
∞∑

j=−∞

b̃(j)ξ̃t−j (t ∈ Z), b̃(j) = [b̃k`(j)]d×r̃, (21)

∞∑
j=−∞

‖b̃(j)‖2F <∞, {ξ̃t}t∈Z ∼WN(Ir).,

Compare now (19) and (21). Since the orthonormal process {ξt} in (19) is
unique up to pre-multiplication by an arbitrary r × r unitary matrix U , it
follows that

1. r̃ = r,

2. b̃(j) = 0 if j < 0,

3. ξ̃0 = Uξ0, ξ̃k = SkUξ0 (k ∈ Z).

Corollary 1. The dimension r of the WN(Ir) (orthonormal) innovation
process {ξt} in (19) and of the WN(Σ) innovation process {ηt} in (16) are
equal to the a.e. constant rank of the spectral density matrix f of the regular
time series {Xt}.

8



From now on we assume that ξ0 = ξ̃0 is chosen as in (19), so we may
omit all ‘tildes’.

Corollary 2. A stationary time series {Xt}t∈Z is regular if and only it has
an absolutely continuous spectral measure with spectral density that can be
factored in the form

f(ω) =
1

2π
φ(ω)φ∗(ω), φ(ω) = [φk`(ω)]d×r, for a.e. ω ∈ [−π, π],

where

φ(ω) =
∞∑
j=0

b(j)e−ijω, ‖φ‖22 =
∞∑
j=0

‖b(j)‖2F <∞.

Then

φ(ω) = Φ(e−iω), Φ(z) =
∞∑
j=0

b(j)zj, z ∈ D, (22)

where D is the open unit disc. Thus the entries of the spectral factor Φ(z) =
[Φjk(z)]d×r are analytic functions in the open unit disc D and belong to the
class L2(T ), consequently, they belong to H2 (Hardy space). Briefly, we can
write that Φ ∈ H2.

Take the spectral factor Φ(z) = [Φk`(z)]d×r ∈ H2 defined in (22). The
spectral factor Φ(z) contains all information needed for finding the orthonor-
mal innovation process {ξt} through its boundary values on the unit circle.
Also, the coefficients b(j) can be obtained from Φ by power series expan-
sion. As soon as we have these information, we may get the optimal linear
prediction and its mean square error by formulas (14) and (15).

4.1 Full rank processes

Assume that {Xt} is a d-dimensional stationary time series, with spectral
measure matrix

dF = dFa + dFs, dFa � dω, dFs⊥dω, (23)

where dω denotes Lebesgue measure, dFa(ω) = f(ω)dω, f is the spectral
density matrix of {Xt}, dFs is supported on a zero Lebesgue measure subset
of [−π, π]. We say that {Xt} has full rank if rank(f(ω)) = d for a.e. ω ∈
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[−π, π]. It means that f(ω) is a non-singular matrix a.e. Note that a 1D
spectral density is of full rank 1 if f > 0 a.s. on [0, 2π].

The next theorem is an extension of the Kolmogorov–Szegő formula to
the MD full rank case.

Theorem 3. A d-dimensional stationary time series {Xt} is of full rank
non-singular process if and only if log detf ∈ L1, that is,∫ π

−π
log detf(ω)dω > −∞.

In this case, if Σ denotes the covariance matrix of the innovation process
{ηt}, that is, of the one-step ahead prediction error process defined in (16)
and (17), then

det Σ = (2π)d exp

∫ π

−π
log detf(ω)

dω

2π
. (24)

Corollary 3. If {Xt} is of full rank non-singular time series, then the sin-
gular process {Yt} in its Wold decomposition Xt = Rt + Yt has singular
spectral measure. More exactly, using the notations introduced above,

dFR = dFa, dF Y = dFs.

Corollary 4. A stationary time series {Xt} is regular and of full rank if and
only if

1. it has an absolutely continuous spectral measure matrix dF with density
matrix f ;

2. log detf ∈ L1.

Then the Kolmogorov–Szegő formula (24) also holds.

4.2 Generic regular processes

The next theorem is an extension of Corollary 4 to the general, not necessarily
full rank, case. Let {Xt} be a d-dimensional stationary time series. Assume
that its spectral measure matrix dF is absolutely continuous with density
matrix f(ω) which has rank r, 1 ≤ r ≤ d, for a.e. ω ∈ [−π, π]. Take the
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parsimonious spectral decomposition of the self-adjoint, non-negative definite
matrix f(ω):

f(ω) =
r∑
j=1

λj(ω)uj(ω)u∗j(ω) = Ũ(ω)Λr(ω)Ũ ∗(ω), (25)

where

Λr(ω) = diag[λ1(ω), . . . , λr(ω)], λ1(ω) ≥ · · · ≥ λr(ω) > 0, (26)

and Ũ(ω) ∈ Cd×r is a sub-unitary matrix, containing the corresponding
orthonormal eigenvectors columnwise.

Then, still, we have

Λr(ω) = Ũ ∗(ω)f(ω)Ũ(ω). (27)

Take care that here we use the word ‘spectral’ in two different meanings.
On one hand, we use the spectral density of a time series in terms of a Fourier
spectrum, on the other hand we take the spectral decomposition of a matrix
in terms of eigenvalues and eigenvectors.

Theorem 4. A d-dimensional stationary time series {Xt} is regular and of
rank r, 1 ≤ r ≤ d, if and only if each of the following conditions hold:

1. It has an absolutely continuous spectral measure matrix dF with density
matrix f(ω) which has rank r for a.e. ω ∈ [−π, π].

2. For Λr(ω) defined by (26) one has log det Λr ∈ L1 = L1([−π, π],B, dω),
which is equivalent to∫ π

−π

r∑
j=1

log λj(ω) dω > −∞.

3. The sub-unitary matrix function Ũ(ω) appearing in the spectral decom-
position of f(ω) in (25) belongs to the Hardy space H∞ ⊂ H2, so

Ũ(ω) =
∞∑
j=0

ψ(j)e−ijω, ψ(j) ∈ Cd×r,
∞∑
j=0

‖ψ(j)‖2F <∞.
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The quintessence of the proof is that Λr(ω) can be considered as the
spectral density function of an r-dimensional stationary time series {Vt}t∈Z
of full rank r; the auto-covariance function of {Vt} is

CV(h) = E(Vt+hV
∗
t ) =

∫ π

−π
eihωΛr(ω)dω, h ∈ Z. (28)

Then {Vt} is a regular time series.

Remark 1. Assume that {Xt} is a d-dimensional regular time series of rank
r and it has the spectral representation

Xt =

∫ π

−π
eitωdZω, t ∈ Z.

Assume as well that its spectral density matrix f has the spectral decompo-
sition (25). Then the r-dimensional time series {Vt} corresponding to (28)
can be written as a linear filtering of {Xt}:

Vt =

∫ π

−π
eitωŨ ∗(ω)dZω, t ∈ Z, (29)

see (2).
By (4) and (27), its spectral density is

fV(ω) = Ũ ∗(ω)f(ω)Ũ(ω) = Λr(ω), (30)

and

Ũ ∗(ω) =
∞∑
j=0

ψ∗(j)eijω,
∞∑
j=0

‖ψ∗(j)‖2F <∞,

Vt =

∫ π

−π
eitω

∞∑
j=0

ψ∗(j)eijωdZω =
∞∑
j=0

ψ∗(j)

∫ π

−π
ei(t+j)ωdZω

=
∞∑
j=0

ψ∗(j)Xt+j. (31)

Note that the above Vt will be later called Principal Component (PC)
process.
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Remark 2. Comparing Corollary 4 and Theorem 4 shows that in the full
rank case, condition (3) in Theorem 4 follows from conditions (1) and (2).

Corollary 5. Assume that {Xt} is a d-dimensional regular stationary time
series of rank r, 1 ≤ r ≤ d. Then a Kolmogorov–Szegő formula holds:

det Σr = (2π)r exp

∫ π

−π
log det Λr(ω)

dω

2π
= (2π)r exp

∫ π

−π

r∑
j=1

log λj(ω)
dω

2π
,

where Λr is defined by (26) and Σr is the covariance matrix of the innovation

process of an r-dimensional subprocess {X(r)
t } of rank r.

4.3 Classification of non-regular multidimensional time
series

The classification of multidimensional time series is – not surprisingly – more
complex than the one-dimensional ones, see the 1D classes in the preceding
lesson. We call a time series non-regular if either it is singular or its Wold
decomposition contains two orthogonal, non-vanishing processes: a regular
and a singular one. The classification below follows from Theorem 4.

In dimension d > 1 a non-singular process beyond its regular part may
have a singular part with non-vanishing spectral density. For example, if
d = 3 and the components {(X1

t , X
2
t , X

3
t )} are orthogonal to each other, it is

possible that {X1
t } is regular of rank 1, {X2

t } is Type (1) singular, and {X3
t }

is Type (2) singular.
Below we are considering a d-dimensional stationary time series {Xt}

with spectral measure dF .

• Type (0) non-regular processes. In this case the spectral measure dF of
the time series {Xt} is singular w.r.t. the Lebesgue measure in [−π, π].
Clearly, type (0) non-regular processes are simply singular ones. Like
in the 1D case, we may further divide this class into processes with a
discrete spectrum or processes with a continuous singular spectrum or
processes with both.

• Type (1) non-regular processes. The time series has an absolutely con-
tinuous spectral measure with density f , but rank(f) is not constant.
It means that there exist measurable subsets A,B ⊂ [−π, π] such that
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dω(A) > 0 and dω(B) > 0, rank(f(ω)) = r1 if ω ∈ A, rank(f(ω)) = r2
if ω ∈ B, and r1 6= r2. Here dω denotes the Lebesgue measure in
[−π, π].

• Type (2) non-regular processes. The time series has an absolutely con-
tinuous spectral measure with density f which has constant rank r a.e.,
1 ≤ r ≤ d, but∫ π

−π
log det Λr(ω)dω =

∫ π

−π

r∑
j=1

log λj(ω) dω = −∞,

where Λr is defined by (26).

• Type (3) non-regular processes. The time series has an absolutely con-
tinuous spectral measure with density f which has constant rank r a.e.,
1 ≤ r < d,∫ π

−π
log det Λr(ω)dω =

∫ π

−π

r∑
j=1

log λj(ω) dω > −∞,

but the unitary matrix function Ũ(ω) appearing in the spectral decom-
position of f(ω) in (27) does not belong to the Hardy space H2.

By Corollary 3, if {Xt} has full rank r = d and it is non-singular, then it
can have only a Type (0) singular part.

5 Low rank approximation

The aim of this section is to approximate a time series of constant rank r
with one of smaller rank k. This problem was treated by Brillinger, where it
was called Principal Component Analysis (PCA) in the Frequency Domain.
We show the important fact that when the process is regular, the low rank
approximation can also be chosen regular.

5.1 Approximation of time series of constant rank

Assume that {Xt} is a d-dimensional stationary time series of constant rank
r, 1 ≤ r ≤ d. By Theorem 1, it is equivalent to the assumption that {Xt}
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can be written as a sliding summation of form (11). The spectral density f
of the process has rank r a.e., and so we may write its eigenvalues as

λ1(ω) ≥ · · · ≥ λr(ω) > 0, λr+1(ω) = · · · = λd(ω) = 0. (32)

Also, the spectral decomposition of f is

f(ω) =
r∑
j=1

λj(ω)uj(ω)u∗j(ω) = Ũr(ω)Λ̃r(ω)Ũ ∗r (ω), a.e. ω ∈ [−π, π],

(33)
where Λ̃r(ω) := diag[λ1(ω), . . . , λr(ω)], uj(ω) ∈ Cd (j = 1, . . . , r) are the
corresponding orthonormal eigenvectors, and Ũr(ω) ∈ Cd×r is the matrix of
these column vectors.

Now the problem we are treating can be described as follows. Given an
integer k, 1 ≤ k ≤ r, find a process {X(k)

t } of constant rank k which is a
linear transform of {Xt} and which minimizes the distance

‖Xt −X
(k)
t ‖2 = E

{
(Xt −X

(k)
t )∗ (Xt −X

(k)
t )
}

= tr Cov
{

(Xt −X
(k)
t ), (Xt −X

(k)
t )
}
. (34)

Consider the spectral representations of {Xt} and {X(k)
t }, see (2):

Xt =

∫ π

−π
eitωdZω, X

(k)
t =

∫ π

−π
eitωT (ω)dZω, t ∈ Z.

Then we can rewrite (34) as

‖Xt −X
(k)
t ‖2 = tr

∫ π

−π
(Id − T (ω))f(ω)(Id − T ∗(ω)) dω

= tr

∫ π

−π
(Id − T (ω))Ũr(ω)Λ̃r(ω)Ũ ∗r (ω)(Id − T ∗(ω)) dω, (35)

which clearly does not depend on t ∈ Z.
To find the minimizing linear transformation T (ω), we have to study the

non-negative definite quadratic form

v∗f(ω)v = v∗Ũr(ω)Λ̃r(ω)Ũ ∗r (ω)v, v ∈ Cd, |v| = 1.
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By (32), there is a monotonicity: taking the orthogonal projections uju
∗
j

(j = 1, . . . , r) in the space Cd one-by-one, the sequence

v∗jf(ω)vj, vj ∈ uj(ω)u∗j(ω)Cd (j = 1, . . . , r),

is non-increasing. Since Id =
∑d

j=1 uj(ω)u∗j(ω) and T (ω) must have rank k
a.e., (35) implies that the minimizing linear transformation must be

T (ω) =
k∑
j=1

uj(ω)u∗j(ω) = Ũk(ω)Ũ ∗k (ω). (36)

This is in accord with the theory of law rank approximations, where T (ω)
is the projection onto the subspace spanned by the k leading eigenvectors of
f(ω) that correspond to the k largest eigenvalues of this matrix.

Thus we have proved that

X
(k)
t =

∫ π

−π
eitωŨk(ω)Ũ ∗k (ω)dZω, t ∈ Z. (37)

Then by (4), the spectral density of {X(k)
t } is

fk(ω) = Ũk(ω)Ũ ∗k (ω)Ũr(ω)Λ̃r(ω)Ũ ∗r (ω)Ũk(ω)Ũ ∗k (ω)

= Ũk(ω)
[
Ik 0k×(r−k)

]
Λ̃r(ω)

[
Ik

0(r−k)×k

]
Ũ ∗k (ω)

= Ũk(ω)Λ̃k(ω)Ũ ∗k (ω), ω ∈ [−π, π]. (38)

Further, the covariance function of {X(k)
t } is

Ck(h) :=

∫ π

−π
eihωfk(ω)dω, h ∈ Z. (39)

The next theorem summarizes the results above.

Theorem 5. Assume that {Xt} is a d-dimensional stationary time series of
constant rank r, 1 ≤ r ≤ d, with spectral density f . Let (32) and (33) be the
spectral decomposition of f .

(a) Then

X
(k)
t =

∫ π

−π
eitωŨk(ω)Ũ ∗k (ω)dZω, t ∈ Z,

is the approximating process of rank k, 1 ≤ k ≤ r, which minimizes the
mean square error of the approximation.
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(b) For the mean square error we have

‖Xt −X
(k)
t ‖2 =

∫ π

−π

r∑
j=k+1

λj(ω) dω, t ∈ Z, (40)

and
‖Xt −X

(k)
t ‖2

‖Xt‖2
=

∫ π
−π
∑r

j=k+1 λj(ω) dω∫ π
−π
∑r

j=1 λj(ω) dω
, t ∈ Z. (41)

(c) If condition

λk(ω) ≥ ∆ > ε ≥ λk+1(ω) ∀ω ∈ [−π, π], (42)

holds then we also have

‖Xt −X
(k)
t ‖ ≤ (2π(r − k)ε)1/2, t ∈ Z

and
‖Xt −X

(k)
t ‖

‖Xt‖
≤
(

(r − k)ε

r∆

) 1
2

, t ∈ Z. (43)

Equation (37) can be factored. As in Theorem 4, one can take the Fourier
series of the sub-unitary matrix function Ũk(ω) ∈ L2:

Ũk(ω) =
∞∑

j=−∞

ψ(j)e−ijω, ψ(j) =
1

2π

∫ π

−π
eijωŨk(ω)dω ∈ Cd×k,

where
∑∞

j=−∞ ‖ψ(j)‖2F <∞. Consequently,

Ũ ∗k (ω) =
∞∑

j=−∞

ψ∗(j)eijω, ω ∈ [−π, π].

If the time series {Vt} is defined by the linear filter

Vt :=

∫ π

−π
eitωŨ ∗k (ω)dZω ∈ Ck, t ∈ Z,

then similarly to (31) it follows that {Vt} can be obtained from the original
time series {Xt} by a sliding summation:

Vt =
∞∑

j=−∞

ψ∗(j)Xt+j, t ∈ Z,

17



and similarly to (30), its spectral density is a diagonal matrix:

fV(ω) = Λk(ω) = diag[λ1(ω), . . . , λk(ω)].

It means that the covariance matrix function of {Vt} is also diagonal:

CV(h) = diag[c11(h), . . . , ckk(h)], cjj(h) =

∫ π

−π
eihωλj(ω)dω, h ∈ Z,

that is, the components of the process {Vt} are orthogonal to each other.
Using a second linear filtration, equivalently, a second sliding summation,

one can obtain the k-rank approximation {X(k)
t } from {Vt}:

X
(k)
t =

∫ π

−π
eitωŨk(ω)Ũ ∗k (ω)dZω =

∫ π

−π
eitωŨk(ω)dZV

ω

=
∞∑

j=−∞

ψ(j)Vt−j, t ∈ Z.

Notice the dimension reduction in this approximation. Dimension d of
the original process {Xt} can be reduced to dimension k < d with the cross-
sectionally orthogonal process {Vt}, obtained by linear filtration, from which

the low-rank approximation {X(k)
t } can be reconstructed also by linear fil-

tration. Of course, this is useful only if the error of the approximation given
by Theorem 5 is small enough.

Since ŨkŨ
∗
k ∈ L2 as well, one can take the L2-convergent Fourier series

Ũk(ω)Ũ ∗k (ω) =
∞∑

j,`=−∞

ψ(j)e−ijωψ∗(`)ei`ω =
∞∑

m=−∞

w(m)e−imω,

where ω ∈ [−π, π] and

w(m) =
∞∑

j=−∞

ψ(j)ψ∗(j −m) ∈ Cd×d,

∞∑
m=−∞

‖w(m)‖2F <∞. (44)

By (7) it implies that the filtered process {X(k)
t } can be obtained directly

from {Xt} by a two-sided sliding summation:

X
(k)
t =

∞∑
m=−∞

w(m)Xt−m, t ∈ Z.
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5.2 Approximation of regular time series

In the special case when {Xt} is a d-dimensional regular time series of rank
r, it follows by Theorem 4 that Ũr(ω) belongs to the Hardy space H∞ ⊂ H2,
so the same holds for Ũk(ω) as well. Then its Fourier series is one-sided:

Ũk(ω) =
∞∑
j=0

ψ(j)e−ijω, ψ(j) ∈ Cd×k,

∞∑
j=0

‖ψ(j)‖2F <∞.

It is clear that for the approximating process {X(k)
t } each of the conditions

(1), (2) and (3) of Theorem 4 hold, thus it is also a regular time series.
Theorem 5 and Corollary ?? are valid for regular processes without change.

However, the factorization of the approximation discussed above is different
in the regular case, because several of the summations become one-sided.
Thus we have

Ũ ∗k (ω) =
∞∑
j=0

ψ∗(j)eijω, ω ∈ [−π, π].

Consequently, the k-dimensional, cross-sectionally orthogonal process {Vt}
becomes

Vt =
∞∑
j=0

ψ∗(j)Xt+j, t ∈ Z.

Further, the reconstruction of the k-rank approximation {X(k)
t } from {Vt}

is

X
(k)
t =

∞∑
j=0

ψ(j)Vt−j, t ∈ Z.

The direct evaluation of {X(k)
t } from {Xt} takes now the following form:

Ũk(ω)Ũ ∗k (ω) =
∞∑

j,`=0

ψ(j)e−ijωψ∗(`)ei`ω =
∞∑

m=−∞

w(m)e−imω, ω ∈ [−π, π],

where w(m) =
∑∞

j=max(0,m)ψ(j)ψ∗(j −m). It implies that the filtered pro-

cess {X(k)
t } is not causally subordinated to the original regular process {Xt}

in general, since it can be obtained from {Xt} by a two-sided sliding sum-
mation:

X
(k)
t =

∞∑
m=−∞

w(m)Xt−m, t ∈ Z,
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see (7). On the other hand, it is clear that if ‖ψ(j)‖F goes to 0 fast enough
as j →∞, one does not have to use too many ‘future’ terms of {Xt} to get

a good enough approximation of {X(k)
t }. In practice one can also replace the

future values of {Xt} by 0 to get a causal approximation of {X(k)
t }.

6 Rational spectral densities

An important subclass of the class of regular stationary time series, which
in turn is a subclass of time series with constant rank, is such that each
entry fk`(ω) in the spectral density matrix f is a rational complex function
in z = e−iω. This subclass is the same as that of the stable VARMA(p, q)
processes. Also, this is the subclass of stable stochastic linear systems with
finite dimensional state space representation. Moreover, this is the subclass
of stable stochastic linear systems with rational transfer function. In sum,
this is the subclass of weakly stationary time series that can be described by
finitely many complex valued parameters.

Remark 3. Every minor (that is, the determinant of a sub-matrix) of a
rational matrix is a rational function which is either identically zero or has
zeros and poles at only finitely many points. Hence a weakly stationary time
series with a spectral density f which is a rational matrix in z = e−iω must
be of constant rank r. By Theorem 1 it implies that such a process can be
represented as a two-sided infinite MA process. More accurately, Theorem
7 below shows that such a stable process is regular with a one-sided causal
MA(∞) representation.

6.1 Smith–McMillan form

The Smith–McMillan form is a useful tool by which one can diagonalize a
non-negative definite rational matrix so that both the obtained diagonal ma-
trix and the transformation matrix used for the diagonalization are rational
matrices. The usual technique of linear algebra which uses eigenvalues and
eigenvectors does not have this important property, since the eigenvalues and
the entries of eigenvectors of a rational matrix are not rational functions in
general.

Lemma 1. Let A(z) = [ajk(z)]d×d be a rational matrix which is self-adjoint
and non-negative definite for z ∈ T , having no poles on T , and whose rank
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is r, 1 ≤ r ≤ d, for z ∈ T \ Z, where Z is a finite set. Then we can write

A(z) = E(z)Λ(z)E∗(z) (z ∈ T \ Z), (45)

where Λ(z) and E(z) are rational matrices,

Λ(z) = diag[λ1(z), . . . , λr(z)], λj(z) > 0 (j = 1, . . . , r; z ∈ T \ Z).

Here diag[λ1, . . . , λr] denotes an r × r diagonal matrix with entries λj (j =
1, . . . , r) in its main diagonal. Also,

E(z) = [ejk(z)]d×r (z ∈ T \ Z),

is a lower unit trapezoidal matrix:

1. ejk(z) = 0 if k > j,

2. ejk(z) = 1 if k = j.

6.2 Spectral factors of a rational spectral density ma-
trix

Theorem 6. Let A(z) = [ajk(z)]d×d be a rational matrix which is self-adjoint
and non-negative definite for z ∈ T , having no poles on T , and whose rank
is r for all z ∈ T \ Z, where Z is a finite set. Then we can write

A(z) =
1

2π
Φ(z)Φ∗(z) (z ∈ T \ Z),

where Φ(z) = [Φjk(z)]d×r is a rational matrix, analytic in the open unit disc
D = {z : |z| < 1}, and has rank r for any z ∈ T \ Z.

Theorem 7. Let {Xt}t∈Z be a d-dimensional weakly stationary time series
with spectral density f(ω) which is a rational function in z = e−iω. By
Remark 3, f(ω) has constant rank r for all ω ∈ [−π, π] \ Z, where Z is a
finite set. Then {Xt}t∈Z can be represented as a regular process, a causal MA
process

Xt =
∞∑
j=0

b(j)ξt−j (t ∈ Z),
∞∑
j=0

‖b(j)‖2F <∞,

where b(j) ∈ Cd×r (j = 0, 1, . . . ) is a non-random matrix-valued function
and {ξt}t∈Z is a WN(Ir) (orthonormal) process.

21



7 Multidimensional ARMA (VARMA) pro-

cesses

More special regular processes are the ones that can be finitely parametrized.
Those are, in fact, the causal VARMA (Vector AutoRegressive Moving Av-
erage) processes that also have an MFD (matrix fractional description) or
state space representation.

The d-dimensional VARMA(p, q) process of 0 mean is defined as follows:

Xt = α1Xt−1 + · · ·+αpXt−p + Ut + β1Ut−1 + · · ·+ βqUt−q,

where {Ut} ∼ WN(0,Σ) is d-dimensional white noise and α1, . . . , αp, β1,
. . . , βq are d×d complex matrices, for the time being, α0 = Id. This defining
equation can concisely be written as

α(L) Xt = β(L) Ut,

where α(z) = I − α1z − · · · − αpzp and β(z) = I + β1z + · · · + βqz
q are

matrix-valued complex polynomials, namely, the AR and MA polynomials;
whereas, L is the backward shift operator. In particular, in the q = 0 case
we have a VAR(p), whereas, in the p = 0 case we have a VMA(q) process.

If the condition |α(z)| 6= 0 for |z| ≤ 1 for the VAR polynomial is satisfied,
it is called stability, then we have a causal representation of the process:

Xt =
∞∑
j=0

HjUt−j, (46)

with {Ut} ∼ WN(0,Σ) and the coefficient matrices Hjs come from the
power series expansion of the transfer function, as in the 1D case:

H(z) =
∞∑
j=0

Hjz
j, |z| ≤ 1,

where H(z) = α−1(z)β(z) and Hjs are called impulse responses. This is
the MFD. So we can write the original process as

Xt = α−1(z) β(z) Ut = H(z) Ut.

If, in addition to the stability condition, the inverse stability or strict
miniphase condition, i.e., |β(z)| 6= 0 for |z| ≤ 1 also holds (concerning the
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MA polynomial), then Ut can also be expanded in terms of Xks (k ≤ t). Also,
under stability and inverse stability, Equation (47) is the multidimensional
Wold decomposition of the VARMA process with the innovations Uts (there
is no singular part).

Note that the innovations can be transformed into an orthonormal pro-
cess. Indeed, if the white noise covariance matrix is non-singular, it can be
decomposed as Σ = BBT with the d×d non-singular B, and Equation (47)
can be written like

Xt =
∞∑
j=0

HjUt−j =
∞∑
j=0

HjBjB
−1
j Ut−j =

∞∑
j=0

(HjBj)ξt−j,

where {ξt} ∼ WN(Id) is an orthonormal process (both longitudinally and
cross-sectionally).

Going further, even if Σ is singular (it has rank r < d), it has the Gram-
decomposition like Σ = BBT with the d× r matrix B of full rank, and the
above equation is also valid with {ξt} ∼WN(Ir).

It is important, then a VAR(p) process makes rise of a finite prediction
of Xt based on its p-length long past:

Xt = a1Xt−1 + · · ·+ apXt−p + Ut.

Consequently,
X̂t = a1Xt−1 + · · ·+ apXt−p

is the same as the prediction of Xt with its p-length long past that extends
to the infinite past prediction. The multidimensional Yule-Walker equations
also work in this situation, see the next lesson for details.

VARMA processes also have a state spece representation, we will tuch
upon this setup when discussing Kálmán filtering.

The importance and wide applicability of VARMA processes is further
emphasized by the next proposition.

Proposition 1. The stable VARMA processes are dense among the regular
time series. More exactly, for any regular stationary time series {Xt} and
for any ε > 0 there exists a positive integer N and a VMA(N) process {Yt}
such that

‖Xt −Yt‖ < ε, ∀t ∈ Z.

This shows that stable VARMA processes are dense among the regular
time series.
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8 Summary

The d-dimensional, weakly stationary time series {Xt} has a spectral density
matrix f with constant rank r ≤ d (almost everywhere on [−π, π]) if and
only if f can be factored as

f(ω) =
1

2π
φ(ω)φ∗(ω) for a.e. ω ∈ [−π, π],

where φ(ω) ∈ Cd×r:

φ(ω) =
∞∑

j=−∞

b(j)e−ijω,
∞∑

j=−∞

|bqs(j)|2 <∞ (q = 1, . . . , d; s = 1, . . . , r).

Equivalently, Xt can be represented as a two-sided TLF

Xt =
∞∑

j=−∞

b(j)ξt−j,

where b(j) ∈ Cd×r (j ∈ Z) is a non-random matrix-valued sequence, the
Fourier coefficients of the function φ(ω); further, {ξs} is a WN(Ir) sequence.

Regular time series are subclasses of the constant rank ones in that they
have a one-sided MA representation:

Xt =
∞∑
j=0

b(j)ξt−j, t ∈ Z.

This representation of {Xt}, as a process of constant rank spectral density
matrix f(ω), is equivalent that its spectral density can be factored in the
form

f(ω) =
1

2π
φ(ω)φ∗(ω), φ(ω) = [φj`(ω)]d×r, for a.e. ω ∈ [−π, π],

where

φ(ω) =
∞∑
k=0

b(k)e−ikω, ‖φj`‖22 =
∞∑
k=0

|bj`(k)|2 <∞.

The multi-dimensional Wold decomposition also works as follows. As-
sume that {Xt}t∈Z is an d-dimensional non-singular stationary time series.
Then it can be represented as

Xt = Rt + Yt =
∞∑
j=0

b(j)ξt−j + Yt (t ∈ Z),
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where {Rt} is a d-dimensional regular time series subordinated to {Xt};
{Yt} is an d-dimensional singular time series subordinated to {Xt}; {ξt} is
an r-dimensional (r ≤ d) WN(Ir) sequence subordinated to {Xt}. Further,
{Rt} and {Yt} are orthogonal to each other, i.e.,

E(RtY
∗
s) = Od (t, s ∈ Z);

b(j) = [bqs(j)] ∈ Cd×r for each j ≥ 0 and

∞∑
j=0

|bqs(j)|2 <∞ (q = 1, . . . , d; s = 1, . . . , r).

It is important that the orthonormal innovation process {ξt} is not unique,
but ξts are within the pairwise orthogonal innovation subspaces that are
unique and their dimension is equal to the constant rank r of the spectral
density matrix f of the process {Xt}.

More special regular processes are the ones that can be finitely parametrized.
Those are, in fact, the causal VARMA (Vector AutoRegressive Moving Av-
erage) processes that also have an MFD or state space representation.

The d-dimensional VARMA(p, q) process of 0 mean is defined as follows:

Xt +α1Xt−1 + · · ·+αpXt−p = Ut + β1Ut−1 + · · ·+ βqUt−q,

where {Ut} ∼ WN(0,Σ) is d-dimensional white noise and α1, . . . , αp, β1,
. . . , βq are d×d complex matrices, for the time being, α0 = Id. This defining
equation can concisely be written as

α(L) Xt = β(L) Ut,

where α(z) = I + α1z + · · · + αpz
p and β(z) = I + β1z + · · · + βqz

q are
matrix-valued complex polynomials, namely, the AR and MA polynomials;
whereas, L is the backward shift operator. In particular, in the q = 0 case
we have a VAR(p), whereas, in the p = 0 case we have a VMA(q) process.

If the condition |α(z)| 6= 0 for |z| ≤ 1 for the VAR polynomial is satisfied
(it is called stability), then we have a causal representation of the process:

Xt =
∞∑
j=0

HjUt−j, (47)
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with {Ut} ∼ WN(0,Σ) and the coefficient matrices Hjs come from the
power series expansion of the transfer function:

H(z) =
∞∑
j=0

Hjz
j, |z| ≤ 1,

where H(z) = α−1(z)β(z) and Hjs are called impulse responses. So we can
write the original process as

Xt = α−1(z) β(z) Ut = H(z) Ut.

If, in addition to the stability condition, the inverse stability or strict
miniphase condition, i.e., |β(z)| 6= 0 for |z| ≤ 1 also holds (concerning the
MA polynomial), then Ut can also be expanded in terms of Xks (k ≤ t). Also,
under stability and inverse stability, Equation (47) is the multidimensional
Wold decomposition of the VARMA process with the innovations Zts (there
is no singular part).

Note that the innovations can be transformed into an orthonormal pro-
cess. Indeed, if the white noise covariance matrix is non-singular, it can be
decomposed as Σ = BBT with the d×d non-singular B, and Equation (47)
can be written like

Xt =
∞∑
j=0

HjUt−j =
∞∑
j=0

HjBjB
−1
j Ut−j =

∞∑
j=0

(HjBj)ξt−j,

where {ξt} ∼ WN(Id) is an orthonormal process (both longitudinally and
cross-sectionally).

Going further, even if Σ is singular (it has rank r < d), it has the Gram-
decomposition like Σ = BBT with the d× r matrix B of full rank, and the
above equation is also valid with {ξt} ∼WN(Ir).

It is important, then a VAR(p) process makes rise of a finite prediction
of Xt based on its p-length long past:

Xt = a1Xt−1 + · · ·+ apXt−p + Ut.

Consequently,
X̂t = a1Xt−1 + · · ·+ apXt−p

is the same as the prediction of Xt with its p-length long past that extends
to the infinite past prediction, see the next lesson. The multidimensional
Yule-Walker equations also work in this situation. It is also proved that the
stable VARMA processes are dense among the regular time series.
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