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In this lesson we deal with the prediction of stochastic processes in gen-
eral and in the weakly stationary case. We consider one-step and more-
step ahead predictions based on finitely many past values or on the infinite
past. Actually, the original paper of H. Wold is about 1D, weakly station-
ary time series, and constructs the famous decomposition via one-step ahead
predictions based on the n-length long past with usual multivariate regres-
sion techniques, while making use of stationarity as well. Then, at a passage
to infinity (n → ∞) he gets the formula for the one-step ahead prediction
based on the infinite past. In this way, he decomposes the regular part of a
weakly stationary 1D time series as the infinite sum of the innovations that
also form a weakly stationary process, namely, a white noise process with
the smallest obtainable variance of the linear prediction error. Orthogonal-
ity (uncorrelatedness) of the innovation ηt and the past Xt−1, Xt−2, . . . of Xt

is the consequence of the projection principle used in multivariate regression.
The generalization to a multivariate process {Xt} is straightforward with

the observation that here parallel multivariate linear regressions are used
for the components of Xt based on all the components of Xt−1, . . . ,Xt−n.
The error terms, ηts and their covariance matrices are obtainable by the
block Cholesky decomposition of the block Toeplitz matrix Cn already used
in Chapter 1. At a passage to infinity, we get the multi-dimensional Wold
decomposition that is more complicated than the 1D one in that here only
the so-called innovation subspaces are unique, the dimension of which is the
same as the rank of the spectral density matrix of the weakly stationary
{Xt}. If this rank r is less than the dimension d of the process, then the
error covariance matrix of ηt is singular (of rank r), but usually not the
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zero matrix. In this case, within the innovation subspaces, with usual fac-
tor analysis techniques, a {ξt} ∼ WN(Ir) process can be constructed (up
to orthogonal rotation) such that it appears in the multi-dimensional Wold
decomposition instead of the innovation subspaces. Actually, this is the task
of the dynamic factor analysis when the low-dimensional approximation is
not always straightforward but is obtainable with spectral approximations
under the conditions of the GDFM (Generalized Dynamic Factor Model).

We also establish asymptotic relations between the spectrum of Cn and
the spectra of spectral density matrices at the Fourier frequencies, for ‘large’
n. In this way, the spectra of spectra, that is the spectral decomposition
of these matrices plays a crucial rule in dimension reduction (see Chapter
4), and gives rise to computationally more tractable algorithms as the above
block Cholesky decomposition.

The technique of the Kálmán’s filtering is also introduced together with
a recursion to obtain the innovations and the newer and newer predictions
for the state variable of a state space system, while using only the newcom-
ing observed variable and the preceding estimate of the state variable. In
the heart of the recursion there is the propagation of the error covariance
matrices.

1 1D prediction of weakly stationary processes

in the time domain

1.1 One-step ahead prediction based on finitely many
past values

We have a 1D time series {Xt} which is not necessarily stationary, for now;
we just assume the existence of the second moments (cross-autocovariances).
For simplicity, the state space is R, but the time is discrete (t ∈ Z).

Assume that E(Xt) = 0 (t ∈ Z). Select a starting observation X1 and
Hn := Span{X1, . . . , Xn}. We want to linearly predictXn+1 based on random
past values X1, . . . , Xn. Let X̂1 := 0, and denote by X̂n+1 the best linear
prediction that minimizes the mean square error E(Xn+1 − X̂n+1)

2, n =
1, 2, . . . . If we consider the Hilbert space of the random variables with 0
expectation and finite variance, where the inner product is the covariance
(see the background material), then we have E(Xn+1 − X̂n+1)

2 = ‖Xn+1 −
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X̂n+1‖2. By the general theory of Hilbert spaces, X̂n+1 = ProjHn
Xn+1, i.e.

the projection of Xn+1 onto the linear subspace Hn. In the Gaussian case,
the solution is X̂n+1 = E(Xn+1 |X1, . . . , Xn), which is the regression plane,
but the coefficients of the optimal linear predictor

X̂n+1 = an1Xn + · · ·+ annX1

can be obtained in the non-Gaussian case too, by solving a system of linear
equations that contains the second moments and the second cross-moments
of the involved random variables as follows by the theory of multivariate
linear regression (see also Appendix C).

With the notations an = (an1, . . . , ann)T , Cn = [Cov(Xi, Xj)]
n
i,j=1 and

dn = (Cov(Xn+1, Xn), . . . ,Cov(Xn+1, X1))
T , we have to solve the following

system of linear equations (Gauss normal equations):

Cnan = dn. (1)

A solution (the projection ) always exists, and it is unique if Cn is posi-
tive definite. Then the unique solution is an = C−1n dn. Otherwise, there
are infinitely many solutions, and we can give them similarly, with any gen-
eralized inverse of the positive semidefinite matrix Cn. In this case, there
are linear relations between X1, . . . , Xn, and so, infinitely many linear com-
binations of them produce the same projection of Xn+1 onto the subspace
spanned by them. In case of a singular Cn it is customary to use the (unique)
Moore–Penrose inverse (see Appendix B) that gives the particular solution
an = C+

n dn.
In particular, if {Xt} is stationary, then Cn = [c(i − j)]ni,j=1, so Cn is

a Toeplitz matrix, and dn(j) = c(j), j = 1, . . . , n. Therefore, the solution
an does not depend on the selection of the starting time of the starting
observation X1. In this case, no double indexing for the coordinates of the
vector an is necessary, they can as well be written as a1, . . . , an.

Also, when {Xt} is stationary, then under very general conditions, there
is a unique solution as discussed below. Some remarks are in order.

Remark 1. Namely, if c(0) > 0 and limh→∞ c(h) = 0, then the autocovari-
ance matrix Cn = [c(i−j)]ni,j=1 of (X1, . . . , Xn)T is positive definite for every
n ∈ N.

Remark 2. For ‘large’ n, the eigenvalues of Cn are asymptotically the same
as the union of the values of the spectral density f at the Fourier frequencies.
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In Section 3, we will generalize this statement for multidimensional time
series.

Note that, in the stationary case we can estimate an if we have a sample,
i.e. the set of n-length long windows X1+t, . . . , Xn+t, t = 0, . . . , T . The
estimate of an is based on the sample estimates of Cn and dn, see Section 1.4.
There it is discussed that T shuld be ‘much larger’ than n so that to satisfy
ergodicity. For increasing n, there are recursions to find the components of
an; for example, the Durbin–Levinson algorithm.

Considering the the decomposition

Xn+1 = X̂n+1 + ηn+1,

where X̂n+1 = aTnXn and ηn+1 is the error term, it is easy to see (background
material) that the two right-hand side terms are orthogonal (uncorrelated),
therefore their variances are added together:

‖Xn+1‖2 = ‖X̂n+1‖2 + ‖ηn+1‖2.

With our notation it yields

c(0) = Var(aTnXn) + Var(ηn+1) = Var(dTnC
−1
n Xn) + Var(ηn+1)

= dTnC
−1
n dn + Var(ηn+1).

Therefore, the prediction error, that is the variance of the error term, is

e2n = ‖ηn+1‖2 = Var(ηn+1) = c(0)− dTnC
−1
n dn. (2)

It will be further analyzed in Section 1.2.
Note that equation (1) is exactly the same as the first n Yule-Walker

equations for estimating the parameters of a stationary AR(n) process.
The AR(n) process is

Xt = a1Xt−1 + a2Xt−2 + · · ·+ anXt−n + ηt, t = 0,±1,±2, . . . (3)

where {ηt} ∼WN(σ2) is a white noise process, where σ2 is also estimated. In
case of second order processes, due to the projection principle, it also comes
out that ηt (the orthogonal component) is uncorrelated with the regressor,
and so with the past values Xt−1, Xt−2, . . . too.

4



The Yule-Walker equations based on the first n autocovariances are:

c(k) =

{
a1c(1) + · · ·+ anc(n) + σ2, k = 0
a1c(k − 1) + · · ·+ anc(k − n), k = 1, . . . , n

(4)

For real-valued time series, the Yule-Walker equations (4) for k = 1, . . . , n
can be written in matrix form:

c(0) c(1) . . . c(n− 1)
c(1) c(0) . . . c(n− 2)

...
...

...
...

c(n− 1) c(n− 2) . . . c(0)

 ·

a1
a2
...
an

 =


c(1)
c(2)

...
c(n)

 . (5)

These are the Gauss normal equations, see the background material. If the
coefficient matrix is strictly positive definite, (positive semidefiniteness is
always true), then we have a unique solution. Substituting this solution in
the first equation of (4), which is the same as equation (2), provides the
solution for σ2. Here σ2 = e2n if the order n of the AR process is fixed.

Also, in case of a stable AR(n) process, the first n Yule–Walker equations
imply the next ones; while in other cases, the solution of the first n Yule–
Walker equations just gives the best prediction using n past values, and they
are rather called Gauss normal equations.

Remark 3. If for some n ≥ 1 the covariance matrix Cn is positive definite,
then the nth degree AR polynomial α(z) is causal in the sense that α(z) 6= 0
for z ≤ 1.

Remark 4. Comparing Remarks 1 and 3, we can conclude the following. If
for the autocovariance function of the process {Xt}, c(0) > 0 and limh→∞ c(h) =
0 hold, then the autocovariance matrix Cn = [c(i− j)]ni,j=1 of (X1, . . . , Xn)T

assigned to the process is positive definite for every n ∈ N. Consequently, the
process {Xt} has a (unique) stable AR(n) representation such that the first n
autocovariances of it are c(0), . . . , c(n− 1), for every n ∈ N. However, if the
sequence c(h) tends to 0, but not exponentially fast, these AR(n) representa-
tions based on just X1, . . . , Xn do not approximate the process at all, and the
process is not even necessarily regular.

On the contrary, if Cn is singular for some n (and consequently, for larger
ns too), then using its the generalized inverse, we get an AR(n) solution, but
it is not stable.

5



It is also important, that in case of a stationary process, the h-step ahead
prediction, i.e. the prediction of Xn+h based on X1, . . . , Xn can be easily
concluded from the one-step ahead prediction, for h = 1, 2, . . . . In view of
Hn ⊂ Hn+h−1,

ProjHn
Xn+h = ProjHn

ProjHn+h−1
Xn+h = ProjHn

X̂n+h,

we get the equation
Cnan = dn(h) (6)

for the coefficients of the prediction in an, where

dn(h) = [Cov(Xn+h, Xn), . . . ,Cov(Xn+h, X1)]
T ,

and it is [c(h), . . . , c(n+ h− 1)]T in the stationary case. Equation (1) is the
special case when h = 1 and dn = dn(1).

1.2 Innovations

Observe that, by the Gram–Schmidt procedure, the prediction error terms
form an orthogonal sequence, and they are called innovations. In this way,
Xns can as well be expressed in terms of the inovations; in other words, Xn

can be written as the linear combination of the normalized error terms that
form a complete orthonormal system in Hn. Moreover, this is true in each
step of the Gram–Schmidt process, so in the expansion of each Xn only the
same and lower index error terms appear. We do it as follows.

First, {Xt} is not necessarily stationary. Recall thatHn := Span{X1, . . . , Xn}.
Let ηn+1 := Xn+1− X̂n+1 be the one-step ahead prediction error term, based
on the n-length long past, for n = 0, 1, . . . . As X̂1 = 0 (see Section 1.1),
η1 = X1 ∈ H1 and the unique orthogonal decomposition

X2 = X̂2 + η2

works, where X̂2 ∈ H1 and η2 ⊥ H1, whenever H1 ⊂ H2 is a proper subspace
(disregard the situation H1 = H2, when η2 = 0). Therefore, η2 ∈ H2 and
η2 ⊥ η1. Further,

X2 = l21η1 + η2.

With the same considerations,

Xj+1 = X̂j+1 + ηj+1, j = 2, . . . , n
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with X̂j+1 ∈ Hj and ηj+1 ⊥ Hj if Hj ⊂ Hj+1 is a proper subspace. So
ηj+1 ∈ Hj+1 and ηj+1 ⊥ ηj.

In this way, we get the innovations η1, . . . , ηn, the linear combination of
which produces Xk as

X1 = η1, Xk =
k−1∑
j=1

lkjηj + ηk, k = 2, . . . , n,

where the coefficients lkj are obtained recursively, together with the mean
square one-step ahead prediction errors σ2

k = ‖ηk‖2 (k = 1, 2, . . . , n).
Actually, this is the LDL (variant of the Cholesky) decomposition, see

the background material (Complex Matrices). Indeed, with the notation
ηn = (η1, . . . , ηn)T and Xn = (X1, . . . , Xn)T , we have to find an n× n lower
triangular matrix Ln with entries lkjs and all 1’s along its main diagonal such
that

Xn = Lnηn. (7)

Taking the covariance matrices on both sides, yields

Cn = LnDnL
T
n . (8)

If Cn is positive definite, then Dn = diag(σ2
1, . . . , σ

2
n) is positive definite too.

Ln is also nonsingular (with diagonal entries 1s), hence ηn = L−1n Xn, where
L−1n is also lower triangular; therefore, the innovations can as well be written
in terms of the same or lower index Xts. So the LDL decomposition gives
the prediction errors (diagonal entries of Dn), and the entries of Ln below
its main diagonal (the main diagonal is constantly 1). Note that the entries
of Ln are obtainable in a nested way, so n does not play an important role
here, see the background material. With increasing n, we just extend the
rows of Ln.

The situation further simplifies in the stationary case, when Cn is a
Toeplitz matrix. However, Ln will not be Toeplitz, but asymptotically, it
becomes more and more like a Toeplitz one, and the entries of Dn will be
more and more similar to each other (the sequence e2n converges) as with
n→∞ the situation resembles the infinite past one (see the Wold decompo-
sition). These issues will be more precisely analyzed in Section 1.3. Actually,
this algorithm is also applicable to find MA(q) representation of a process
with n = 1, 2, . . . , q.
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Remark 5. If the autocovariance function of the zero mean stationary pro-
cess is such that c(h) = 0 for |h| > q and c(q) 6= 0, then it is a MA(q)
process.

In the stationary case, the innovation ηn is non-zero if Hn−1 ⊂ Hn is
a proper subspace. In this case, ηns are true innovations. Recall that, by
Remark 1, this holds true at the same time for any n whenever c(0) > 0 and
limh→∞ c(h) = 0. In this case, we can also standardize the ηns, and write

Xn =
n∑
j=1

l̃njξj, n = 1, 2, . . .

where ξj = ηj/σj and l̃nj = lnjσj for j = 1, . . . , n. Here ξ1, . . . , ξn form a
complete orthonormal system in Hn. The coefficients l̃njs are obtainable by
the Gram decomposition (see Appendix B)

Cn = AnA
T
n

where An = LnD
1/2
n can be chosen lower triangular, but it can be post-

multiplied with any orthogonal matrix.

1.3 Prediction based on the infinite past

Going farther, in case of a stationary, non-singular process, we can project
Xn+1 onto the infinite past H−n = span {Xt : t ≤ n} and expand it in terms
of an orthonormal system, that is called Wold decomposition. This part will
be the regular (causal) part of the process, whereas, the other, singular part,
is orthogonal to it. Note that this singular part is of Type (0) deterministic
(see Lessons 5-6).

Also, by stationarity, the one-step ahead prediction error

σ2 = ‖Xn+1 − ProjH−
n
Xn+1‖ = E(Xn+1 − ProjH−

n
Xn+1)

2

does not depend on n, and it is positive, since the process is non-singular.
Again, the Wold decomposition gives

Xn =
∞∑
j=0

bjηn−j + Yn,
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where {Yn} is of Type (0) singular and {ηt} is white noise with variance σ2,
b0 = 1. If Yn = 0 for all n, the process {Xn} is regular. The coefficients
bi/σ are the impulse responses. Because of the stationarity and infinite past,
b has a single index. Here the coefficients bjs are the limiting values of lnjs
when n → ∞ in (??). It is in accord with the earlier observation that the
matrix Ln will be closer and closer to a Toeplitz one, if we disregard the first
finitely many rows of it.

Note that the innovation process is a MA(∞) process, which is a causal
TLF. Here ηn is not considered as an error term, but rather than positive
information that is not contained in the past of Xn. This is why it is called
innovation.

Wold derives his celebrated decomposition theorem for real, univariate
stationary time series in the following situation: the one-step ahead predic-
tion of Xt is based on its n-length long past and n→∞.

More precisely, let us fix Xt and consider its one-step ahead prediction,
based on its n-length long past. By stationarity, the mean square prediction
error does not depend on t, it only depends on n, and was denoted by e2n.
It can be written in many equivalent forms, see the theory of multivariate
regression:

e2n = c(0)(1− r2Xt,(Xt−1,...,Xt−n)
) = c(0)− dTnC

−1
n dn,

where r2Xt,(Xt−1,...,Xt−n)
is the squared multiple correlation coefficient between

Xt and (Xt−1, . . . , Xt−n); it does not depend on t either, and obviously in-
creases (does not decrease) with n, i.e. e21 ≥ e22 ≥ . . . . The mean square error
can as well be written with the determinants of the consecutive Toeplitz ma-
trices Cn and Cn+1. The next proposition is also used in the original paper
of Wold, but here we give a simple proof by means of the determinants of
block matrices.

Proposition 1. If for some n, |Cn| 6= 0, then

e2n = c(0)− dTnC
−1
n dn =

|Cn+1|
|Cn|

. (9)

Proof. We use block matrix techniques for the following partitioned matrix:

Cn+1 =

(
Cn dn
dTn c(0)

)
.
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It is known that

|Cn+1| = |Cn − dnc
−1(0)dTn | · |c(0)|

= c(0)|Cn(In −C−1n dnd
T
n/c(0)|

= c(0)|Cn| · |In −C−1n dnd
T
n/c(0)|

= c(0)|Cn| · (1− λ(C−1n dnd
T
n/c(0))),

where λ(C−1n dnd
T
n/c(0)) is the only nonzero eigenvalue of the matrixC−1n dnd

T
n/c(0),

which is of rank 1. Indeed, the rank of the dyad dnd
T
n is 1, and the mul-

tiplication with another matrix cannot increase this rank. Therefore, the
eigenvalues of In − C−1n dnd

T
n/c(0) are 1 − λ(C−1n dnd

T
n/c(0)) and 1 (with

multiplicity n− 1). So its determinant is

1− λ(C−1n dnd
T
n/c(0)) = 1− λ(C−1n dnd

T
n )/c(0) = 1− tr(C−1n dnd

T
n )/c(0)

= 1− tr(dTnC
−1
n dn)/c(0) = 1− dTnC

−1
n dn/c(0) =

c(0)− dTnC
−1
n dn

c(0)
,

where we used that the only nonzero eigenvalue of a rank 1 matrix is its trace
and the cyclic commutativity of the trace operator. Putting things together:

|Cn+1| = c(0)|Cn|
c(0)− dTnC

−1
n dn

c(0)
= |Cn|(c(0)− dTnC

−1
n dn),

that proves the statement.

Remark 6. If |Cn| = 0 for some n, then |Cn+1| = |Cn+2| = · · · = 0
too. The smallest index n for which this happens indicates that there is
a linear relation between n consecutive Xjs, but no linear relation between
n − 1 consecutive ones (by stationarity, this property is irrespective of the
position of the consecutive random variables). This can happen only if some
Xt linearly depends on n − 1 preceding Xjs. In this case e2n−1 = 0 and, of
course e2n = e2n+1 = · · · = 0 too. In any case, e21 ≥ e22 ≥ . . . is a decreasing
(non-increasing) nonnegative sequence, and in view of Equation (9),

|C1| = c(0), |Cn| = c(0)e21 . . . e
2
n−1, n = 2, 3, . . . ,

so, provided c(0) > 0, |Cn| = 0 holds if and only if e2n−1 = 0. Note that in
this stationary case there is no sense of using generalized inverse if |Cn| = 0,
since then exact one-step ahead prediction with the n−1 long past can be done
with zero error, and this property is manifested for longer past predictions too.
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In the light of these, there are the following possibilities:

• Ck is positive definite up to k ≤ h, but |Ch| = 0 for some positive
integer h (and so, |Ck| = 0 for k > h too). Wold calls such a process
singular of rank h. Then, by Remark 6,

e21 ≥ e22 ≥ · · · > e2h−1 = e2h = · · · = 0.

So Xt can be exactly predicted based on its (h − 1)length long past.
This is caused by periodicities, for instance, in case of the Type (0)
singular process of Lessons 5-6. In this case, c(h) cannot tend to 0,
otherwise all the Chs were positive definite, in view of Remark 1.

• |Cn| 6= 0 for any n, and so, e2n > 0 for every n, but still, limn→∞ e
2
n = 0

in a decreasing (non-increasing) way. Wold calls such a process singular
of infinite rank. This is caused by hidden periodicities, for instance,
the Type (1) and Type (2) singular process of Lessons 5-6. (Then
limh→∞ c(h) = 0, but not exponentially fast.)

• In the remaining (non-singular) case, e2n → σ2 as n→∞ in a decreas-
ing (non-increasing) way, where 0 < σ2 < c(0). (In case of ARMA
processes limh→∞ c(h) = 0 exponentially fast.)

Wold shows that the residual process ηt,n (one-step ahead prediction error
term of predicting Xt with its n-length long past) is stationary for any fixed
n. After a passage to the limit, the process {ηt,n} converges in probability to
the residual process {ηt} as n→∞. We cite the exact theorem (Theorem 6
of the original paper of Wold):

Theorem 1. A residual process {ηt} obtained from a non-singular station-
ary process {Xt} is stationary and non-autocorrelated. Further, ηt is non-
correlated with Xt−1, Xt−2, . . . , while

Corr(Xt, ηt) =
Cov(Xt, ηt)√
c(0)

√
Var(ηt)

=
Var(ηt)√

c(0)
√

Var(ηt)
=

√
Var(ηt)√
c(0)

=
σ√
c(0)

.

Wold notes that the arguments used in the proof of this theorem also
apply in the singular cases. As the residual variables ηt are here vanishing,
their correlation properties will be indeterminate. Accordingly, these cases
do not need further comment.
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2 Multidimensional prediction

2.1 One-step ahead prediction based on finitely many
past values

We have a d-dimensional real time series {Xt} with components Xt = [X1
t , . . . , X

d
t ]T .

It is not necessarily stationary, we just assume the existence of the second
moments and cross-moments. For simplicity, the state space is Rd, but the
time is discrete (t ∈ Z).

Assume that E(Xt) = 0 (t ∈ Z). Select a starting observation X1 and

Hn := Span{Xj
t : t = 1, . . . , n; j = 1, . . . , d},

dim(Hn) = nd. (Precisely, it should be denoted by Hn(X), but as the process
is fixed, it is briefly denoted by Hn. However, dim(Hn) is not the same as in
the 1D situation.)

We want to linearly predict Xn+1 based on past values X1, . . . ,Xn. Let
X̂1 := 0, and denote by X̂n+1 the best one-step ahead linear prediction that
minimizes the mean square error

E(Xn+1 − X̂n+1)
2 = ‖Xn+1 − X̂n+1‖2, n = 1, 2, . . .

in the Hilbert-space setup (see the background material). Thus, X̂n+1 =
ProjHn

Xn+1, i.e. the projection of Xn+1 onto the linear subspace Hn. In

the Gaussian case, the solution is X̂n+1 = E(Xn+1 |X1, . . . ,Xn), which is
the instance of simultaneous linear regressions for the components of Xn+1

by predictors X1, . . . ,Xn. In the general case, we have to solve a system of
linear equations that resembles (??)). Indeed, the projection is looked for in
the form

X̂n+1 = An1Xn + · · ·+AnnX1 (10)

where An1, . . .Ann are d × d matrices. But (Xn+1 − X̂n+1) ⊥ Xn+1−k for
k = 1, . . . , n in the sense that

E[(Xn+1 − X̂n+1)X
T
n+1−k] = Od, k = 1, . . . n, (11)

where Od is the d × d zero matrix. Equations (10) and (11) together yield
the following system of linear equations:

n∑
j=1

AnjCov(Xn+1−j,Xn+1−k) = Cov(Xn+1,Xn+1−k), k = 1, . . . , n, (12)
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where Cov now denotes an d × d cross-covariance matrix. This is the ex-
tension of the Gauss normal equations for parallel linear predictions with
d-dimensional target (see the background material).

When {Xt} is stationary, then Equation (12) simplifies to

n∑
j=1

AjC(k − j) = C(k), k = 1, . . . , n,

where C(k) is the kth order d × d autocovariance matrix. This provides a
system of d2n linear equations with the same number of unknowns that al-
ways has a solution. Further, the solution does not depend on the selection
of the time of the starting observation X1, and no double indexing of the
coefficient matrices is necessary. For the block matrix version see the back-
ground material. The coefficient matrix is just Cn, which is always positive
semidefinite. If positive definite, we have a unique solution; otherwise, with
block matrix techniques, reduced rank innovations are obtained.

There are recursions to solve this system (e.g. the Durbin–Levinson al-
gorithm), which resembles the set of the first n Yule–Walker equations for a
multidimensional VAR(n) processes.

Proposition 2. If for some n ≥ 1 the covariance matrix of (XT
n+1, . . . ,X

T
1 )T

is positive definite, then the matrix polynomial α(z) = I −A1z− · · ·−Anz
n

is causal in the sense that the determinant |α(z)| 6= 0 for z ≤ 1.

2.2 Multidimensional innovations

Analogously to the 1D situation, Xt can again be expanded in terms of the
now d-dimensional innovations, i.e. the prediction error terms

ηn+1 := Xn+1 − X̂n+1.

It can be done step by step as follows. Assume that the nd× nd covariance
matrix Cn of the components of X1, . . . ,Xn is positive definite for every n ≥
1. Let X̂1 := 0, η1 := X1 and consider the unique orthogonal decomposition

X2 = X̂2 + η2,

where X̂2 ∈ H1 and η2 ⊥ H1, whenever H1 ⊂ H2 is a proper subspace
(disregard the situation H1 = H2, when η2 = 0). Therefore, η2 ∈ H2 and
η2 ⊥ η1. With the same considerations,

Xj+1 = X̂j+1 + ηj+1, j = 2, . . . , n
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with X̂j+1 ∈ Hj and ηj+1 ⊥ Hj if Hj ⊂ Hj+1 is a proper subspace. So
ηj+1 ∈ Hj+1 and ηj+1 ⊥ ηj.

In this way, we get the innovations η1, . . . ,ηn that trivially have 0 ex-
pectation and form an orthogonal system in the nd-dimensional Hn (their
pairwise cross-covariance matrices are zeros). We consider the first n steps,
i.e. the recursive equations

Xk =
k−1∑
j=1

Bkjηj + ηk, k = 1, 2, . . . , n (13)

in the case when the observations X1, . . . ,Xn are available.
If our process is stationary, the coefficient matrices are irrespective of the

choice of the starting time. The ηjs are not zeros if Hn ⊂ Hn+1 are proper
subspaces, i.e. they are true innovations. However, it can be, that though
they are not zeros, they span a lower than d-dimensional subspace, i.e. their
covariance matrix Ej = Eηjη′j is not zero, but a positive semidefinite matrix
of rank r < d. By stationarity, this rank is the same for all j, and it is
equal to the (constant) rank of the spectral density matrix of the process.
When we go to the future, then look back to the ‘infinite’ past, and obtain
the multidimensional Wold decomposition and the forthcoming explanation
at the end of this section).

Multiplying the equations in (13) by XT
j from the right, and taking

expectation, the solution for the matrices Bkj and Ej (k = 1. . . . , n; j =
1, . . . , k − 1) can be obtained via the block Cholesky (LDL) decomposition:

Cn = LnDnL
T
n , (14)

where Cn is nd× nd positive definite block Toeplitz matrix of general entry
C(i − j), see (??). Dn is nm × nm block diagonal and contains the posi-
tive semidefinite prediction error matrices E1, . . . ,En in its diagonal blocks,
whereas Ln is nd× nd lower triangular with blocks Bkjs below its diagonal
blocks which are d× d identities, so Ln is non-singular. In matrix form,

Ln =


I O . . . O O
B21 I . . . O O

...
...

...
...

...
Bn1 Bn2 . . . Bn,n−1 I

 , Dn =


E1 O . . . O O
O E2 . . . O O
...

...
...

...
...

O O . . . O En

 .
(15)
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To find the block Cholesky decomposition of (15), the following recursion
is at our disposal: for j = 1, . . . , n

Ej := C(0)−
j−1∑
k=1

BjkEkB
T
jk, j = 1, . . . , n (16)

and for i = j, . . . , n

Bij :=

(
C(i− j)−

j−1∑
k=1

BikEkB
T
ik

)
E+
j , (17)

where we take the Moore–Penrose inverse if necessary.
Note that Equation (14) implies the following:

|Cn| = |Dn| =
n∏
j=1

|Ej|.

If the prediction is based on the infinite past, then with n → ∞ this
procedure (which is a nested one) extends to the multidimensional Wold
decomposition. We can construct a causal TLF in this way. Actually, here
n = t, and as observations arrive, Xn is predicted based on past values
X1, . . . ,Xn−1, and so, ηn is in fact, ηt,n. By stationarity, it has the same
distribution for all t, especially for t = n. Also, if n → ∞, the matrix Ln
better and better approaches a Toeplitz one, and the matrices E1, . . . ,En

are closer and closer to Σ, the covariance matrix of the innovation process
{ηn}. This is supported by Theorem 1, according to which, ηn → η in mean
square:

‖En −Σ‖ = ‖E(ηnη
T
n )− E(ηηT )‖ → 0

as n → ∞. Consequently, Bnj → Bj as n → ∞ as it continuously depends
on Ejs in view of Equations (17).

Going further, when the Ejs are of rank r < d, we can find a system
ξ1, . . . , ξn ∈ Rr in the d-dimensional innovation subspaces that span the
same subspace as η1, . . . ,ηn. (Though, in this situation, the block Cholesky
decomposition algorithm should be modified by taking generalized inverses.)
If the rank is not exactly r (may be full), but the spectral density matrix
has r < d structural eigenvalues, then ξj ∈ Rr, Eξjξ′j = Ir is the principal
component factor of ηj obtained from the r-factor model

ηj = Ajξj + εj,
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where the columns of d× r matrix Aj are
√
λj`uj` with the r largest eigen-

values and the corresponding eigenvectors of Ej; the vector εj is the error
comprised of both the idiosyncratic noise and the error term of the model, but
it has a negligible L2-norm. Note that Aj of the decomposition Ej = AjA

T
j

is far not unique, it can be post-multiplied with an r× r orthogonal matrix.
With this,

Xk ∼
k∑
j=1

BkjAjξj, k = 1, 2, . . . , n (18)

where Bkk = Ik. This approaches the following Wold decomposition of the
d-dimensional process {Xt} with an r-dimensional (r ≤ d) innovation process
{ξt}.

Xt =
∞∑
j=0

Bjηt−j =
∞∑
j=0

BjAξt−j,

where limk→∞Bkj = Bj is d× d matrix; {ηt} is a d-dimensional white-noise
sequence with covariance matrix Σ of rank r (actually, Σ it is the limit of
the sequence En), and {ξt} is an r-dimensional white-noise sequence with
covariance matrix Ir. Further, Σ = AAT is the Gram-decomposition of the
matrix Σ of rank r, where A is d × r (see the background material). Then
the matrix sequence BjA plays the role of the d × r coefficient matrices in
the multidimensional Wold decomposition of Section 4.4.

Note that here we use nd×nd block matrices, but the procedure, realized
by Equations (16) and (17), iterates only with the d×d blocks of them, so the
computational complexity of this algorithm is not significantly larger than
that of the Kálmán’s filtering of Section 4. However, in the next Section 3,
we can decrease this computational complexity in the frequency domain.

3 Spectra of spectra

Let {Xt} be a d-dimensional, weakly stationary time series with real compo-
nents and autocovariance matrices C(h), h ∈ Z, C(−h) = CT (h). Consider
the finite segment X1, . . . ,Xn ∈ Rd of it and the nd× nd covariance matrix
Cn of the compounded random vector [XT

1 , . . . ,X
T
n ]T ∈ Rnd, as introduced in

Equation (??). As we discussed in Chapter 1, this is a symmetric, positive
semidefinite block-Toeplitz matrix, the (i, j) block of which is C(j − i). The
symmetry comes from the fact, that the (j, i) entry is C(i− j) = CT (j − i).
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To characterize its eigenvalues, first we need the symmetric block circulant
matrix C

(s)
n that we consider now for odd n, say n = 2k + 1. The (i, j) block

of C
(s)
n for 1 ≤ i ≤ j ≤ n is

C(s)
n (blocki, blockj) =

{
C(j − i) j − i ≤ k
C(n− (j − i)), j − i > k.

For i > j, it is

C(s)
n (blocki, blockj) =

{
CT (i− j) i− j ≤ k
CT (n− (i− j)), i− j > k.

In this way, C
(s)
n is a symmetric block Toeplitz matrix again, and it is the

same as Cn within the blocks (i, j)s for which |j− i| ≤ k holds. For example,
if n = 7 and k = 3, then we have

C
(s)
7 :=



C(0) C(1) C(2) C(3) C(3) C(2) C(1)
CT (1) C(0) C(1) C(2) C(3) C(3) C(2)
CT (2) CT (1) C(0) C(1) C(2) C(3) C(3)
CT (3) CT (2) CT (1) C(0) C(1) C(2) C(3)
CT (3) CT (3) CT (2) CT (1) C(0) C(1) C(2)
CT (2) CT (3) CT (3) CT (2) CT (1) C(0) C(1)
CT (1) CT (2) CT (3) CT (3) CT (2) CT (1) C(0)


.

In the 1D case, we simply have the n×n positive semidefinite matrix Cn

of (??) and the symmetric circulant matrix C
(s)
n with the autocovariances

c(h)s, h ∈ Z. By Kronecker products (with permutation matrices) it is well

known that the jth eigenvalue of C
(s)
n is

k∑
h=−k

c(h)ρhj = c(0) + 2
k∑

h=1

c(h) cos(hωj),

where ρj = eiωj is the jth primitive (complex) nth root of 1 and ωj = 2πj
n

is the jth Fourier frequency (j = 0, 1, . . . , n − 1). Further, the eigenvector
corresponding to the jth eigenvalue is (1, ρj, . . . , ρ

n−1
j )T ; it has norm

√
n.

After normalizing with 1√
n
, we get a complete orthonormal set of eigenvectors

(of complex coordinates).
When C(h)s are d × d matrices, by inflation techniques and applying

Kronecker products, we use blocks instead of entries and the eigenvectors
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also follow a block structure. The eigenvalues and eigenvectors of a general
symmetric block circulant matrix are characterized in the literature. We
apply this result in our situation, when n = 2k+ 1 is odd (for even n similar

results hold). Therefore, the spectrum of C
(s)
n is the union of spectra of the

matrices

Mj = C(0)+
k∑

h=1

[C(h)ρhj +CT (h)ρ−hj ] = C(0)+
k∑

h=1

[C(h)eiωjh+CT (h)e−iωjh]

(19)
for j = 0, 2, . . . , n−1, whereas the eigenvectors are obtained by compounding
the eigenvectors of these d × d matrices. So we need the spectral decompo-
sition of the matrices

M0 = C(0) +
k∑

h=1

[C(h) +CT (h)]

and

Mj = C(0) +
k∑

h=1

[(C(h) +CT (h)) cos(ωjh) + i(C(h)−CT (h)) sin(ωjh)]

for j = 0, 2, . . . , n− 1. Since C(h) +CT (h) is symmetric and C(h)−CT (h)
is anti-symmetric with 0 diagonal, Mj is self-adjoint for each j and has real
eigenvalues with corresponding orthonormal set of eigenvectors of possibly
complex coordinates. Indeed,Mj may have complex entries if j 6= 0; actually,∑k

h=1(C(h) +CT (h)) cos(ωjh) is the real and
∑k

h=1(C(h)−CT (h)) sin(ωjh)
is the imaginary part of Mj.

It is easy to see that Mn−j = Mj (entrywise conjugate), therefore, it has
the same eigenvalues as Mj, but the eigenvectors are the (componentwise)
complex conjugates of the eigenvectors of Mj. We also need the following
form of this matrix:

Mn−j = C(0) +
k∑

h=1

[(C(h) +CT (h)) cos(ωjh)− i(C(h)−CT (h)) sin(ωjh)]

= C(0) +
k∑

h=1

[C(h)e−iωjh +CT (h)eiωjh], j = 1, . . . , n− 1.

(20)
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Summarizing, for odd n = 2k + 1, the nd eigenvalues of C
(s)
n are obtained as

the union of the eigenvalues ofM0 and those ofMj (j = 1, . . . , k) duplicated.
Note that for even n similar arguments hold with the difference that there
the spectrum of C

(s)
n is the union of the eigenvalues ofM0 andMn−1, whereas

the eigenvalues of M1, . . . ,Mn
2
−1 are duplicated.

The eigenvectors of C
(s)
n are obtainable by compounding the d orthonormal

eigenvectors of the d× d self-adjoint matrices M0,M1, . . . ,Mn−1 as follows.
For j = 1, . . . , k: if v is an eigenvector of Mj with eigenvalue λ, then the
compound vector

w = (vT , ρjv
T , ρ2jv

T , . . . , ρn−1j vT )T ∈ Cnd (21)

is an eigenvector of C
(s)
n with the same eigenvalue λ. Further, if

z = (tT , ρ`t
T , ρ2`t

T , . . . , ρn−1` tT )T ∈ Cnd

is another eigenvector of C
(s)
n compounded from an eigenvector t of another

M` (` 6= j), then w and z are orthogonal, irrespective whether M` has the
same eigenvalue λ as Mj or not. Similar construction holds starting with
the eigenvectors of M0.

Here for each j = 0, 1, . . . , n−1, there are d pairwise orthogonal eigenvec-
tors (potential vs) of Mj, and the so obtained ws are also pairwise orthog-
onal. Assume that the eigenvectors of Mj are enumerated in non-increasing
order of its eigenvalues, and the inflated ws also follow this ordering, for
j = 0, 1, . . . , n− 1.

As we saw, if v is an eigenvector of Mj with real eigenvalue λ, then
v is the corresponding eigenvector of Mn−j with the same eigenvalue λ;

further, the compounded w and w ∈ Cnd are orthogonal eigenvectors of C
(s)
n

corresponding to the eigenvalue λ with multiplicity (at least) two; w and w
have the same norm. From them, corresponding to this double eigenvalue λ,
the new orthogonal pair of eigenvectors

w + w

2
and i

w −w

2
(22)

is constructed, but they, in this order, occupy the original positions of w and
w. Note that it is necessary to have an orthogonal system of eigenvectors
with real coordinates whenever the underlying time series is real, and so, C

(s)
n

is a real symmetric matrix. We do not go in details, neither discuss defective
cases.
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After normalization, denote by u1, . . . ,und the so obtained orthonormal
set of eigenvectors (of real coordinates) of C

(s)
n (in the above ordering) and

by U = (u1, . . . ,und) the nd×nd orthogonal matrix containing them colum-
nwise; further, let

C(s)
n = UΛ(s)UT (23)

be the corresponding spectral decomposition. After this preparation, we are
able to prove the following theorem.

Theorem 2. Let {Xt} be d-dimensional weakly stationary time series of real
components. Denoting by C(h) = [cij(h)] the d× d autocovariance matrices
(C(−h) = CT (h), h ∈ Z) in the time domain, assume that their entries are
absolutely summable, i.e.,

∑∞
h=0 |cpq(h)| < ∞ for p, q = 1, . . . , d. Then, the

self-adjoint, positive semidefinite spectral density matrix f(ω) exists in the
frequency domain, and it is defined by

f(ω) =
1

2π

∞∑
h=−∞

C(h)e−ihω, ω ∈ [0, 2π].

For odd n = 2k + 1, consider X1, . . .Xn with the block Toeplitz matrix Cn;
further, the Fourier frequencies ωj = 2πj

n
for j = 0, . . . , n − 1. Let Dn

be the dn × dn diagonal matrix that contains the spectra of the matrices
f(0),f(ω1),f(ω2), . . . ,f(ωk),f(ωk), . . . ,f(ω2),f(ω1) in its main diagonal,
i.e.,

Dn = diag(specf(0), specf(ω1), . . . , specf(ωk), specf(ωk), . . . , specf(ω1)).

Here spec contains the eigenvalues of the affected matrix in non-increasing
order if not otherwise stated. (The duplication is due to the fact that f(ωj) =
f(ωn−j), j = 1, . . . , k, for real time series). Then, with the spectral decom-
position (23),

UTCnU − 2πDn → O, n→∞,

i.e., the entries of the matrix UTCnU−2πDn tend to 0 uniformly as n→∞.

Proof. We saw that UTC
(s)
n U = Λ(s). Recall that the eigenvalues in the

diagonal of Λ(s) comprise the union of spectra of the matrices M0 and those
of M1, . . . ,Mn−1, which are the same as the eigenvalues of M0 and those of
Mn−1, . . . ,Mn−k of (20), duplicated. But these matrices are finite sub-sums
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(for |h| ≤ k) of the infinite summations

2πf(ωj) =
∞∑

h=−∞

C(h)e−ihω = C(0) +
∞∑
h=1

[C(h)e−iωjh +CT (h)eiωjh],

so (by the continuity of the spectra), the pairwise distances between the
eigenvalues of Mj and the corresponding eigenvalues of 2πf(ωj) (both in
non-increasing order) tend to 0 as n→∞, for j = 0, 1, . . . , k. Here we used
the absolute summability of the entries of C(h)s, which fact implies that the
diagonal entries of the diagonal matrix Λ(s)− 2πDn are bounded in absolute
value by

max
p,q∈{1,...,d}

∑
|h|>k

|cpq(h)| → 0, n = 2k + 1→∞.

So the matrix Λ(s) − 2πDn tends to the zero matrix entrywise as n → ∞.
Therefore, it remains to show that the entries of UTCnU−UTC

(s)
n U tend to

0 uniformly as n→∞.
Before doing this, some facts should be clarified.

• The pth row sum of Mj is bounded by

d∑
q=1

|cpq(0)|+
d∑
q=1

k∑
h=1

|cpq(h)|+
d∑
q=1

k∑
h=1

|cqp(h)| ≤ dcpp(0) + 2dL,

for p ∈ {1, . . . , d} with L = maxp,q∈{1,...,d}
∑∞

h=1 |cpq(h)| > 0, indepen-
dently of n, because of the absolute summability of the entries of C(h).
This is true for any j ∈ {0, 1, . . . , n− 1}. For simplicity, consider (any)
one of the Mjs, and denote it by M = [mpq]

d
p,q=1. Then

‖M‖∞ = max
p∈{1,...,d}

d∑
q=1

|mpq| ≤ d max
p∈{1,...,d}

cpp(0) + 2dL = K.

As the spectral radius of M is at most ‖M‖∞, any eigenvalue λ of M
is bounded in absolute value by K (independenty of n).

• Let v be an eigenvector of Mj with eigenvalue λ, we can assume that
‖v‖ =

√
v∗v = 1. Then the vector w in Equation (21) is an eigenvector

of C
(s)
n . Since

w∗w = v∗v(1 + ρjρ
−1
j + ρ2jρ

−2
j + · · ·+ ρn−1j ρ

−(n−1)
j ) = n,
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the (complex) vector 1√
n
w will have unit norm. Further, by transfor-

mation (22), the coordinates of any (real) unit-norm eigenvector u are

bounded by
√

2
n

in absolute value.

Now we are ready to show that

|uTi C(s)
n uj − uTi Cnuj| → 0, n→∞

uniformly in i, j ∈ {1, . . . , nd}. Recall that in the nd× nd matrices C
(s)
n and

Cn the (m, `) blocks are the same if |m− `| ≤ k. Denote by ui,m and uj,` the
mth and `th blocks of the unit-norm eigenvectors ui and uj, respectively.
Recall (see their description preceding the theorem) that they both were
compounded from n vectors of length d, and their coordinates are bounded

by
√

2
n

in absolute value. Then

|uTi (C(s)
n − Cn)uj|

=

∣∣∣∣∣
k∑

m=1

m∑
`=1

[uTi,`(C(m)−C(n−m))uj,n−m+` + uTi,n−m+`(C(n−m)−C(m))uj,`]

∣∣∣∣∣
≤

∣∣∣∣∣
√

2

n

k∑
m=1

1Td (C(m)−C(n−m))
m∑
`=1

uj,n−m+`

∣∣∣∣∣
+

∣∣∣∣∣
√

2

n

k∑
m=1

m∑
`=1

uTi,n−m+`(C(m)−C(n−m))1d

∣∣∣∣∣
≤ 2

√
2

n

√
2

n

∣∣∣∣∣
k∑

m=1

m1Td (C(m)−C(n−m))1d

∣∣∣∣∣
≤ 4

n

(
k∑

m=1

m
d∑
p=1

d∑
q=1

|cpq(m)|+
k∑

m=1

m
d∑
p=1

d∑
q=1

|cpq(n−m)|

)

≤ 4d2

(
max

p,q∈{1,...,d}

k∑
m=1

m

n
|cpq(m)|+ max

p,q∈{1,...,d}

k∑
m=1

m

n
|cpq(n−m)|

)

≤ 4d2

(
max

p,q∈{1,...,d}

k∑
m=1

m

n
|cpq(m)|+ max

p,q∈{1,...,d}

n−1∑
m=n−k

k

n
|cpq(m)|

)
,

where 1d ∈ Rd is the vector of all 1 coordinates and so, the quadratic form
1Td (C(m) − C(n − m))1d is the sum of the entries of C(m) − C(n − m).
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In the last line, the second term converges to 0, since it is bounded by∑∞
m=k |cpq(m)| (indeed,

∑n−1
m=n−k

k
n
|cpq(m)| ≤

∑∞
m=k |cpq(m)| as k < n − k),

and together with n, k tends to ∞ too; further, it holds uniformly for all
p, q ∈ {1, . . . , d}. The first term for every p, q pair also tends to 0 as n→∞
by the discrete version of the dominated convergence theorem (for series), see
the forthcoming Lemma 1. Indeed, the summand is dominated by |cpq(m)|
and

∑∞
m=1 |cpq(m)| < ∞; further, m

n
|cpq(m)| → 0 as n → ∞, for any fixed

m. Consequently,
∑∞

m=1
m
n
|cpq(m)| tends to 0, and so does

∑k
m=1

m
n
|cpq(m)|

as n→∞. It holds uniformly for all p, q, and also for all i, j, so the proof is
complete.

Lemma 1 (Dominated convergence theorem for sums, discrete version).
Consider

∑∞
m=1 fn(m) and Assume that |fn(m)| ≤ g(m) with

∑∞
m=1 g(m) <

∞. If limn→∞ fn(m) = f(m) exists ∀m ∈ N, then

lim
n→∞

∞∑
m=1

fn(m) =
∞∑
m=1

f(m).

Some consequences of the above theorem are to be discussed.

3.1 Bounds for the eigenvalues of Cn

Proposition 3. The above theorem implies the following. Assume that for
the spectra of the spectral densities f of the d-dimensional weakly stationary
process {Xt} of real coordinates the following hold:

m := inf
ω∈[0,2π],q∈{1,...,d}

λq(f(ω)) > 0,

M := sup
ω∈[0,2π],q∈{1,...,d}

λq(f(ω)) <∞.

(Note that under the conditions of Theorem 2, f(ω) > 0 and it is continuous
almost everywhere on [0, 2π], so the above conditions are readily satisfied.)

Then for the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λnd of the block Toeplitz matrix
Cn the following holds:

2πm ≤ λ1 ≤ λnd ≤ 2πM.

Proof. Let λ be an arbitrary eigenvalue of Cn with a corresponding eigen-
vector x ∈ Cnd, x∗ = [x∗1, . . . ,x

∗
n], xj ∈ Cd: Cnx = λx. Take the spectral
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decomposition of the spectral density matrix f :

f(ω) =
d∑
`=1

λ`(f(ω)) · u`(f(ω)) · u∗`(f(ω)).

Then we can write that

λ|x|2 = λx∗x = x∗Cnx

= x∗ ·
∫ π

−π

[
e−i(j−k)ωf(ω)

]n
j,k=1

dω · x

=

∫ π

−π

n∑
j,k=1

e−i(j−k)ωx∗jf(ω)xkdω

=

∫ π

−π

n∑
j,k=1

e−i(j−k)ω
d∑
`=1

λ`(f(ω)) · x∗j · u`(f(ω)) · u∗`(f(ω)) · xk dω

=

∫ π

−π

d∑
`=1

λ`(f(ω))
n∑

j,k=1

e−ijωx∗j · u`(f(ω)) · u∗`(f(ω)) · xk · eikω dω

=

∫ π

−π

d∑
`=1

λ`(f(ω))

∣∣∣∣∣
n∑
j=1

e−ijω · x∗j · u`(f(ω))

∣∣∣∣∣
2

dω

≤M
n∑

j,k=1

x∗j ·
∫ π

−π
e−i(j−k)ω

d∑
`=1

u`(f(ω)) · u∗`(f(ω)) dω · xk

= 2πM
n∑
j=1

x∗jxj = 2πM |x|2.

This proves that λ ≤ 2πM for any eigenvalue of Cn. The proof of the fact
that λ ≥ 2πm is similar.

3.2 Principal Component transformation as discrete
Fourier transformation

The complex Principal Component (PC) transform of the collection of ran-
dom vectors X = (XT

1 , . . .X
T
n )T of real coordinates is the random vector

Z = (ZT
1 , . . . ,Z

T
n )T of complex coordinates obtained by

Z = W ∗X.
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Here, analogously to (??), C
(s)
n also has the spectral decomposition

C(s)
n = WΛ(s)W ∗, (24)

where the unitary matrix W = (w1, . . . ,wnd), contains a complete orthonor-

mal set of eigenvectors of C
(s)
n , columnwise. They usually have complex co-

ordinates.
To relate the PC transformation to a discrete Fourier transformation, we

also make PC transformations within the blocks. For this purpose we use the
eigenvectors in the columns of W (of complex coordinates) in the ordering
described in the preparation of Theorem 2. We utilize their block struc-
ture and also assume that they are already normalized to have a complete
orthonormal system in Cnd.

By Theorem 2, EZZ∗ ∼ 2πDn, so the coordinates of Z are asymptoti-
cally uncorrelated, for ‘large’ n. Instead, we consider the blocks Zjs of it,
and perform a ‘partial principal component transformation’ (in d-dimension)
of them. Let w1j, . . . ,wdj be the columns of W corresponding to the coor-
dinates of Zj. In view of (??), Zj can be written as

Zj =
1√
n

(V ∗j ⊗ r∗)X,

where r∗ = (1, ρ−1j , ρ−2j , . . . , ρ
−(n−1)
j ) and Vj is the d×d unitary matrix in the

spectral decomposition Mj = VjΛjV
∗
j . Because of EZjZ

∗
j = Λj (apparently

from the proof of Theorem 2), we have that

E(VjZj)(VjZj)
∗ = VjΛjV

∗
j = Mj.

At the same time,

VjZj =
1√
n
Vj(V

∗
j ⊗r∗)X =

1√
n

(Id⊗r∗)X =
1√
n

n∑
t=1

Xte
−itωj , j = 1, . . . , n.

This is the discrete Fourier transform of X1, . . . ,Xn. It is in accord with the
existence of the orthogonal increment process {Zω} (see Lessons 1-2) of which
VjZj ∼ Zωj

is the discrete analogue. Also, Z1, . . .Zn are asymptotically
pairwise orthogonal akin to V1Z1, . . . ,VnZn. Further,

E(VjZj)(VjZj)
∗ ∼ 2πf(ωj),

and it is in accord with the fact that

EZjZ
∗
j ∼ 2π diag spec f(ωj),

for j = 0, 1, . . . , n− 1 when n is ‘large’.
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4 Kálmán’s filtering

Given a linear dynamical system, with state equations and specified matrices,
R. E. Kálmán gave a recursive algorithm, how to find prediction for the
state variable Xt in the possession of newer and newer observations for the
observable variable Yt. Starting at time 0, estimates X̂t+1|t are found, while
observing Yt, t = 1, 2, . . . . The point is that we only use the last observation
Yt and the preceding estimate X̂t|t−1. During the recursion, we use the
linearity of the state equations and the predictions, for which either normality
is assumed, or we confine ourselves to the second moments of the underlying
distributions, see the background material.

This so-called filtering technique is widely used in the engineering prac-
tice, when we can ‘get rid’ of the noise, and also possess an algorithm to find
the innovations of the observed {Yt} process (we need not perform the block
Cholesky decomposition of Section 2.2, but get the innovations recursively).
The problem is that we merely have the output of a linear system that is
burdened with noise, and usually not invertible; e.g., in case of telecommu-
nication systems, when sensors can sense only noisy signals. It is not by
accident that the research of R. E. Kálmán and R. S. Bucy followed the era
of the information theoretical breakthroughs, e.g., the intensive use of the
Shannon entropy.

Here we follow the discussion of R. E. Kálmán’s original paper, where
stationarity is not assumed, but the random vectors are Gaussian. (Some-
times we use simpler notation in accordance with the one used in the previous
sections of this chapter.) Here the linear dynamical system is

Xt+1 = AtXt + Ut

Yt = CtXt,
(25)

where At and Ct are specified matrices; At is an n× n matrix, called phase
transition matrix, and Ct is p×n; further, Ut is an orthogonal noise process
with EUtU

T
s = δstQU(t) and EXT

s Ut = 0 for s ≤ t. All the expectations
are zeros, and all the random vectors have real components. Sometimes Ut

is called random excitation, Xt is the n-dimensional hidden state variable,
while Yt is the p-dimensional observable variable. In the paper of Kálmán,
p ≤ n is assumed, but it is not a restriction. Even if p = n, the matrix Ct

is not invertible, otherwise the process Xt is trivially observable, unless a
noise term is added to CtXt in the second equation (we will touch upon this
possibility at the end of this section).
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So the problem is the following: starting the observations at time 0,
given Y0, . . . ,Yt−1, we want to estimate X component-wise, with mini-
mum mean square error. More precisely, if X̂ denotes this estimate, then
X̂ = ProjHt−1(Y)X, where Ht−1(Y) = Span (Y0, . . . ,Yt−1) consists of the
linear combinations of all the components of Y0, . . . ,Yt−1 (with the nota-
tion of the background material, but here the indexing starts at 0). If we
minimize the mean square error, the minimizer is the conditional expecta-
tion E(X |Y0, . . . ,Yt−1), which is the linear function of the coordinates of
the random vectors in the condition, whenever the underlying distribution is
Gaussian.

If X = Xt, this is the prediction problem and we denote the optimal
one-step ahead prediction of Xt by X̂t|t−1. In a similar vein, X̂t|t solves the
filtration problem, when we project onto Ht(Y) for the prediction; finally,

X̂t|t+h solves the smoothing problem, when we project onto Ht+h(Y) with
h > 0 integer. The first one-step ahead prediction problem can be generalized
to the h-step ahead prediction of X̂t+h|t−1, h > 0 integer (not the same as
the smoothing problem). The first problem is sometimes called extrapolation,
whereas the second two interpolation, respectively. Note that the problem
itself is originated in the Wiener–Hopf problem.

As for the one-step ahead prediction problem, if Y0, . . . ,Yt−1 are ob-
served, i.e. Ht−1(Y) is known, then the newly observed (measured) Yt can
be orthogonally decomposed as

Yt = ProjHt−1(Y)Yt + Ỹt|t−1 = Yt|t−1 + Ỹt|t−1, (26)

where the orthogonal component Ỹt|t−1 ∈ It(Y), and It(Y) is the so-called

innovation subspace. (Actually, the components of Ỹt|t−1 span It(Y)). We
shall make intensive use of this innovation. Assume that It(Y) is not the sole
0 vector, otherwise observing Yt does not give any additional information to
Ht−1(Y). If {Yt} is weakly stationary, it means that the process is regular.

Equation (26) implies the decomposition of the corresponding subspaces
like

Ht(Y) = Ht−1(Y)⊕ It(Y) (27)

that is the analogue of the multidimensional Wold decomposition in the case
when the prediction is based on finite past measurements. The multidimen-
sional Wold decomposition applies to the stationary and infinite past case.
When t→∞, i.e. going to the future, we approach this situation.
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Assume that X̂t|t−1 is already known. We shall give a recursion to find

X̂t+1|t by using the new value of Yt. In view of equation (27), we proceed as
follows:

X̂t+1|t = ProjHt(Y)Xt+1 = ProjHt−1(Y)Xt+1 + ProjIt(Y)Xt+1

= AtProjHt−1(Y)Xt + ProjHt−1(Y)Ut +KtỸt|t−1

= AtX̂t|t−1 +KtỸt|t−1,

(28)

where we utilized the background material and the fact that Ut ⊥ Ht−1(Y);
we also used the first (state) equation of (25). Since ProjIt(Y)Xt+1 is a linear
operation and results in a vector of It(Y) (linear combination of the compo-

nents of Ỹt|t−1), its effect can be written as a matrix Kt times Ỹt|t−1. This
n × p matrix Kt is called Kálmán gain matrix. (In fact, the notation K is

first used in the paper of Kálmán and Bucy.) In another context, when X̂t|t
is produced, then a strongly related matrix Lt emerges that in some places
is also called gain matrix; however, Kt = AtLt as it will be shown later in
this section.) In the stationary case, the rank r(≤ p) of the spectral den-
sity matrix of the process {Yt} is equal to the dimension of the innovation
subspace if we predict based on the infinite past. In this stationary, infinite
past case, Kt does not depend on t, and it is unique only if the spectral
density matrix of the process {Yt} is of full rank (r = p), or equivalently,
if the p × p covariance matrix of the innovations is non-singular. If t → ∞,
we approach the infinite past based prediction, and so, if E[Ỹt|t−1Ỹ

T
t|t−1] has

near zero eigenvalues, this is an indication of a reduced rank spectral density
matrix of {Yt}, see Section 2.2. In the nonstatonary case too, even if there
are innovations (the innovations are not zeros), the innovation subspace can

be of reduced rank, in which case E[Ỹt|t−1Ỹ
T
t|t−1] is not invertible (we shall

take its generalized inverse later if necessary).

To specify the Kálmán gain matrix Kt, we have to write Ỹt|t−1 in terms

of X̂t|t−1 and Yt. For this purpose, let us project both sides of the second
(observation) equation of (25), i.e. of Yt = CtXt, onto Ht−1(Y). We get
that

Yt|t−1 = CtX̂t|t−1.

Taking the orthogonal decomposition (26) of Yt into consideration yields
that

Ỹt|t−1 = Yt −Yt|t−1 = Yt −CtX̂t|t−1. (29)
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We substitute this into the last line of equation (28) and obtain that

X̂t+1|t = AtX̂t|t−1 +KtỸt|t−1 = (At −KtCt)X̂t|t−1 +KtYt. (30)

With the notation
A∗t = At −KtCt (31)

for the updated transition matrix, we get the new linear dynamics:

X̂t+1|t = A∗t X̂t|t−1 +KtYt. (32)

It is also important that equations (28) and (31) give two equivalent formulas

for the prediction of X̂t+1|t:

X̂t+1|t = AtX̂t|t−1 +Kt(Yt −CtX̂t|t−1) = A∗t X̂t|t−1 +KtYt. (33)

We shall intensively use this equivalence.
The estimation error is also governed by the linear dynamical system.

This error term is

X̃t+1|t = Xt+1 − X̂t+1|t = AtXt + Ut −A∗t X̂t|t−1 −KtCtXt

= A∗t (Xt − X̂t|t−1) + Ut = A∗t X̃t|t−1 + Ut,
(34)

so A∗t is not only the transition matrix in (32), but it is also the transition
matrix of the linear dynamical system governing the error. By the equiva-
lence, stated in equation (33), we get another expression for the same error
term:

X̃t+1|t = Xt+1 − X̂t+1|t

= AtXt + Ut −AtX̂t|t−1 −Kt(Yt −CtX̂t|t−1)

= AtX̃t|t−1 + Ut −Kt(Yt −CtX̂t|t−1).

(35)

In the heart of the algorithm there is a recursion for the propagation of the
the covariance matrix of the above error term, which is defined as

P (t) = E[X̃t|t−1X̃
T
t|t−1]. (36)

Then we shall write P (t + 1) in terms of P (t) with the help of the two
alternative equations (34) and (35) for the same error term:

P (t+ 1) = E[X̃t+1|tX̃
T
t+1|t]

= E[(A∗t X̃t|t−1 + Ut)(AtX̃t|t−1 + Ut −Kt(Yt −CtX̂t|t−1))
T ]

= A∗tE[X̃t|t−1X̃
T
t|t−1]A

T
t +QU(t) = A∗tP (t)AT

t +QU(t),

(37)
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where recall that QU(t) = E[UtU
T
t ] and we used that Ut is uncorrelated

with Xt and, therefore, with X̃t|t−1 too; further, that Yt−CtX̂t|t−1 is within
the innovation subspace It(Y).

It remains to find an explicit formula for K, and thus, also for A∗. Recall
that Kt is the matrix of the linear operation ProjIt(Y)Xt+1, therefore by the
geometry of projections:

Kt = [EXt+1Ỹ
T
t|t−1][E(Ỹt|t−1Ỹ

T
t|t−1]

+,

where + denotes the Moore–Penrose generalized inverse. Now we calculate
the matrices in brackets. By the second equation of (25), that extends to

Ỹt = CtX̃t, we get that

EỸt|t−1Ỹ
T
t|t−1 = E(CtX̃t|t−1)(CtX̃t|t−1)

T = CtP (t)CT
t .

By the first and second equation of (25) and the orthogonality of X̂t|t−1 and

X̃t|t−1:

EXt+1Ỹ
T
t|t−1 = AtEXtỸ

T
t|t−1 = AtE(X̂t|t−1 + X̃t|t−1)(CtX̃

T
t|t−1)

= AtP (t)CT
t .

(38)

Therefore,
Kt = AtP (t)CT

t [CtP (t)CT
t ]+. (39)

Instead of the Moore–Penrose generalized inverse, we use the regular inverse
provided the matrix in brackets is invertible, i.e. the innovation subspace
It(Y) is of full dimension p, and Ct is of full rank p.

Then the recursion starts at t = 1, when the systems of p linear equations
C1X̂1|0 = Y1|0 and C1X1 = Y1 should be solved for the coordinates of X̂1|0
and X1, respectively (the n coordinates are the unknowns). They obviously
have a solution if C1 is of full rank. Here Y1|0 = E(Y1) if Y0 is a constant
vector. Even if it is 0, the system has a nontrivial solution in the p ≤ n
case. Then X̃1|0 = X1− X̂1|0. In the original paper of Kálmán, the following

starting is suggested: X̂1|0 := 0; X̃1|0 := X1; P (1) := E[X1X
T
1 ]. This can be

the product moment estimate from the training sample (possible past).
We can summarize the above results and recursion as follows.

Proposition 4. The optimal estimate X̂t+1|t of Xt+1 given Y1, . . . ,Yt is
generated by the linear dynamical system

X̂t+1|t = A∗t X̂t|t−1 +KtYt.
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The estimation error is given by

X̃t+1|t = A∗t X̃t|t−1 + Ut

and the propagated covariance matrix of the estimation error is

P (t) = E[X̃t|t−1X̃
T
t|t−1],

while the expected quadratic loss is trP (t). The matrices involved are gener-
ated by the following recursion. Starting with

X̂1|0 = ProjY0
X1, X̃1 = X1−X̂1|0, P (1) = E[X̃1|0X̃

T
1|0] = E[X1X

T
1 ]−E[X̂1|0X̂

T
1|0],

for t = 1, 2, . . . , the steps of the following recursion are uniquely defined:

• Evaluate Kt by (39): Kt = AtP (t)CT
t [CtP (t)CT

t ]+.

• Input Yt. Output

X̂t+1|t = (At −KtCt)X̂t|t−1 +KtYt.

• Evaluate A∗t by (31): A∗t = At+1|t −KtCt.

• Eventually, calculate P (t+ 1) by (37) that completes the cycle:

P (t+ 1) = A∗tP (t)AT
t +QU(t).

Note that QU(t) is known/given or estimated from a training sample.
In the forthcoming Remark 11, a symmetric expression is also given
for the matrix P (t+ 1).

Some remarks are in order.

Remark 7. As for the starting, X̂1|0 = ProjY0
X1 = Σ̂XYΣ̂+

YYY0, where the
last training sample entry can be chosen for Y0. To initialize P (1), the whole

training sample can be used. Another possibility is to start with X̂1|0 = 0.

Remark 8. As a byproduct, the algorithm is able to get the innovations via
equation (29).
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Remark 9. In some situations, the observation equation also contains a
noise term, for example; Kálmán and Bucy consider the continuous-time
case, but they write that even in this case, the assumption that every ob-
served signal contains a white noise term, “is unnecessary when the random
processes in question are sampled (discrete-time parameter)”; even in the
continuous-time case, it “is no real restriction since it can be removed in
various ways”. However, the random excitation in the state (message) pro-
cess “is quite basic; it is analogous to but somewhat less restrictive than the
assumption of rational spectra in the conventional theory”. Indeed, Kálmán
uses only the regularity (causality) of the process if stationary, but not the
rational spectral density. He mostly considers Gaussian processes that is not
a restriction in the possession of second order processes, when we confine
ourselves to the second moments.

In this case, the state equations have the form

Xt+1 = AtXt + Ut

Yt = CtXt + Wt,
(40)

where Wt is independent of Xt and Ut (latter condition can be relaxed by
introducing the covariance matrix between Ut and Wt as a given parameter;
further the covariance matrix of the zero expectation Wt is QW = EWtW

T
t

is also given.
The only difference in the calculations is that now

EỸt|t−1Ỹ
T
t|t−1 = E(CtX̃t|t−1 + Wt)(CtX̃t|t−1 + Wt)

T = CtP (t)CT
t

+QW(t),

and so,
Kt = AtP (t)CT

t [CtP (t)CT
t +QW(t)]+.

Instead of Ut we may write BtVt with some n× q matrix Bt with q ≤ n
and q-dimensional orthogonal noise Vt, i.e. EVtV

T
t = QV(t) is a given

diagonal matrix. Here instead of Q(t) the matrix BtQV(t)BT
t enters into

the equation (37). This approach mainly used in the stationary case, when
a lower rank driving force (excitation) is assumed, but this is the topic of
Dynamic Factor Analysis, see Section 5.

In the same vein, instead of Wt we may write DtZt with some p×s matrix
Bt with s ≤ p and s-dimensional orthogonal noise Zt, i.e. EZtZ

T
t = QZ(t)

is a given diagonal matrix. Here instead of QW(t) the, possibly reduced rank,
matrix DtQZ(t)DT

t enters into the calculations.
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Remark 10. Equation (32) gives rise to a predictive filtering, in the pos-
session of the gain matrix Kt. After this, the algorithm is also applicable to
filtering. Indeed,

X̂t+1|t = ProjHt(Y)Xt+1 = ProjHt(Y)(AtXt + Ut) = AtX̂t|t.

Now, provided At is invertible,

X̂t|t = A−1t X̂t+1|t.

If At is not invertible, then we proceed as follows:

X̂t|t = ProjHt(Y)Xt = ProjHt−1(Y)Xt + ProjIt(Y)Xt = X̂t|t−1 +LtỸt|t−1.

Now the gain matrix is Lt, which is not the same as Kt (though, sometimes
this is what called Kálmán gain matrix), can be determined with a similar
calculation:

Lt = [EXtỸ
T
t|t−1][E(Ỹt|t−1Ỹ

T
t|t−1]

+.

The only difference between the formula for Kt and Lt that here we calculate
the covariance between Xt and ỸT

t|t−1, but equation (38) is at our disposal in
this situation too. We get that

EXtỸ
T
t|t−1 = P (t)CT

t ,

and so,
Lt = P (t)CT

t [CtP (t)CT
t ]+.

Consequently,
Kt = AtLt,

so we could first find

Lt = P (t)CT
t [CtP (t)CT

t ]+

and then, Kt. Therefore, in course of the iteration, the filtered process {X̂t|t}
can as well be obtained.
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Remark 11. If we write the expression for Kt, Lt, and A∗t into equa-
tion (37), then we get

P (t+ 1) = A∗tP (t)At
T +QU(t)

= (At −AtLtCt)P (t)At
T +Q(t)

= (At(I −LtCt))P (t)At
T +QU(t)

= AtP (t)At
T −AtLtCtP (t)At

T +QU(t)

= AtP (t)At
T −AtP (t)CT

t [CtP (t)CT
t ]−1CtP (t)At

T

+QU(t)

(41)

which final formula shows that P (t+ 1) is indeed a symmetric matrix.

Remark 12. Assume that the underlying process is weakly stationary, and
put A for At, C for Ct, and QU for QU(t). In this case, instead of the
recursion, we get the fixed point iteration

Pt+1 = APtA
T −APtCT [CPtC

T ]+CPtA
T +QU,

where now Pt just denotes the t-th step of the iteration. Note that some
authors consider the question when the discrete matrix Riccati equation

P = APAT −APCT [CPCT ]+CPAT +QU, (42)

has a unique solution and so, the method of successive approximation, resem-
bling the recursion in (41), is able to find it. (Actually, the Riccati operator
is concave and has a unique fixed point under very general conditions.) With
this P , the limit of the sequence Kt is K = APCT [CPCT ]+ as t → ∞,
and Lt also has a limiting L = PCT [CPCT ]+, when our sequence is weakly
stationary.

The paper of Kálmán gives guidance to the solution, mainly considers
the continuous time case, and contains many applications in engineering and
telecommunication. The authors also discuss the relation to differential equa-
tions and the Fisher information matrix.

We remark that in the possession of another error term W (but QW does
not depend on the time), equation (42) has the slightly modified form

P = APAT −APCT [CPCT +QW]+CPAT +QU,

though it does not change the type of the matrix Riccati equation.
In the stationary case, the stability of the matrix A should be assumed,

as well as that of the new transition matrix, corresponding to A∗, which is
A−KC.
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5 Dynamic Principal Component and Factor

Analysis

Here we confine ourselves to high dimensional weakly stationary processes
that are usually of lower rank than their dimension or can be approximated
with a lower rank process. In the time domain, we are looking for the conve-
nient filters and for the matrices in the state equations too. In the frequency
domain, we use the low rank approximation of the spectral density matrix
at the Fourier frequencies. We summarize the findings based of the previous
sections.

5.1 Time domain approach via innovations

First we use the method of innovations. If Xts have different dimensions,
then denoting by d the minimal dimension, first we perform a static factor
analysis on them, and start with the so obtained d-dimensional static factor
process. We also deprive the process from trend and seasonality, and assume
that it has a spectral density matrix of constant rank. If the process is also
deprived of the singular part, then a regular process is at our disposal.

If Xt is regular, we learned that it can be expanded in terms of the d-
dimensional innovations

ηt+1 := Xt+1 − X̂t+1,

where X̂t+1 is the projection of Xt+1 onto the subspace spanned by X1, . . . ,Xt,
denoted by Ht. It can be done step by step as described in Section 2.2. If
not regular, the prediction process gives the regular part of it.

We can as well reduce the dimension of the innovation process to k < d.
This k-dimensional innovation process can be considered as a dynamic factor
process, where k ≤ r, and r is the rank of the spectral density matrix of the
process. As an alternative to the block Cholesky decomposition, the Kálmán
filtering is also able to find the innovations, see equation (29). In this way,
instead of the decomposition of a huge block matrix, we operate with matrices
of size comparable to the dimension of the process.

The above is also related to the minimal phase spectral factor. To find
this and a reduced rank causal approximation of a process of rational spectral
density,.
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We saw that a d-dimensional regular process {Xt}, whose spectral density
matrix f is of rank r ≤ d has the variant of the multidimensional Wold
decomposition:

Xt =
∞∑
j=0

Bjνt−j, (43)

where Bjs are d × r matrices (like dynamic factor loadings), and {νt} ∼
WN(Σ) is r-dimensional white noise (like non-standardized minimal dynamic
factors).

It is important that there is a one-to-one correspondence between f (fre-
quency domain) and the B(z),Σ pair (time domain):

B(z) =
∞∑
j=0

Bjz
j, |z| ≤ 1 (44)

and Σ is the covariance matrix of νt. This correspondence is given by

f(z) =
1

2π
B(z)ΣB∗(z).

We can as well write f(z) = 1
2π
H(z)H∗(z), where H(z) = B(z)Σ1/2 is

the transfer function and it is unique only up to unitary transformation.
At the same time, the matrices BjΣ

−1/2 are the impulse responses. So by
performing the expansion (44) at the Fourier frequencies, we can estimate
the transfer function.

In Section 2.2, we give an algorithm to this in the time domain, via block
Cholesky decomposition. Then we can perform a static PCA on Σ with
k ≤ r principal components, that results in dynamic factors of dimension
k. The choice of k is such that there are n(r − k) negligible eigenvalues in
the spectrum of Cn. By Theorem 2 , for ‘large’ n, this is in accord with the
existence of r − k negligible eigenvalues of the spectral density matrix at all
the n Fourier frequencies. Therefore, we proceed in the frequency domain.

5.2 Frequency domain approach

Let {Xt} be discrete time, d-dimensional, weakly stationary time series of
zero expectation and spectral density matrix of constant rank. For given
0 < k ≤ d we are looking for the k-dimensional time series Yt such that

Yt =
∑
j

bt−jXj, t ∈ Z,

36



where bjs are k × d matrices and b is the corresponding transfer function.
(Here k is less than the rank of the process itself.)

Then approximate Xt with

X̂t =
∑
j

ct−jYj, t ∈ Z,

where the impulse responses cjs are d × k matrices, and c is the transfer
function.

So X̂ is obtained from X with the time invariant filter

a(ω) = c(ω)b(ω).

The error of approximation is measured with

E(Xt − X̂t)
∗(Xt − X̂t).

Then Brillinger in his book states that the minimum is attained with the
impulse responses

bj =
1

2π

∫ 2π

0

b(ω)eijω dω

and

cj =
1

2π

∫ 2π

0

c(ω)eijω dω,

where
c(ω) = (u1(ω), . . . ,uk(ω))

contains columnwise the orthonormal eigenvectors corresponding to the k
largest eigenvalues of the spectral density matrix f of {Xt}. Further, b(ω) =
c∗(ω). The approximation error is∫ 2π

0

d∑
j=k+1

λj(ω) dω.

This is in Frobenius norm, in spectral norm it only depends on λk+1, but
the best k-rank approximation is the same in any unitary invariant norm
(that depends only on the eigenvalues). The larger the gap in the spectrum
between the k largest and the other eigenvalues, the better the approximation
is.
{Yt} is called principal component process. Its spectral density matrix

is diagonal with diagonal entries λ1(ω), . . . λk(ω). If the original process is
regular, then its best k-rank approximation is regular too.
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5.3 Best low-rank approximation in the frequency do-
main, and low-dimensional approximation in the
time domain

Let {Xt}nt=1 be the finite part of a d-dimensional process of real coordinates
and constant rank 1 ≤ r ≤ d. Its discrete Fourier transform, discussed in
Section 3.2, is

Tj = VjZj =
1√
n

n∑
t=1

Xte
−itωj , j = 0, . . . , n− 1.

More precisely, T0 = 1√
n

∑n
t=1 Xt,

Tj =
1√
n

n∑
t=1

Xt[cos(tωj)− i sin(tωj)],

and Tn−j = Tj, for j = 1, . . . , k (n = 2k + 1). Therefore,

Zj = V−1j Tj = V∗jTj, j = 0, . . . , n− 1.

It can easily be seen that Zn−j = Zj.
To find the best m-rank approximation (1 < m ≤ r) of the process, we

project the d-dimensional vector Tj onto the subspace spanned by the m
leading eigenvectors of Vj for the linear algebra justification for this). Im-
portant that the eigenvalues in Λj are in non-increasing order. Let us denote
the eigenvectors corresponding to the m largest eigenvalues by vj1, . . . ,vjm.
Then

T̂j := ProjSpan{vj1,...,vjm}Tj =
m∑
`=1

(v∗j`VjZj)vj` =
m∑
`=1

Zj`vj`,

and T̂n−j = T̂j, for for j = 1, . . . , k (by the previous considerations), were
n = 2k + 1. Further,

T̂0 :=
m∑
`=1

Z0`v0`.

So, for each j, the resulting vector is the linear combination of the vectors
vj`s with the corresponding coordinates Zj`s of Zj, ` = 1, . . . ,m.
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Eventually, we find the m-rank approximation of Xt by inverse Fourier
transformation:

X̂t :=
1√
n

n−1∑
j=0

T̂je
itωj =

=
1√
n

{
T̂0 +

k∑
j=1

[(T̂j + T̂j) cos(tωj) + i(T̂j − T̂j) sin(tωj)]

}

=
1√
n

{
T̂0 +

k∑
j=1

[(2Re(T̂j) cos(tωj) + i · 2i · Im(T̂j) sin(tωj)]

}

=
1√
n

{
T̂0 + 2

k∑
j=1

[Re(T̂j) cos(tωj)− Im(T̂j) sin(tωj)]

}
.

Apparently, the vectors X̂t (t = 1, . . . , n) all have real coordinates (n =
2k + 1).

In this way, we have a lower rank process with spectral density of rank
m ≤ r. Note that if the process is regular (e.g. it has a rational spectral den-
sity), then so is its low-rank approximation. The theory guarantees that the
‘larger’ the gap between the mth and (m+1)th eigenvalues (in non-increasing
order) of the spectral density matrix, the ‘smaller’ the approximation error
is.

To back-transform the PC process into the time domain, note that

Zj` = v∗j`Tj, ` = 1, . . .m

defines the coordinates of an m-dimensional approximation of Tj, m ≤ r ≤ d.
This is the m-dimensional vector T̃j = (Zj1, . . . , Zjm)T . That is, we take the
first m complex PCs in each blocks (it is important that the entries in the
diagonal of each Λj are in non-increasing order). The other d−m coordinates
of Zj are disregarded (they are taken zeros in the new coordinate system
vj1, . . . ,vjd). The proportion of the total variance explained by the first m

principal components at the jth Fourier frequency is
∑m

`=1 λj`/
∑d

`=1 λj`.
Then the m-dimensional approximation of Xt by the PC process is as
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follows:

X̃t :=
1√
n

n−1∑
j=0

T̃je
itωj =

=
1√
n

{
T̃0 +

k∑
j=1

[(T̃j + T̃j) cos(tωj) + i(T̃j − T̃j) sin(tωj)]

}

=
1√
n

{
T̃0 +

k∑
j=1

[(2Re(T̃j) cos(tωj) + i · 2i · Im(T̃j) sin(tωj)]

}

=
1√
n

{
T̃0 + 2

k∑
j=1

[Re(T̃j) cos(tωj)− Im(T̃j) sin(tωj)]

}
that again results in real coordinates. Equivalently, the m-dimensional PC
process is:

X̃t =
1√
n

(
n−1∑
j=0

Zj1e
itωj , . . . ,

n−1∑
j=0

Zjme
itωj)T . (45)

5.4 Dynamic factor analysis

Standard factor analysis can be generalized to the case of a d-dimensional,
real valued, vector stochastic process {Xt}. Here t ≥ 0 is the time, and
our sample usually consists of observations at discrete time instances t =
1, . . . , T . In the classical factor analysis approach, the data come from i.i.d.
observations, and the dimension reduction happens in the so-called cross-
sectional dimension, i.e. the number d of variables is decreased. In dynamic
factor analysis, the observations Xt’s are not independent, and we want to
compress the information, embodied by them, in the cross-sectional and the
time dimension as well. Sometimes even the cross-sectional dimension d is
large compared to the time span T .

Assume that {Xt} is weakly stationary with an absolutely continuous
spectral distribution, i.e. it has the d× d spectral density matrix fX. With
the integer 1 ≤ k < d, the dynamic k-factor model for Xt is

Xt = µ+B(L)Zt + et = µ+ χt + et (46)

or with components,

X i
t = µi + bi1(L)Z1

t + · · ·+ bik(L)Zk
t + eit
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where the k-dimensional stochastic process Zt = (Z1
t , . . . Z

k
t )T is the dynamic

factor, χt is called common component, the d-dimensional stochastic process
et = (e1t , . . . , e

d
t )
T is called noise component, and the d × k matrix B(L) =

(bij(L)), i = 1, . . . , d, j = 1, . . . , k, is the transfer function. Here L is the lag
operator (backward shift) and bij(L) is a square-summable one-sided filter,
i.e. bij(L) = bij(0) + bij(1)L+ bij(2)L2 + . . . with

∑∞
`=0 b

2
ij(`) <∞. Further,

the components of (46) satisfy the following requirements:

E(Zt) = 0, E(et) = 0, t ∈ Z
Cov(eit, Z

j
s) = 0, i = 1, . . . , d, j = 1, . . . , k, t, s ∈ Z, s ≤ t.

Cov(eit, e
j
s) = 0, i, j = 1, . . . d, i 6= j, t, s ∈ Z, s < t.

(47)

If Zt and et are also weakly stationary and they have rational spectral den-
sities fZ and fe, the model equation (46) extends to the spectral density
matrices:

fX(ω) = fχ(ω) + fe(ω) = B(e−iω)fZ(ω)B(e−iω)
∗

+ fe(ω), ω ∈ [−π, π].
(48)

Very frequently, Zt is assumed to be orthonormal WN(Ik) process. Then
equation (48) simplifies to

fX(ω) =
1

2π
B(e−iω)B(e−iω)

∗
+ fe(ω). (49)

The so-called static case occurs if, in addition, B is constant. Otherwise,
equation (46) is dynamic in that the latent variables Zj

t s can affect the ob-
servables X i

ts both contemporaneously and with lags.
Like in the standard factor model, neither B(L) nor Zt are identified

uniquely; and given the spectral density fX, the spectra fχ and fe are generi-
cally can be determined for k ≤ n−

√
n (reminiscent of the Lederman bound).

5.5 General Dynamic Factor Model (GDFM)

Let Xt be a weakly stationary time series (t = 1, 2, . . . ) with an absolutely
continuous spectral measure and the positive semidefinite spectral density
matrix fX.

Assume that fX(ω) has constant rank r for a.e. ω ∈ [−π, π]. If Xt is
also regular (it always holds if fX is a rational spectral density matrix), then
the multidimensional Wold decomposition is able to make it a one-sided
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VMA(∞) process. It is important that the dimension of the innovation
subspaces is also r.

With the integer 1 ≤ k ≤ r, the k-factor GDFM :

Xt = χt + et, t = 1, 2, . . .

where now χt denotes the common component, et is the idiosyncratic noise,
and all the expectations are zeros, for simplicity. Here χt is subordinated to
Xt, but has spectral density matrix of rank k ≤ r. For example, there are
k uncorrelated signals (given by k distinct sources) detected by r sensors.
Opposed to the static factors, this is not a low-rank approximation of the
(zero-lag) auto-covariance matrix that provides the static factors.

Forni, Lippi, and Deistler et al. gave necessary and sufficient conditions
for the existence of an underlying GDFM in terms of the expanding sequence
of n× n spectral density matrices fnX(ω), n ∈ N.

Theorem 3. The nested sequence {Xn
t : n ∈ N, t = 1, 2, . . . } can be repre-

sented by a sequence of k-factor GDFMs if and only if

• the k largest eigenvalues, λnX,1(ω) ≥ · · · ≥ λnX,k(ω) of fnX(ω) diverge
almost everywhere in [−π, π] as n→∞;

• the (k+1)-th largest eigenvalue λnX,k+1(ω) of fnX(ω) is uniformly bounded
for ω ∈ [−π, π] (almost everywhere) and for all n ∈ N.

The theorem is rather theoretical; its message is that for large n and T (T
is not necessarily larger than n) we can conclude for k from the spectral gap
of the constant rank spectral density matrix. The estimate χnt is consistent if
n, T →∞. The idiosyncratic noise is less and less important when n, T →∞,
and it may have slightly correlated components. Also, the largest eigenvalue
of fne (ω) is uniformly bounded for ω ∈ [−π, π] and for all n ∈ N. As we
learned in the preceding lessons, a stationary process with a not full rank
spectral density matrix may have some singular components. All these parts
are included in the weakly dependent idiosyncratic noise.

Dynamic factor analysis is an unsupervised learning method, and with
the lag-dependent factor loading matrices we are able to give meaning to the
dynamic factors that embody the comovements between the components at
different lags. For example, when we use a parametric method, we are also
able to give predictions for the dynamic factors (via autoregression) and,
in turn, for the components of the time series too. There are also state
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space models that are able to estimate the parameter matrices via singular
autoregression. The reduced rank approximation in Section 5.3 offers a first
step, and the Yule–Walker equations can be solved for the reduced rank
process.

6 Summary

First we have a 1D real valued time series {Xt} which is not necessarily
stationary, E(Xt) = 0 (t ∈ Z). Selecting a starting observation X1 and with
the notation Hn = Span{X1, . . . , Xn}, Xn+1 is predicted linearly based on
random past values X1, . . . , Xn such that X̂1 := 0 and Eη2n+1 = E(Xn+1 −
X̂n+1)

2 is minimized, n = 1, 2, . . . . By the general theory of Hilbert spaces,
X̂n+1 is the projection of Xn+1 onto the linear subspace Hn. The coefficients
of the optimal linear predictor

X̂n+1 = an1Xn + · · ·+ annX1

can be obtained by solving the system of linear equations

Cnan = dn,

where an = (an1, . . . , ann)T , Cn = [Cov(Xi, Xj)]
n
i,j=1 and

dn = (Cov(Xn+1, Xn), . . . ,Cov(Xn+1, X1))
T . A solution (the projection )

always exists, and it is unique if Cn is positive definite; then the unique
solution is an = C−1n dn, otherwise, the generalized inverse of Cn comes into
existence. However, in case of stationary processes, this is not an issue. The
h-step ahead prediction is obtained from Cnan = dn(h), where dn(h) =
(c(h), . . . , c(n+ h− 1))T in the stationary case.

As for the innovation ηn = (η1, . . . , ηn)T , we have to find an n× n lower
triangular matrix Ln such that Xn = Lnηn. Taking the covariance matrices
on both sides, yields Cn = LnDnL

T
n . In this way, the LDL decomposition (a

variant of the Cholesky decomposition) gives the prediction errors (diagonal
entries of Dn), and the entries of Ln below its main diagonal (the main
diagonal is constantly 1). The situation further simplifies in the stationary
case, when Cn is a Toeplitz matrix. However, Ln will not be Toeplitz,
but asymptotically, it becomes more and more like a Toeplitz one, and the
entries of Dn will be more and more similar to each other, i.e. to the limit
σ2 = limn→∞ e

2
n.
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In particular, if {Xt} is stationary, then Cn = [c(i − j)]ni,j=1, so Cn is
a Toeplitz matrix, and dn(j) = c(j), j = 1, . . . , n. Therefore, no double
indexing is necessary, but an = (a1, . . . , an)T . With it, the defining equation
is exactly the same as the first n Yule–Walker equations for estimating the
parameters of a stationary AR(n) process. The prediction error is e2n =
Var(ηn+1). It can be written in many equivalent forms, e.g.

e2n = c(0)(1− r2Xt,(Xt−1,...,Xt−n)
) = c(0)− dTnC

−1
n dn,

where r2Xt,(Xt−1,...,Xt−n)
is the squared multiple correlation coefficient between

Xt and (Xt−1, . . . , Xt−n); it does not depend on t either, and obviously in-
creases (does not decrease) with n, i.e. e21 ≥ e22 ≥ . . . . The mean square error
can as well be written with the determinants of the consecutive Toeplitz ma-
trices Cn and Cn+1. If for some n, |Cn| 6= 0, then

e2n = c(0)− dTnC
−1
n dn =

|Cn+1|
|Cn|

.

If |Cn| = 0 for some n, then |Cn+1| = |Cn+2| = · · · = 0 too. The smallest
index n for which this happens indicates that there is a linear relation between
n consecutive Xjs, but no linear relation between n− 1 consecutive ones (by
stationarity, this property is irrespective of the position of the consecutive
random variables). This can happen only if some Xt linearly depends on
n−1 preceding Xjs. In this case e2n−1 = 0 and, of course e2n = e2n+1 = · · · = 0
too. In any case, e21 ≥ e22 ≥ . . . is a decreasing (non-increasing) nonnegative
sequence, and in view of Equation (9),

|C1| = c(0), |Cn| = c(0)e21 . . . e
2
n−1, n = 2, 3, . . . ,

so, provided c(0) > 0, |Cn| = 0 holds if and only if e2n−1 = 0. Note that in
this stationary case there is no sense of using generalized inverse if |Cn| = 0,
since then exact one-step ahead prediction with the n − 1 long past can
be done with zero error, and this property is manifested for longer past
predictions too. Note that the previous LDL decomposition also implies that
|Cn| = |Dn| = c(0)e21 . . . e

2
n−1, n = 2, 3, . . . .

In case of a stationary, non-singular process, we can project Xn+1 onto
the infinite past H−n = span {Xt : t ≤ n} and expand it in terms of an
orthonormal system, see the Wold decomposition. This part will be the
regular (causal) part of the process, whereas, the other, singular part, is
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orthogonal to it. Also, by stationarity, the one-step ahead prediction error
σ2 does not depend on n, and it is positive, since the process is non-singular.

Then we have a d-dimensional time series {Xt} with components Xt =
(X1

t , . . . , X
d
t )T , the state space is Rd and E(Xt) = 0. Select a starting obser-

vation X1 and

Hn := span{Xj
t : t = 1, . . . , n; j = 1, . . . , d},

dim(Hn) = dn. We want to linearly predict Xn+1 based on random past
values X1, . . . ,Xn. Analogously to the 1D situation, X̂1 := 0 and X̂n+1 is
the best one-step ahead linear predictor that minimizes E(Xn+1 − X̂n+1)

2.
Now we solve the system of linear equations

n∑
j=1

AnjCov(Xn+1−j,Xn+1−k) = Cov(Xn+1,Xn+1−k). k = 1, . . . , n.

When {Xt} is stationary, then it simplifies to

n∑
j=1

AjC(k − j) = C(k). k = 1, . . . , n,

This provides a system of d2n linear equations with the same number of
unknowns that always has a solution. Further, the solution does not depend
on the selection of the time of the starting observation X1, and no double
indexing of the coefficient matrices is necessary. If for some n ≥ 1 the
covariance matrix of (XT

n+1, . . . ,X
T
1 )T is positive definite, then the matrix

polynomial (VAR polynomial) α(z) = I − A1z − · · · − Anz
n is causal in

the sense that |α(z)| 6= 0 for z ≤ 1; otherwise, block matrix techniques and
reduction in the innovation subspaces is needed.

Xt can again be expanded in terms of the now d-dimensional innovations,
i.e. the prediction error terms ηn+1 = Xn+1 − X̂n+1. In this way, we get
the innovations η1, . . . ,ηn that trivially have 0 expectation and form an
orthogonal system in the nd-dimensional Hn. Actually, we have the recursive
equations

Xk =
k−1∑
j=1

Bkjηj + ηk, k = 1, 2, . . . , n.

Here the covariance matrix Ej = EηjηTj is a positive semidefinite matrix,
but can be of reduced rank. At a passage to infinity, we obtain the multi-
dimensional Wold decomposition. At the end, we have to perform the block
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Cholesky (LDL) decomposition:

Cn = LnDnL
T
n ,

where Cn is nd× nd positive definite block Toeplitz matrix, Dn is nm× nm
block diagonal and contains the positive semidefinite prediction error matri-
ces E1, . . . ,En in its diagonal blocks, whereas Ln is nd×nd lower triangular
with blocks Bkjs below its diagonal blocks which are d×d identities. In view
of this,

|Cn| = |Dn| =
n∏
j=1

|Ej|,

analogously to the 1D situation. We also prove that if the entries of the
autocovariance matrices are absolutely summable, then the eigenvalues of
Cn asymptotically comprise the union of the spectra of the spectral density
matrices at the n Fourier frequencies as n→∞.

When the Ejs are of reduced rank, we can find a system ξ1, . . . , ξn ∈ Rr

in the d-dimensional innovation subspaces that span the same subspace as
η1, . . . ,ηn. If the the spectral density matrix has r < d structural eigenvalues
in a General Dynamic Factor Model, then ξj ∈ Rr is the principal component
factor of ηj obtained from an r-factor model.

Note that here we use d × d block matrices in the calculations, so the
computational complexity of the procedure is not significantly larger than
that of the subsequent Kálmán’s filtering for which we use the notation of
R. E. Kálmán’s original paper [?], where stationarity is not assumed, but the
random vectors are Gaussian. The linear dynamical system is

Xt+1 = AtXt + Ut

Yt = CtXt,

where At and Ct are specified matrices; At is an n× n matrix, called phase
transition matrix, and Ct is p × n; further, Ut (random excitation) is an
orthogonal noise process with EUtU

T
s = δstQU(t) and EXT

s Ut = 0 for s ≤ t.
All the expectations are zeros, and all the random vectors have real com-
ponents. Xt is the n-dimensional hidden state variable, while Yt is the
p-dimensional observable variable. In the paper [?], p ≤ n is assumed, but it
is not a restriction. Even if p = n, the matrix Ct is not invertible, otherwise
the process Xt is trivially observable, unless a noise term is added to CtXt

in the second equation.
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The problem is the following: starting the observations at time 0, given
Y0, . . . ,Yt−1, we want to estimate X component-wise, with minimum mean
square error. If X = Xt, this is the prediction problem and we denote the
optimal one-step ahead prediction of Xt by X̂t|t−1. If Y0, . . . ,Yt−1 is observed

and X̂t|t−1 is already known, then we give a recursion to find X̂t+1|t by using
the new value of Yt:

X̂t+1|t = AtX̂t|t−1 +Kt(Yt −CtX̂t|t−1),

where Kt is the Kálmán gain matrix:

Kt = AtP (t)CT
t [CtP (t)CT

t ]−.

Here
P (t) = EX̃t|t−1X̃

T
t|t−1

is the error covariance matrix that drives the process. For it, the recursion

P (t+ 1) = AtP (t)At
T −AtP (t)CT

t [CtP (t)CT
t ]−CtP (t)At

T +QU(t)

holds, which makes rise to an iteration. The above equation results in a
matrix Riccati equation for P = P (t) = P (t+ 1) if the process is stationary.

With the integer 1 ≤ k < r, the dynamic k-factor mode (GDFM) is:

Xt = χt + et, t = 1, 2, . . .

where now χt denotes the common component, et is the n-dimensional id-
iosyncratic noise, and all the expectations are zeros, for simplicity. Here χt is
subordinated to Xt, but has spectral density matrix of rank k < r. For exam-
ple, there are k uncorrelated signals (given by k distinct sources), detected by
d sensors. Opposed to the static factors, this is not a low-rank approximation
of the (zero-lag) auto-covariance matrix that provides the static factors.

Forni and Lippi [?] and Deistler et al. [?, ?] gave necessary and suffi-
cient conditions for the existence of an underlying GDFM in terms of the
observable n × n spectral densities fnX(ω), n ∈ N. The nested sequence
{Xn

t : n ∈ N, t = 1, 2, . . . } can be represented by a sequence of GDFMs if
and only if

• the first k eigenvalues, λnX,1(ω) ≥ · · · ≥ λnX,k(ω) (in non-increasing
order), of fnX(ω) diverge almost everywhere in [−π, π] as n→∞;
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• the (k + 1)-th eigenvalue λnX,k+1(ω) of fnX(ω) is uniformly bounded for
ω ∈ [−π, π] almost everywhere and for all n ∈ N.

So we can conclude for k from the spectral gap. The estimate χnt is consistent
if n, T → ∞. The idiosyncratic noise is less and less important when n, T
get larger and larger, and it may have slightly correlated components.
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