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Many financial time series exhibit non-stationary behavior due to, for
example, tends and seasonality. There are algorithms at hand which deprive
the data of trend and seasonality. Then we transform the time series so
that an ARMA or a more sophisticated model can be fitted. We discuss
some basic types of these models, mainly used in finance. We follow the
description of [1, 2].

1 Harmonic regression

To find a linear or polynomial trend in a time series, regression analysis
techniques are used. More interesting is to find seasonal components and
periods of a time series. We learned that if ω∗ is the place of the first local
maximum of the spectral density function, then it has a period approximately
p = [2π/ω∗], i.e., Xt−p = Xt. (This is the shortest period. Longer periods
can be found by considering further local maxima.) In this case, the time
series can be approximated by sum of harmonics (sine waves):

a0 +
k∑
j=1

[aj cos(λjt) + bj sin(λjt)],

where a0, a1, . . . , ak, b1, . . . , bk are unknown parameters, λ1, . . . , λk are fixed
frequencies, each being some integer multiple of 2π/p. The number k of the
new Fourier frequencies should also be specified. Usually if the above ω∗ is
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close to the Fourier frequency j∗ 2π
n

(n is the sample size), then p ≈ 2π
ω∗ ≈ n

j∗
.

In this case, we can choose λ1 = ω∗, and some (up to k) multiples of it.
We know that the above approximation is a Type (0) singular process

and has discrete spectrum, though it can capture the substantial part of the
continuous spectrum. This is also related to signal processing.

2 Integration, cointegration

Let {Xt} be a 1D time series which is not even weakly stationary. We are
looking for a nonnegative integer d such that the process

Yt := (1− L)dXt

is already weakly stationary, where L denotes the left (backward) shift oper-
ator. In this case Xt becomes integrated. The smallest nonnegative integer
d for which the process {Xt} becomes integrated is called the order of its
integration.

In particular, if d = 0, then the process itself is weakly stationary. If
d = 1, then the process of differences Yt = Xt−Xt−1 is weakly stationary. It
is also applicable to eliminate linear trend.

Integration makes rise to the following generalization of ARMA processes.

Definition 1. Let d be a nonnegative integer. Then the 1D {Xt} is an
ARIMA(p, d, q) process if Yt = (1− L)dXt if a causal ARMA(p, q) process.

This means that {Xt} satisfies the difference equation

α(L)(1− L)dXt = β(L)Zt,

where the AR polynomial α(z) has no roots on the closed unit disc (stability),
β(z) is the MA polynomial, and {Zt} ∼WN(0, σ2). Note that for d ≥ 1 we
can add an arbitrary polynomial trend of degree d − 1 to {Xt} without
violating the above difference equation. Also, if d = 1, then the ARIMA
model is equivalent to an ARMA model for the differences Xt −Xt−1.

ARIMA models are appropriate for slowly decaying positive sample au-
tocorrelation functions (long memory models). A root near 1 of the AR
polynomial suggest that the data should be differenced before applying the
ARMA model.

Definition 1 can be extended to multi-dimensional processes, and a notion
of joint integration (cointegration) can also be defined.
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Definition 2. Let {Xt} be a multi-dimensional real valued process such that
it is integrated with order d. It means that (I − L)dXt is weakly stationary,
but (I−L)d−1Xt is nonstationary, where I is the identity. Then the process is
called cointegrated (after the author Granger) if there is a linear combination
{αTXt} of its components which is integrated of order less than d.

3 Financial time series

In finance, asset prices and option pricing were widely investigated by Black
and Scholes (1973) who later obtained the Nobel-price for it. Their findings
are applicable to automated trading too. Without going into details, we
introduce some important notions and so-called stylized features of financial
time series.

The closing price on trading day t of a particular stock or stock-price
index or price of a foreign currency is denoted by Pt. The process {Pt} is
usually not stationary; however, Louis Bachelier (father of modern financial
mathematics) guessed that the price process is a stochastic process with sta-
tionary, independent, Gaussian increments. This would imply that prices can
take on negative values. Instead, Paul Samuelson defined the log asset price
Xt = logPt. It has observed sample-paths, like those of a random walk with
stationary, uncorrelated increments. (We learned from Homework Exercise 3
that the random walk itself is not even weakly stationary.) Therefore, we
consider the differenced log asset price:

Zt = Xt −Xt−1 = log
Pt
Pt−1

= log

(
1 +

Pt − Pt−1

Pt−1

)
≈ Pt − Pt−1

Pt−1

which is called log return (or simply return) for day t. This is close to the
relative return Pt−Pt−1

Pt−1
if the price does not change much from one day to the

next one, relatively to the previous price.
The log return has sample-paths resembling those of white noise; though,

there is a strong evidence, that it is not an independent white noise. Much of
the analysis of financial time series is devoted to representing and exploiting
this dependence which is not visible in the sample autocorrelation function
of the process {Zt}. The continuous time analogue of a random walk with
i.i.d. increments is known as Lévy process, the most familiar examples of
which are the Poisson processes and Brownian motion.
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If we assume stationarity, e.g., ARMA model for the series {Zt}, the
stochastic volatily ht, that is the conditional variance of Zt given its past val-
ues, is independent of t and of {Zs : s < t}. However, this property does not
always hold. Therefore, the following models were defined by incorporating
the stochastic volatility into the model.

The fundamental idea of the ARCH(p) (autoregressive conditional het-
eroscedastic) model is that

Zt =
√
htet, {et} ∼ i.i.d. N (0, 1)

where the volatility ht is related to the past values of Z2
t via

ht = a0 +

p∑
j=1

ajZ
2
t−j

for some positive integer p and parameters a0 > 0, a1, . . . , ap ≥ 0.
The GARCH(p, q) (generalized ARCH) postulates a more general rela-

tion:

ht = a0 +

p∑
j=1

ajZ
2
t−j +

q∑
j=1

bjht−j,

with bj ≥ 0, j = 1, . . . , q.
These models have been studied intensively together with parameter es-

timation. They specify a suitable feedback mechanism defining ht that
would ensure that extreme values of the returns generate more activity in
the market, expressed in higher volatility, which in turn would explain the
phenomenon of volatility clustering. This means that long periods of low
volatility are followed by short periods of high volatility.
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