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Let Rn denote the n-dimensional Euclidean space, which is a vector space
endowed with the usual inner product. Vectors are column-vectors. The inner
product of the vectors x,y ∈ Rn is therefore written with matrix multiplication,
like xTy, where T stands for the transposition, hence xT is a row-vector. Matri-
ces will be denoted by bold-face upper-case letters. An m×n matrix A = (aij)
of real entries aij ’s corresponds to an Rn → Rm linear transformation (opera-
tor). Its transpose, AT , is an n×m matrix. An n×n matrix is called quadratic
and it maps Rn into itself. The identity matrix is denoted by I or In if we want
to refer to its size.

The quadratic matrix A is symmetric if A = AT and orthogonal (rotation)
if AAT = I. The quadratic matrix P corresponds to an orthogonal projection
if it is symmetric and idempotent: P2 = P.

The n×n matrix A has an inverse if and only if its determinant, |A| 6= 0, and
its inverse is denoted by A−1. In this case, the linear transformation correspond-
ing to A−1 undoes the effect of the Rn → Rn transformation corresponding to
A, i.e. A−1y = x if and only if Ax = y for any y ∈ Rn. It is important that
in case of an invertible (regular) matrix A, the range (or image space) of A
– denoted by R(A) – is the whole Rn, and in exchange, the kernel of A (the
subspace of vectors that are mapped into the zero vector by A) consists of the
only 0.

Note that for an m× n matrix A, its range is

R(A) = Span{a1, . . . ,an}

where a1, . . . ,an are the column vectors of A for which fact the notation A =
(a1, . . . ,an) will be used; further, Span{. . . } is the subspace spanned by the
vectors in its argument. The rank of A is the dimension of its range:

rank(A) = dimR(A),

and it is also equal to the maximum number of linearly independent rows of A;
trivially, rank(A) ≤ min{m,n}. In case of m = n, A is regular if and only if
rank(A) = n, and singular, otherwise.

An orthogonal matrix A is always regular and A−1 = AT ; further its rows
(or columns) constitute a complete orthonormal set in Rn. Let k (1 ≤ k < n)
be an integer; an n× k matrix A is called suborthogonal if its columns form (a
not complete) orthonormal set in Rn. For such an A, the relation ATA = Ik
holds, but AAT 6= In. In fact, the n × n matrix P = AAT is symmetric and
idempotent (P2 = P), hence, it corresponds to the orthogonal projection onto
R(A). The trace of the n× n matrix A is

tr(A) =

n∑
i=1

aii.

How the above matrix–matrix and matrix–scalar functions will look like if
the underlying matrix is a product? If A and B can be multiplied together (A
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is m×n and B is n× k type), then their product corresponds to the succession
of linear operations B and A in this order, therefore

(AB)T = BTAT

and if A and B are regular n× n matrices, then so is AB, and

(AB)−1 = B−1A−1.

Further, (A−1)T = (AT )−1, and vice versa. If A and B are n × n matrices,
then

|AB| = |A| · |B|.

Therefore, the determinant of the product of several matrices of the same size
does not depend on the succession of the matrices, however, the matrix multi-
plication is usually not commutative. The trace is commutative in the following
sense: if A is an n× k and B is a k × n matrix, then

tr(AB) = tr(BA).

For several factors, the trace is accordingly, cyclically commutative:

tr(A1A2 . . .An) = tr(A2 . . .AnA1) = · · · = tr(AnA1 . . .An−1)

when, of course, the sizes of the factors are such that the successive multiplica-
tions in A1 . . .An can be performed and the number of rows in A1 is equal to
the number of columns in An. Further,

rank(AB) ≤ min{rank(A), rank(B)},

consequently, the rank cannot be increased in course of matrix multiplications.
Given an n×n symmetric real matrix A, the quadratic form in the variables

x1, . . . , xn is the homogeneous quadratic function of these variables:

n∑
i=1

n∑
j=1

aijxixj = xTAx,

where x = (x1, . . . , xn)T , hence the matrix multiplication results in a scalar. The
possible signs of a quadratic form (with different x’s) characterize the underlying
matrix. Accordingly, they fall into exactly one of the following categories.

Definition 1 Let A be n× n symmetric real matrix.

• A is positive (negative) definite if xTAx > 0 (xTAx < 0), ∀x 6= 0.

• A is positive (negative) semidefinite if xTAx ≥ 0 (xTAx ≤ 0), ∀x ∈ Rn,
and xTAx = 0 for at least one x 6= 0.

• A is indefinite if xTAx takes on both positive and negative values (with
different, non-zero x’s).
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The positive and negative definite matrices are all regular, whereas the pos-
itive and negative semidefinite ones are singular. The indefinite matrices can
be either regular or singular. To more easily characterize the definiteness of
symmetric matrices, we will use their eigenvalues.

The notion of an eigenvalue and eigenvector is introduced: λ is an eigenvalue
of the n×n real matrix A with corresponding eigenvector u 6= 0 if Au = λu. If
u is an eigenvector of A, it is easy to see that for c 6= 0, cu is also an eigenvector
with the same eigenvalue. Therefore, it is better to speak about eigen-directions
instead of eigenvectors; or else, we will consider specially normalized, e.g. unit-
norm eigenvectors, when only the orientation is divalent. It is well known that
an n × n matrix A has exactly n eigenvalues (with multiplicities) which are
(possibly complex) roots of the characteristic polynomial |A − λI|. Knowing
the eigenvalues, the corresponding eigenvectors are obtained by solving the sys-
tem of linear equations (A − λI)u = 0 which must have a non-trivial solution
due to the choice of λ. In fact, there are infinitely many solutions (in case of
single eigenvalues they are constant multiples of each other). An eigenvector
corresponding to a complex eigenvalue must also have complex coordinates, but
in case of our main interest (the symmetric matrices) this cannot occur.

The notion of an eigenvalue and eigenvector extends to matrices of complex
entries in the same way. As for the allocation of the eigenvalues of a quadratic
matrix (even of complex entries), the following result is known.

Theorem 1 (Gersgorin disc theorem) Let A be an n×n matrix of entries
aij ∈ C. The Gersgorin disks of A are the following regions of the complex
plane:

Di = {z ∈ C : |z − aii| ≤
∑
j 6=i

|aij |}, i = 1, . . . n.

Let λ1, . . . , λn denote the (possibly complex) eigenvalues of A. Then

{λ1, . . . , λn} ⊂ ∪ni=1Di.

Furthermore, any connected component of the set ∪ni=1Di contains as many
eigenvalues of A as the number of discs that form this component.

We will introduce the notion of normal matrices which admit a spectral de-
composition (briefly, SD) similar to that of compact operators. The real matrix
A is called normal if AAT = ATA. Among real matrices, only the symmetric,
anti-symmetric (AT = −A), and orthogonal matrices are normal. Normal ma-
trices have the following important spectral property: to their eigenvalues there
corresponds an orthonormal set of eigenvectors; choosing this as a new basis,
the matrix becomes diagonal (all the off-diagonal entries are zeros). Here we
state the Hilbert–Schmidt theorem for symmetric matrices which, in addition,
have all real eigenvalues, and consequently, eigenvectors of real coordinates.

Theorem 2 The n × n symmetric, real matrix A has real eigenvalues λ1 ≥
· · · ≥ λn (with multiplicities), and the corresponding eigenvectors u1, . . . ,un
can be chosen such that they constitute a complete orthonormal set in Rn.

This so-called Spectral Decomposition theorem implies the following SD of the
n× n symmetric matrix A:

A =

n∑
i=1

λiuiu
T
i = UΛUT , (1)
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where Λ = diag(λ1, . . . , λn) is the diagonal matrix containing the eigenvalues –
called spectrum – in its main diagonal, while U = (u1, . . . ,un) is the orthogonal
matrix containing the corresponding eigenvectors of A in its columns in the
order of the eigenvalues. Of course, permuting the eigenvalues in the main
diagonal of Λ, and the columns of U accordingly, will lead to the same SD,
however – if not otherwise stated – we will enumerate the real eigenvalues in
non-increasing order. About the uniqueness of the above SD we can state the
following: the unit-norm eigenvector corresponding to a single eigenvalue is
unique (up to orientation), whereas to an eigenvalue with multiplicity m there
corresponds a unique m-dimensional so-called eigen-subspace within which any
orthonormal set can be chosen for the corresponding eigenvectors.

It is easy to verify that for the eigenvalues of the symmetric matrix A

n∑
i=1

λi = tr(A) and

n∏
i=1

λi = |A|

hold. Therefore A is singular if and only if it has a 0 eigenvalue, and

r = rank(A) = rank(Λ) = |{i : λi 6= 0}|;

moreover, R(A) = Span{ui : λi 6= 0}. Therefore, the SD of A simplifies to∑
λi 6=0

λiuiu
T
i .

Its spectrum also determines the definiteness of A in the following manner.

Proposition 1 Let A be n× n symmetric real matrix.

• A is positive (negative) definite if and only if all of its eigenvalues are
positive (negative).

• A is positive (negative) semidefinite if and only if all of its eigenvalues
are nonnegative (nonpositive), and its spectrum includes the zero.

• A is indefinite if its spectrum contains at least one positive and one neg-
ative eigenvalue.

The matrix of an orthogonal projection PF onto the r-dimensional subspace
F ⊂ Rn has the following SD (only the r < n case is of importance, since in the
r = n case PF = In):

PF =

r∑
i=1

uiu
T
i = AAT ,

where u1, . . . ,ur is any orthonormal set in F which is the eigen-subspace cor-
responding to the eigenvalue 1 of multiplicity r. Note that the eigenspace cor-
responding to the other eigenvalue 0 of multiplicity n − r is the orthogonal
complementary subspace F⊥ of F in Rn, but it has no importance, as only the
eigenvectors in the first r columns of U enter into the above SD of PF . With
the notation A = (u1, . . . ,ur), the SD of PF simplifies to AAT , indicating that
A is a suborthogonal matrix.

For rectangular matrices the following can be stated.
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Theorem 3 Let A be an m× n rectangular matrix of real entries, rank(A) =
r ≤ min{m,n}. Then there exist an orthonormal set (v1, . . . ,vr) ⊂ Rm and
(u1, . . . ,ur) ⊂ Rn together with the positive real numbers s1 ≥ s2 ≥ · · · ≥ sr > 0
such that

Aui = sivi, ATvi = siui, i = 1, 2, . . . , r. (2)

The elements vi ∈ Rm and ui ∈ Rn (i = 1, . . . , r) in (2) are called relevant
singular vector pairs (or left and right singular vectors) corresponding to the
singular value si (i = 1, 2, . . . , r). The transformations in (2) give a one-to
one mapping between R(A) and R(AT ), all the other vectors of Rn and Rm
are mapped into the zero vector of Rm and Rn, respectively. However, the
left and right singular vectors can appropriately be completed into a complete
orthonormal set {v1, . . . ,vm} ⊂ Rm and {u1, . . .un} ⊂ Rn, respectively, such
that, the so introduced extra vectors in the kernel subspaces in Rm and Rn are
mapped into the zero vector of Rn and Rm, respectively. With the orthogonal
matrices V = (v1, . . . ,vm) and U = (u1, . . .un), the following SVD of A and
AT holds:

A = VSUT =

r∑
i=1

siviu
T
i and AT = USTVT =

r∑
i=1

siuiv
T
i , (3)

where S is an m × n so-called generalized diagonal matrix which contains the
singular values s1, . . . , sr in the first r positions of its main diagonal (starting
from the upper left corner) and zeros otherwise. We remark that there are other
equivalent forms of the above SVD depending on, whether m < n or m ≥ n.
For example, in the m < n case, V can be an m ×m orthogonal, S an m ×m
diagonal, and U an n×m suborthogonal matrix with the same relevant entries.
About the uniqueness of the SVD the following can be stated: to a single positive
singular value there corresponds a unique singular vector pair (of course, the
orientation of the left and right singular vectors can be changed at the same
time). To a positive singular value of multiplicity say k > 1 a k-dimensional left
and right so-called isotropic subspace corresponds, within which, any k-element
orthonormal sets can embody the left and right singular vectors with orientation
such that the requirements in (2) are met.

We also remark that the singular values of a symmetric matrix are the abso-
lute values of its eigenvalues. In case of a positive eigenvalue, the left and right
singular vectors are the same (they coincide with the corresponding eigenvector
with any, but the same orientation). In case of a negative eigenvalue, the left
and right side singular vectors are opposite (any of them is the correspond-
ing eigenvector which have a divalent orientation). In case of a zero singular
value the orientation is immaterial, as it does not contribute to the SVD of the
underlying matrix.

Assume that the m × n matrix A of rank r has SVD (3). It is easy to see
that the matrices AAT and ATA are positive semidefinite (possibly, positive
definite) matrices of rank r, and their SD is

AAT = V(SST )VT =

r∑
i=1

s2iviv
T
i and ATA = U(STS)UT =

r∑
i=1

s2iuiu
T
i

where the diagonal matrices SST and STS both contain the numbers s21, . . . , s
2
r

in the leading positions of their main diagonals as non-zero eigenvalues.
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These facts together also imply that the only positive singular value of a
suborthogonal matrix is the 1 with multiplicity of its rank.

Definition 2 We say that the n × n symmetric matrix G = (gij) is a Gram-
matrix if its entries are inner products: there is a dimension d > 0 and vectors
x1, . . . ,xn ∈ Rd such that

gij = xTi xj , i, j = 1, . . . n.

Proposition 2 The symmetric matrix G is a Gram-matrix if and only if it is
positive semidefinite or positive definite.

Proof (we give the proof, since its construction will later be used in some
multivariate methods). If G is a Gram-matrix, then it can be decomposed as
G = AAT , where AT = (x1, . . . ,xn). With this,

xTGx = xTAATx = (ATx)T (ATx) = ‖ATx‖2 ≥ 0, ∀x ∈ Rn.

Conversely, if G is positive semidefinite (or positive definite) with rank r ≤ n,
then its SD – using (1) – can be written as

G =

r∑
i=1

λiuiu
T
i .

Let the n× r matrix A be defined as

A = (
√
λ1u1, . . . ,

√
λrur). (4)

Then the row vectors of the matrix A will be r-dimensional vectors reproducing
G. Of course, such a decomposition is not unique: first of all, instead of A
the matrix AQ will also do, where Q is an arbitrary r × r orthogonal matrix
(obviously, xi’s can be rotated); and xi’s can also be put in a higher (d > r)
dimension with attaching any (but the same) number of zero coordinates to
them.

The spectral norm (operator norm) of an m × n real matrix A of rank r,
with positive singular values s1 ≥ · · · ≥ sr > 0, is

‖A‖ = max
‖x‖=1

‖Ax‖ = s1,

and its Frobenius norm, denoted by ‖.‖2, is

‖A‖2 =

 m∑
i=1

n∑
j=1

a2ij

1/2

=
√

tr(AAT ) =
√

tr(ATA) =

(
r∑
i=1

s2i

)1/2

.

The Frobenius norm is sometimes called Euclidean norm and corresponds to
the Hilbert–Schmidt norm of operators between separable Hilbert spaces. For
a symmetric real matrix A,

‖A‖ = max
‖x‖=1

‖Ax‖ = max
i
|λi| and ‖A‖2 =

(
r∑
i=1

λ2i

)1/2

.
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Obviously, for a real matrix A of rank r,

‖A‖ ≤ ‖A‖2 ≤
√
r‖A‖. (5)

More generally, a matrix norm is called unitary invariant if

‖A‖un = ‖QAR‖un

with any m × m and n × n orthogonal matrices Q and R, respectively. It is
easy to see that a unitary invariant norm of a real matrix merely depends on its
singular values (or eigenvalues if it is symmetric). The spectral and Frobenius
norms are unitary invariant.

By means of SD or SVD we are able to define so-called generalized inverses
of singular square or rectangular matrices: in fact, any matrix that undoes the
effect of the underlying linear transformation between the ranges of AT and A
will do. A generalized inverse is far not unique as any transformation operating
on the kernels can be added. However, the following Moore–Penrose inverse is
uniquely defined and it coincides with the usual inverse if exists.

Definition 3 The m×n matrix X is a generalized inverse of the n×m matrix
A if AXA = A.

A generalized inverse A satisfying AXA = A is denoted by A−. In fact, any
matrix that undoes the effect of the underlying linear transformation between
the ranges of AT and A will do. A generalized inverse is far not unique as any
transformation operating on the kernels can be added. However, the following
pseudoinverse (Moore–Penrose inverse) is unique and, in case of a quadratic
matrix, it coincides with the usual inverse if exists.

Definition 4 The m × n matrix X is the pseudoinverse (in other words, the
Moore–Penrose inverse) of the n×m matrix A if it satisfies all of the following
conditions:

AXA = A,

XAX = X,

(AX)T = AX,

(XA)T = XA.

It can be proved that there uniquely exists a pseudoinverse satisfying the con-
ditions in the above definition, and it is denoted by A+.

Definition 5 The Moore–Penrose inverse of the n× n symmetric matrix with
SD (1) is

A+ =

r∑
i=1

1

λi
uiu

T
i = UΛ+UT ,

where Λ+ = diag( 1
λ1
, . . . , 1

λr
, 0, . . . , 0) is the diagonal matrix containing the re-

ciprocals of the non-zero eigenvalues, otherwise zeros, in its main diagonal.
The Moore–Penrose inverse of the m × n real matrix is the n × m matrix

A+ with SVD (3)

A+ =

r∑
i=1

1

si
uiv

T
i = US+VT ,

7



where S+ is n×m generalized diagonal matrix containing the reciprocals of the
non-zero singular values of A in the leading positions, otherwise zeros, in its
main diagonal.

Note that, analogously, any analytic function f of the symmetric real matrix
A can be defined by its SD, A = UΛUT , in the following way:

f(A) := Uf(Λ)UT (6)

where f(Λ) = diag(f(λ1), . . . , f(λn)), of course, only if every eigenvalue is in
the domain of f . In this way, for a positive semidefinite (or positive definite)
A, its squareroot is

A1/2 = UΛ1/2UT , (7)

and for a regular A its inverse is obtained by applying the f(x) = x−1 function
to it:

A−1 = UΛ−1UT .

For a singular A, the Moore–Penrose inverse is obtained by using Λ+ instead of
Λ−1. Accordingly, for a positive semidefinite matrix, its −1/2 power is defined
as the squareroot of A+.

We will frequently use the following propositions, called separation theorems
for singular values and eigenvalues.

Proposition 3 Let A be an m× n real matrix with SVD in (3). Assume that
its non-zero singular values are enumerated in non-increasing order (s1 ≥ s2 ≥
. . . sr > 0). Then

max
x∈Rn,y∈Rm

‖x‖=1, ‖y‖=1

yTAx = s1

and it is attained with the choice x = u1 and y = v1 (uniquely if s1 > s2). This
was the k = 1 case. Further, for k = 2, 3, . . . , r

max
x∈Rn,y∈Rm

‖x‖=1, ‖y‖=1

xTui=0 (i=1,...,k−1)
yTvi=0 (i=1,...,k−1)

yTAx = sk

and it is attained with the choice x = uk and y = vk (uniquely if sk > sk+1).

Proposition 4 Let A be n× n real symmetric matrix with SD in (1). Assume
that its eigenvalues are enumerated in non-increasing order (λ1 ≥ λ2 ≥ · · · ≥
λn). Then

max
‖x‖=1

xTAx = λ1

and it is attained with the choice x = u1 (uniquely if λ1 > λ2). This was the
k = 1 case. Further, for k = 2, 3, . . . , n

max
x∈Rn, ‖x‖=1

xTui=0 (i=1,...,k−1)

xTAx = λk

and it is attained with the choice x = uk (uniquely if λk > λk+1).
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Many of the above propositions follow from the forthcoming so-called mini-
max principle.

Theorem 4 (Courant–Fischer–Weyl theorem) Let A be an n×n symmet-
ric real matrix with eigenvalues λ1 ≥ · · · ≥ λn. Then

λk = max
F⊂Rn

dim(F )=k

min
x∈F
‖x‖=1

xTAx = min
F⊂Rn

dim(F )=n−k+1

max
x∈F
‖x‖=1

xTAx (k = 1, . . . , n).

The statement naturally extends to singular values of rectangular matrices.

Theorem 5 Let A be an m× n real matrix with positive singular values s1 ≥
· · · ≥ sr, where r = rank(A). Then

sk = max
F⊂Rn

dim(F )=k

min
x∈F

‖Ax‖
‖x‖

(k = 1, . . . , r).

Theorem 4 is, in turn, implied by the upcoming separation theorem. In the
sequel, we will denote by λi(.) the ith largest eigenvalue of the symmetric matrix
in the argument (they are enumerated in non-increasing order).

Theorem 6 (Cauchy–Poincaré separation theorem) Let A be an n × n
symmetric real matrix and B be an n× k suborthogonal matrix (k ≤ n). Then

λi(A) ≥ λi(BTAB) ≥ λi+n−k(A), i = 1, . . . , k.

The first inequality is attained with equality if B contains the eigenvectors cor-
responding to the k largest eigenvalues of A in its columns; whereas, the second
inequality is attained with equality if B contains the eigenvectors corresponding
to the k smallest eigenvalues of A in its columns.

Note that the first inequality makes sense for a k such that λk > λk+1, whereas
the second inequality makes sense for a k such that λn−k+1 < λn−k.

The Cauchy–Poincaré theorem implies the following important inequalities
due to H. Weyl.

Theorem 7 (Weyl’s perturbation theorem) Let A and C be n × n sym-
metric matrices. Then

λj(A + C) ≤ λi(A) + λj−i+1(C) if i ≤ j,
λj(A + C) ≥ λi(A) + λj−i+n(C) if i ≥ j.

The above inequalities give rise to the following perturbation result for sym-
metric matrices. Here we consider symmetric matrices such that A = B + C,
where C is a ’small’ perturbation on B.

Theorem 8 Let A and B be n× n symmetric matrices. Then

|λi(A)− λi(B)| ≤ ‖A−B‖ = ‖C‖, i = 1, . . . , n.

A similar statement is valid for rectangular matrices.

Theorem 9 Let A and B be m×n real matrices with singular values s1(A) ≥
· · · ≥ smin{m,n}(A) and s1(B) ≥ · · · ≥ smin{m,n}(B). Then

|si(A)− si(B)| ≤ ‖A−B‖, i = 1, . . . ,min{m,n}.
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Applying the above theorems for rank k matrices B we can solve the following
optimization problems stated in a more general form, for rectangular matrices.

Theorem 10 Let A be an arbitrary m×n real matrix with SVD
∑r
i=1 siuiv

T
i ,

where r is the rank of A. Then for any positive integer k ≤ r such that sk >
sk+1,

min
B ism×n
rank(B)=k

‖A−B‖ = sk+1 and min
B ism×n
rank(B)=k

‖A−B‖2 =

(
r∑

i=k+1

s2i

)1/2

hold, and both minima are attained with the matrix Bk =
∑k
i=1 siuiv

T
i .

Note that Bk is called the best rank k approximation of A, and the aforemen-
tioned theorem guarantees that it is the best approximation both in spectral
and Frobenius norm. In fact, it is true for any unitary invariant norm:

min
B ism×n
rank(B)=k

‖A−B‖un = ‖A−Bk‖un.

Proposition 5 Let A and B be n×n symmetric, positive semidefinite matrices
with eigenvalues λi(A)’s and λi(B)’s. Then

tr(AB) ≤
n∑
i=1

λi(A) · λi(B),

with equality if and only if A and B commute, i.e. AB = BA.

Note that a necessary and sufficient condition for A and B commute is that
they have the same system of eigenvectors (possibly, eigenspaces).

Proposition 6 Let A and B be n×n real matrices with singular values s1(A) ≥
· · · ≥ sn(A) ≥ 0 and s1(B) ≥ · · · ≥ sn(B) ≥ 0. Then

k∏
i=1

si(AB) ≤
k∏
i=1

[si(A) · si(B)], k = 1, . . . , n.

Especially, for k = 1, this implies that

smax(AB) ≤ smax(A) · smax(B),

which is not surprising, since the maximal singular value is the operator norm
of the matrix.

The next part will be devoted to the Perron–Frobenius theory of matrices
with nonnegative entries. First we define the notion of the irreducibility for a
quadratic matrix, and a similar notion for rectangular matrices.

Definition 6 A quadratic matrix A is called reducible if there exists an appro-
priate permutation of its rows and columns, or equivalently, the exists a per-
mutation matrix P such that, with it, A can be transformed into the following
block-matrix form:

PAPT =

(
B O
D C

)
or PAPT =

(
B D
O C

)
,

where A and B are quadratic matrices, whereas O is the zero matrix of appro-
priate size. A quadratic matrix is called irreducible if it is not reducible.
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Note that the eigenvalues of a quadratic matrix are unaffected under the
same permutation of its rows and columns, while the coordinates of the cor-
responding eigenvectors are subject to the same permutation. Since in Defi-
nition 6, the same permutation is applied to the rows and columns, and the
spectrum of the involved block-matrix consists of the spectra of B and C, the
SD of a reducible matrix can be traced back to the SD of some smaller matrices.

The subsequent theorems apply to matrices of nonnegative entries.

Theorem 11 (Frobenius theorem) Any irreducible, quadratic real matrix of
nonnegative entries has a single positive eigenvalue among its maximum absolute
value ones with corresponding eigenvector of all positive coordinates.

Remark 1 More precisely, there may be k ≥ 1 complex eigenvalues of maxi-
mum absolute value r, allocated along the circle of radius r in the complex plane.
In fact, those complex numbers are vertices of a regular k-gone, but the point
is that exactly one of these vertices is allocated on the positive part of the real
axis.

The Perron theorem is the specialized version of the Frobenius theorem,
applicable to matrices of strictly positive entries.

Theorem 12 (Perron theorem) Any irreducible, quadratic real matrix of pos-
itive entries has only one maximum absolute value eigenvalue which is positive
with multiplicity one, and the corresponding eigenvector has all positive coordi-
nates.

As a byproduct of the proof of the above theorems, the following useful
bounds for the maximum absolute value positive eigenvalue – guaranteed by
the Frobenius theorem – can be obtained.

Proposition 7 Let A be an irreducible n×n real matrix of nonnegative entries
and introduce the following notation for the maxima and minima of the row-sums
of A:

m := min
i∈{1,...,n}

n∑
j=1

aij and M := max
i∈{1,...,n}

n∑
j=1

aij .

Then the single positive eigenvalue λ with maximum absolute value admits the
following lower and upper bound:

m ≤ λ ≤M,

where either the lower or the upper bound is attained if and only if m = M , i.e.
the row-sums of A have a constant value.

Finally, we introduce the Kronecker-sum and Kronecker-product of matrices.

Definition 7 Let Ai be ni × ni matrix (i = 1, . . . , k), n :=
∑k
i=1 ni. The

Kronecker-sum of A1, . . . ,Ak is the n×n block-diagonal matrix A the diagonal
blocks of which are the matrices A1, . . . ,Ak in this order. We use the notation
A = A1 ⊕ · · · ⊕Ak for it.
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Definition 8 Let A be p × n and B be q ×m real matrix. Their Kronecker-
product, denoted by A ⊗ B, is the following pq × nm block-matrix: it has pn
blocks each of which is a q ×m matrix such that the block indexed by (i, j) is
the matrix aijB (i = 1, . . . , p; j = 1, . . . , n).

This product is associative, for the addition distributive, but usually not com-
mutative. If A is n× n and B is m×m quadratic matrix, then

|A⊗B| = |A|m · |B|n;

further, if both are regular, then so is their Kronecker-product. Namely,

(A⊗B)−1 = A−1 ⊗B−1.

It is also useful to know that – provided A and B are symmetric – the spectrum
of A⊗B consists of the real numbers

αiβj (i = 1, . . . , n; j = 1, . . . ,m),

where αi’s and βj ’s are the eigenvalues of A and B, respectively.

Random vectors

Random vectors are vector valued random variables with distribution char-
acterized by the joint distribution of their coordinates. Scalar valued random
variables will be denoted by upper-case letters, whereas random vectors by bold-
face upper-case ones (usually with letters at the end of the alphabet).

Consider first a two-variate joint distribution for introducing the notion of
conditional expectation. We will distinguish between the following two cases
depending on the coordinates of the random vector (X,Y ).

(a) Both X and Y are so-called categorical variables (they have finitely many
values which cannot be compared on any scale, like hair-color and eye-
color, medical diagnoses or possible answers to a questionnaire). Say, X
takes on m possible values x1, . . . , xm, while Y takes on n possible ones
y1, . . . , yn. The joint distribution ofX and Y is defined by the probabilities
pij = P(X = xi, Y = yj) such that

∑m
i=1

∑n
j=1 pij = 1. These are usually

estimated from the frequency counts collected in an m × n rectangular
array, called contingency table. The marginal distributions of X and Y
are given by the probabilities

pi. =

n∑
j=1

pij and p.j =

m∑
i=1

pij ,

respectively. The conditional distribution of Y given X = xi is defined
by the conditional probabilities

pij
pi.

for j = 1, . . . n, and the conditional
expectation of Y under the same condition is

E(Y |X = xi) =

n∑
j=1

yj
pij
pi.

=
1

pi.

n∑
j=1

yjpij , i = 1, . . . ,m.
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Note that neither the conditional distribution nor the conditional expecta-
tion of Y depends on the actual value ofX. Making use of this property, we
can define the E(Y |X) random variable which takes on the possible value
E(Y |X = xi) with probability pi. for i = 1, . . . ,m. (We may say that
the random variable E(Y |X) is measurable with respect to the σ-algebra
generated by X, but we do not want to go into measure theoretical con-
siderations.) The most important fact is that E(Y |X) is a measurable
function of X.

(b) Both X and Y are absolutely continuous random variables (e.g. body-
hight and body-weight, or two clinical measurements), then we use the
joint density f(x, y) in the calculations. By means of the marginal density
fX(x) =

∫
f(x, y) dy we define the conditional distribution of Y given that

X takes on the value x by means of the conditional density f(x,y)
fX(x) , and

the conditional expectation of Y under the same condition is

E(Y |X = x) =

∫
y
f(x, y)

fX(x)
dy =

1

fX(x)

∫
yf(x, y) dy.

The conditional expectation of Y given X is the random variable E(Y |X)
which is again a measurable function of X.

In both cases the conditional expectation E(Y |X) provides the best least-square
approximation of Y in terms of measurable functions of X in the following sense:

min
t=t(X)

E(Y − t(X))2 = E(Y − E(Y |X))2.

The conditional expectation E(X|Y ) can be defined likewise, akin to the
conditional expectation of a subset of coordinates on another subset of a random
vector with several coordinates.

In fact, we take conditional expectations in the everyday life. For example,
if we have recorded students’ grades in two subjects which measure similar
abilities, and we have lost the grade of a student in subject Y , then we can
conclude for it, based on his or her grade in subject X in the following way.
We take the average Y -grade of other students who have the same X-grade
as the student in question. In this way, we take the conditional expectation
of the (unknown) Y -grade given the (known) X-grade. (Of course, grades are
coded with integers and the conditional expectation is rounded). Or, in other
situation, we conclude for the (unknown) age of a person through the average
(known) age of those who are similar to him/her in other respects.

Definition 9 The expectation (vector) of the random vector X = (X1, . . . , Xn)T

is EX = (EX1, . . . ,EXn)T . The covariance matrix of X is the n×n symmetric
matrix C of entries:

cij = Cov(Xi, Xj) = Cov(Xj , Xi) = E[(Xi−EXi)(Xj−EXj)], i, j = 1, . . . , n.

Sometimes the covariance matrix of X is denoted by Var(X), and its diagonal
entries are the variances of the components of X. With matrix notation

Var(X) = E[(X− EX)(X− EX)T ],
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where the expectation of a matrix is the matrix of the expectations of its entries.
The covariance matrix is always positive semidefinite (C ≥ 0) and it is

positive definite (C > 0) if and only if there are no linear relations between the
components of X. Note that the independence of Xi and Xj always implies cij =
0 (i 6= j); however, the converse is usually not true, except if the components
are normally distributed.

In multivariate statistics, the most frequently used multivariate distribution
is the multivariate normal (Gaussian) distribution.

Definition 10 We say that Y is a p-dimensional standard normal vector if
its components are independent standard normal variables. Let A be a p × p
regular real matrix and m ∈ Rp be a vector. Then the linear transformation
X = AY + m defines a p-dimensional random normal vector.
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