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For the time being, except the regression (where we had a target variable
depending on the predictor ones), we have discussed methods of the so-called
unsupervised learning, when we retrieved information from our data without
any preliminary assumption. Now, another method of the supervised learning is
introduced, when we already have some preliminary knowledge about the clas-
sification of our data (made by an expert) and we want to reproduce (imitate)
this classification based merely on multivariate measurements. In such situa-
tions we have a learning sample to build the artificial intelligence, and we test
it on the same or on another sample. In this way, so-called expert systems are
constructed, and in case of good performance, they can be used (with care) for
automatic classification (for example, for medical diagnosis).

At the beginning, we have a p-dimensional sample of independent obser-
vations, but they are not identically distributed, rather form a mixture of k
multivariate distributions, which are clearly distinguished by an expert in the
so-called learning sample. For example, we have p clinical measurements of
patients coming from k different diagnostic groups. If the measurements have
something to do with the diagnosis, there is a hope that with some algorithm
we are able to assign a patient to one of the groups merely based on his/her
measurements. Based on the classes of the learning sample and some intuition,
we are provided with the following knowledge:

• p-variate densities f1(x), . . . , fk(x) of the classes (usually these are multi-
variate Gaussian with estimated parameters);

• the prior probabilities π1, . . . , πk of a randomly selected object belonging
to the classes,

∑k
i=1 πi = 1 (they are usually proportional to the sample

sizes, but can as well correspond to the expert’s intuition).

Our purpose is to find a partition X1, . . . ,Xk of the p-dimensional sample
space so that the obtained classes would, as much as possible, coincide with the
original ones. Equivalently, we have to find a decision rule which decides the
membership of an object based on its measurement x ∈ Rp.

Our algorithm minimizes the following average loss function:

L =

k∑
i=1

πiLi.

Here the average loss Li is due to misclassifying objects of Xi, defined as

Li =

k∑
j=1

∫
Xj

rijfi(x) dx

where the risk rij ≥ 0 of classifying an object of class i into class j is given
for i, j = 1, . . . , k. Note that rii = 0 (i = 1, . . . , k), otherwise they are not
necessarily symmetric.
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After some simple calculation

L = −
k∑

j=1

∫
Xj

Sj(x) dx,

where Sj(x) = −
∑k

i=1 πirijfi(x) is called jth discriminant informant, and for
given x, we want to maximize

k∑
j=1

∫
Xj

Sj(x) dx (1)

over the set of k-partitions of X . A simple lemma guarantees that the max-
imum is attained with the following k-partition X ∗1 , . . . ,X ∗k : an object with
measurement x is classified into X ∗i for which, i = argmaxjSj(x) (such an i is
not necessarily unique, but we can break ties arbitrarily).

Now, let us make the following simplification: rij = 1 for i 6= j and of course,
rii = 0 (j = 1, . . . , k). This assumption is quite natural: all misclassifications
have the same risk, and there is no risk of a correct classification. By this, the
discriminant informant simplifies to

Sj(x) = −
∑
i6=j

πifi(x) = −
k∑

i=1

πifi(x) + πjfj(x) = c+ πjfj(x)

where the constant c does not depend on j, therefore instead Sj(x) we can as
well maximize πjfj(x). That is, an object with measurement x is placed into
the group j for which πjfj(x) is maximum. Observe that this is nothing else but
a Bayesian decision rule. Indeed, let Y denote the cluster membership, and X
is the underlying p-variate random vector. Then for a randomly selected object
with measurement x the following conditional probability is maximized in j:

P(Y = j |X = x) =
πjfj(x)∑k
i=1 πifi(x)

where we used the Bayes rule. The maximization is equivalent to maximizing
the numerator with respect to j = 1, . . . , k. Further, if all the prior probabilities
are equal, for given x, we maximize fj(x) which is just the maximum likelihood
discrimination rule.

We can further simplify the maximization if the distribution of class j is
Np(mj ,Cj) with positive definite covariance matrix Cj (j = 1, . . . , k). Using
the multivariate Gaussian density for the densities of the classes, for given x,
instead of πjfj(x), we can maximize its natural logarithm. After leaving out the
terms which do not depend on j, one can easily see that the following quadratic
informant (quadratic function of the coordinates of x) has to be maximized
with respect to j:

Qj(x) = −1

2
ln |Cj | −

1

2
(x−mj)

TC−1j (x−mj) + lnπj .

In the case of C1 = · · · = Ck = C, we can disregard the terms which do
not depend on mj , and the following linear informant will decide the group
memberships:

Lj(x) = mT
j C
−1x− 1

2
mT

j C
−1mj + lnπj .
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If k = 2, then we put an object with measurement x into the first group if
L1(x) ≥ L2(x) and to the second one, otherwise. That is, the sample space is
separated into two parts by means of a hyperplane. It can be shown that in
case of k groups, k − 1 hyperplanes will do this job.

We remark that the sample means and covariance matrices are usually esti-
mated from the sub-samples after checking for multivariate normality.

In another approach, R. A. Fisher looked for the linear function aTx, the
coefficients of which maximize the ratio of the between-groups sum of squares to
the within-groups sum of squares. That is, with the notation of the MANOVA,

aTBa

aTWa
(2)

has to be maximized with respect to a. Since the scale of a does not affect the
above ratio, ‖a‖ = 1 can be assumed. It can be proved that the vector â which
maximizes the above ratio is the unit-norm eigenvector corresponding to the
largest eigenvalue of the matrix W−1B, which is of rank at most k − 1 (since
rank(B) = k−1 in the general case). The function âTx is called Fischer’s linear
discriminant function or the first canonical variate. Based on this, we allocate
x into the group i if

‖âTx− âT x̄i‖ ≤ ‖âTx− âT x̄j‖ ∀j 6= i

where x̄j is the sample mean of group j. In the k = 2 case, this rule is identical
to that given by the linear informants, where m1 and m2 are estimated by the
group means x̄1 and x̄2, respectively. Note that this is not true in the k > 2
case.

Note that in the k = 2 case, â is normal to the hyperplane discriminating
the two groups.

Remark that successively, number of rank(W−1B) canonical variates can be
computed, which gives rise to differentiate between the groups in dimension k−1.
Canonical variates also have important relation to the canonical correlations.

In practice, first we process the discrimination on the learning sample, and in
case of good performance, we can apply the algorithm for a test sample of new-
coming objects. In lack of a test sample, we can randomly select objects from
the same learning sample with some resampling method, called bootstrapping.
The performance itself is evaluated by the cross-classification of the objects: we
calculate the k × k confusion matrix the ij-th entry of which is the number of
objects classified into class i by the expert, and into class j by the algorithm.

Possible applications in artificial intelligence: image recognition, medical di-
agnostic systems; but can be used in market research and bankruptcy prediction
or whether a customer will be default or not (based on price and other economic
patterns).
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