
1 Marianna Bolla: Cluster Analysis (unsuper-
vised learning)

1.1 Metric clustering, the k-means method

Here we consider a method of finding groups (clusters) of data points in a finite
dimensional Euclidean space. Given the points x1, . . . ,xn ∈ Rd and an inte-
ger 1 < k < n, we are looking for the k-partition of the index set {1, . . . , n}
(or equivalently, the clustering of the points into k disjoint non-empty sub-
sets) which minimizes the following k-variance of the points over all possible
k-partitions Pk = (C1, . . . , Ck):

S2
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where ca = 1
|Ca|

∑
j∈Ca

xj is the center of cluster a (a = 1, . . . , k).

In general, d ≤ k, and they are much less than n. In fact, the above k-
variance corresponds to the sum of the within-cluster variances, that is to (trW)
in the MANOVA decomposition

T = W + B.

Since the total variance (trT) is fixed, minimizing

tr(W)

tr(B)
=

tr(W)

tr(T)− tr(W)

is equivalent to minimizing tr(W), i.e. S2
k.

To find the global minimum is NP-complete, but the iteration of the k-
means algorithm is capable to find a local minimum in polynomial time. The
vectors c1, . . . , ck are usually referred to as the centroids of the clusters, and in
a more abstract formulation of the above optimization task, e.g., in the work
of MacQueen, they are also looked for. Roughly speaking, starting with an
initial clustering, the iteration of the simple k-means algorithm consists of the
following two alternating steps.

• In the first step, fixing the clustering of the points, it finds the cluster
centers (they will be the mass centers by the Steiner’s theorem).

• In the second step, the algorithm relocates the points in such a way that
it assigns a point to the cluster, the center of which is the closest to it (in
case of ambiguity the algorithm chooses the smallest index such cluster).

If there exists a well-separated k-clustering of the points (even the largest intra-
cluster distance is smaller than the smallest inter-cluster one) the convergence of
the algorithm to the global minimum can be proved, with a convenient starting.

Sometimes the points x1, . . . ,xn are endowed with the positive weights
d1, . . . , dn, where without loss of generality

∑n
i=1 di = 1 can be assumed. In

such cases the weighted k-variance of the points
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is considered, where ca = 1∑
j∈Ca

dj

∑
j∈Ca

djxj is the weighted center of cluster

a (a = 1, . . . , k). The above algorithm can be easily adapted to this situation.
Note that S̃2

k(x1, . . . ,xn) corresponds to the k-variance with respect to the dis-
tribution d1, . . . , dn. In this contexts, S2

k(x1, . . . ,xn) is the special case when
this law is uniform.

Likewise, instead of L2-distances, other kind of distance functions in the
objective function can be used. Sometimes coordinate-wise medians are used
instead of mass centers (k-medoid algorithm).

A well-known drawback of the k-means clustering is that the clusters need to
be convex in order to achieve satisfactory results. That is, the k-means algorithm
forms spherical clusters whether or not the underlying data distribution obeys
this form. Otherwise, our data can be mapped into a feature space and we
apply k-means clustering for the mapped data which already have this spherical
structure. When we use these so-called Reproducing Kernel Hilbert Spaces, we
need not actually map our data, but can find the squared Euclidean distance
between a feature point φ(x`) and the center c of its cluster C via the kernel K
in the following way:
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1.2 Hierarchical clustering

Here we start with pairwise distances or similarities of the points, which are
not necessarily in a metric space. For the definition of a distance matrix see
Definition 1, whereas pairwise similarities can be thought of as absolute values
of correlations.

We distinguish between agglomerative or divisive methods, depending on,
whether we start with singleton clusters (each point forms a cluster) and we
aggregate them step by step, or we start with one cluster (containing all of the
points) and we separate them step by step.

Consider the agglomerative method. Based on the pairwise distances dij ’s,
whatever the clusters are, we always aggregate the two closest ones into one
cluster. The distance of the (disjoint) clusters T and H can be defined in the
following ways:

• Single linkage (nearest neighbor):

d(C,H) = min
i∈C, j∈H

dij .

• Complete linkage (farthest neighbor):

d(C,H) = max
i∈C, j∈H

dij .

• Average linkage:

d(C,H) =
1

|C| · |H|
∑
i∈C

∑
j∈H

dij .
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Based on the agglomeration, a dendrogram is made, based on which the user
selects the best clustering.

2 Multidimensional Scaling (MDS)

For clustering purposes, sometimes we have abstract objects which are basically
not in a metric space, and all we have, are their pairwise distances. In a broad
sense, the notion of a distance matrix in the upcoming definition allows to
define distances between objects subjectively, possibly as monotonous decreasing
functions of their pairwise similarities.

Definition 1 The n × n matrix D is called distance matrix if it is symmetric
and

dii = 0 (i = 1, . . . , n), and dij = dji ≥ 0 (i 6= j).

This definition allows the entries of the distance matrix not to obey the triangle
inequalities, and even if they do so, the metric defined by the distances is not
necessarily the Euclidean one.

Our purpose is to find a dimension d and points x1, . . . ,xn ∈ Rd such that
their pairwise Euclidean distances approach the entries of the distance matrix
as much as possible. Of course, if the distances are real distances of objects in
a physical space, the method of Multidimensional Scaling to be introduced is
assumed to find the dimension and configuration of the hidden points, at least,
up to translation, rotation, and reflection. For example, if someone provides us
with the pairwise Euclidean distances of cities (not too far apart), we will be
able to reconstruct their mutual position. Even in this case, our measurements
may be subject to error, therefore, we want to find a solution to the problem,
which is able to give a good approximation in any of the above cases.

The situation when the distances can exactly be realized in a Euclidean space
is defined now.

Definition 2 The n×n distance matrix is Euclidean if there is a positive integer
d and points x1, . . . ,xn ∈ Rd such that

‖xi − xj‖ = dij , i, j = 1, . . . , n.

The following theorem gives a necessary and sufficient condition for a dis-
tance matrix to be Euclidean. Intuitively, one needs somehow to eliminate the
translation invariance, therefore makes use of the so-called centering matrix
Cn = In − 1

n1n1T
n (we will drop the index n in the sequel).

Theorem 1 Given an n×n distance matrix D, the matrix A = (aij) is defined
as aij = − 1

2d
2
ij (i, j = 1, . . . , n). The matrix D is Euclidean if and only if the

symmetric matrix CAC is positive semidefinite.

We just remark that the construction for the point configuration, under the
conditions of Theorem 1 , is the following. The dimension will be the rank of
CAC, i.e. d = rank(CAC). Let λ1 ≥ · · · ≥ λd > 0 be the strictly positive
eigenvalues of CAC with corresponding unit-norm eigenvectors u1, . . . ,ud. The
points will be row vectors of the n×d matrix (

√
λ1u1, . . . ,

√
λdud). In fact, this

idea is inspired by the theory of Gram-matrices. This system is unique apart
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from translation, rotation, and reflection, not to mention the indeterminacy due
to possible multiple eigenvalues and the triviality that the coordinates can be
inflated with any number of zero coordinates.

Note that the construction also gives a hint how to find an approximate
solution when D is not Euclidean, but not ‘far’ from that, i.e. the matrix
CAC has some slightly negative eigenvalues. Then we omit those and use the
eigenvectors corresponding to the positive ones in the above construction. Even
if D is Euclidean, the rank of CAC may be so large that we want a smaller
dimensional configuration that reconstructs the distances with a tolerable error.
For this purpose, we retain the largest eigenvalues is the analysis, better to
stay, we look for a gap in the spectrum so that the eigenvalues behind this
gap are negligible compared to those before the gap. Then the number of the
outstanding eigenvalues will be the dimension of the points we look for.

Note that the Spectral Clustering looks for clusters of the vertices of a graph
or hypergraph based on the spectral decomposition of their adjacency, weighted
adjacency, Laplacian, or modularity matrices.
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