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In multivariate data analysis, usually there are strong dependencies between
the coordinates of the underlying random vector. With an appropriate trans-
formation we want to describe its covariance structure by means of indepen-
dent variables. In practical applications, there may be linear or near linear
dependencies between the components of multidimensional data. To reduce the
dimensionality, the first step is to simplify the covariance structure. If the un-
derlying distribution is multivariate Gaussan (which is frequently the case due
to the multidimensional Central Limit Theorem, after subtracting the means
it suffices to treat the empirical covariance matrix of the observations, but in
other situations (if the data is from a multivariate, absolutely continuous dis-
tribution) we can also be confined to the covariances. In such cases, instead of
independence, we will speak of uncorrelatedness of the components.

Let X be a p-dimensional random vector with expectation m and covariance
matrix C. The principal component transformation assigns the following p-
dimensional random vector Y to X:

Y = UT (X−m),

where C = UΛUT is the spectral decomposition of the positive definite (possi-
bly, semidefinite) covariance matrix C. It is easy to see that the random vector
Y has expectation 0 and covariance matrix Λ. As Λ is a diagonal matrix, the
components of Y are uncorrelated (in the Gaussian case also independent) with
variances λ1 ≥ · · · ≥ λp ≥ 0, the diagonal entries of Λ, i.e. the eigenvalues of
C. Denoting by u1, . . . ,up the corresponding unit-norm eigenvectors, the ith
component of Y, called the ith principal component is

Yi = uT
i (X−m), i = 1, . . . , p.

In fact, Yi is a linear combination of the components of X normalized such that
‖ui‖ = 1. The sum of the variances of the principal components is equal to the
sum of the variances of Xi’s, since

p∑
i=1

Var(Yi) =

p∑
i=1

λi = tr(C) =

p∑
i=1

Var(Xi)

and
Var(Y1) ≥ Var(Y2) ≥ · · · ≥ Var(Yp) ≥ 0.

Thus, we may say that the set of the principal components explains the total
variation of the original random vector’s components, in decreasing order. If
r = rank(C) < p, then the principal components Yr+1, . . . , Yp are zeros with
probability 1.

By a linear algebra fact (see Proposition 4 of Lesson 1), the principal compo-
nents can also be obtained as solutions of the following sequential maximization
task:

max
v∈Rp, ‖v‖=1

Var(vT (X−m)) = max
v∈Rp, ‖v‖=1

vTCv = λ1
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and the maximum is attained with the choice v = u1 (uniquely if λ1 > λ2).
Hence, the first principal component Y1 = uT

1 (X−m) is obtained as the max-
imum variance, normalized linear combination of the components of X. This
was the k = 1 case. Further, for k = 2, 3, . . . , r, again in view of Proposition 4
of Lesson 1,

max
v∈Rp, ‖v‖=1

Cov(vTX,Yi)=0 (i=1,...,k−1)

Var(vT (X−m)) = max
v∈Rp, ‖v‖=1

vTui=0 (i=1,...,k−1)

vTCv = λk

and the maximum is attained with the choice v = uk (uniquely if λk > λk+1).
Hence, the kth principal component Yk = uT

k (X −m) is obtained as the max-
imum variance, normalized linear combination of the components of X under
the condition of its uncorrelatedness with the preceding principal components
Y1, . . . , Yk−1.

A more general statement is also true. For a fixed positive integer k ≤ r,
such that λk > λk+1, the first k principal components provide the best rank k
approximation of X in the following sense.

Proposition 1

min
A is p×p

rank(A)=k

E‖X−AX‖2 = E‖X−PX‖2,

where P is the orthogonal projection onto Span{u1, . . . ,uk}.

Proof: Obviously,
‖X−AX‖2 ≤ ‖X−PX‖2,

where P projects onto the subspace spanned by the coumn vectors of A. Since
P is a projection, PX and X−PX are orthogonal. Therefore,

E‖X‖2 = E‖PX‖2 + E‖X−PX‖2,

where E‖X‖2 is given, so minimizing E‖X−PX‖2 is equivalent to maximizing
E‖PX‖2 .

Since P = BBT with some suborthogonal matrix B (BTB = Ik),

E‖PX‖2 = Etr(PXXTP) = trPCP = trBBTCBBT =

= trBTCBBTB = trBTCB =

k∑
i=1

λi(B
TCB),

where λi(·) denotes the ith largest eigenvalue of the matrix in the argument.
By the Cauchy–Poincaré separation theorem it follows that λi(B

TCB) ≤
λi(C), (i = 1, . . . , k). Equality is attained everywhere when P projects onto the
subspace spanned by the eigenvectors corresponding to the k largest eigenvalues
of C, i.e. P =

∑k
i=1 uiu

T
i .

Note that

PX =

k∑
i=1

uiu
T
i X =

k∑
i=1

uiZi,

which vector contains the first k principal components, otherwise zeros, in its
coordinates (if the eigenvectors are the coordinate axes).
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In fact, it is the ratio
∑k

i=1 λi/
∑p

i=1 λi which tells us the proportion of
X’s total variation explained by the first k principal components. Therefore, it
suffices to retain only the first k principal components if there is a remarkable
gap in the spectrum of C between λk and λk+1. Based on a statistical sample
X1, . . . ,Xn ∼ N (m,C), where n � p, for k = 0, . . . , r we test the hypothesis
that the last p−k eigenvalues of C are equal, until it is accepted. The likelihood
ratio test statistic is based on the spectrum of the empirical covariance matrix.
We perform a likelihood ratio test for testing the following sequence of null-
hypotheses:

H0,k : λk+1 = · · · = λp for k = 0, 1, . . . , p− 1

until accepted. By the asymptotic theory of the likelihood ratio tests, the trans-
formed test statistic −2 lnTn,k has the form

n(p− k) ln
a

g
with a =

λ̂k+1 + · · ·+ λ̂p
p− k

, g = (λ̂k+1 . . . λ̂p)
1

p−k

where λ̂i’s are the eigenvalues of the empirical covariance matrix Ĉ of the sam-
ple, and a and g denote the algebraic and geometric means of the last n − k
eigenvalues of the empirical covariance matrix Ĉ, respectively. For “large” n,
the test statistic asymptotically follows χ2-distribution with degrees of freedom
1
2 (p − k + 2)(p − k − 1), the decrease in the number of parameters under the
assumption of H0,k. Note that the number of eigenvalues (p) is decreased with
p− k− 1, whereas in the p× p orthogonal matrix (containing the eigenvectors),
the number (p− 1)p/2 of free parameters is decreased by (p− k − 1)(p− k)/2,
the number of free parametrs in a (p−k)×(p−k) rotation (in the eigensubspace
corresponding to the multiple eigenvalue).

Given the significance, we stop if H0,k is accepted, which can be interpreted
as the number of significant PC’s is k. The PC’s themselves are estimated from
the sample via its mean vector and the spectral decomposition of Ĉ.

In the model of Factor Analysis, a smaller number of latent variables explain
the correlations between the original ones. We say that the n-dimensional rv X
has a factor structure if each variable Xi depends on a small number of latent
common factors plus a component that is specific to Xi. Formally, X has a
k-factor structure if it obeys the following model with the integer 1 ≤ k < p:

X = m + Bf + e (1)

where the components of the k-dimensional rv f = (f1, . . . fk)T are the common
factors, and the components of the p-dimensional rv e = (e1, . . . , ep)T are the
individual factors (disturbances), whereas the p × k matrix B = (bij) contains
the factor loadings. We make the following assumptions:

E(f) = 0, Var(f) = Ik, E(e) = 0, Var(e) = D, Cov(f , e) = O (2)

where D is a p × p diagonal matrix and the cross-covariance matrix of f and
e, denoted by Cov(f , e), is the k × n zero matrix. This means that both the
common and the individual factors have uncorrelated components that are also
uncorrelated with each other; further, the factors are normalized so that they
have unit variances. If X ∼ Np(m,C), then Y ∼ Nk(0, Ik) is a k-dimensional
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standard normal rv. However, its components cannot be obtained with an
explicit transformation, like the PC’s. The factors are latent variables that we
cannot observe directly, we can only estimate the so-called factor scores.

To identify the model (1), consider the equation

C = BBT + D (3)

obtained by equating the covariance matrices. This equation is the basis for the
ML-estimation of the rank k matrix BBT and the diagonal matrix D; further,
for testing the hypothesis that the number of factors is k. For the coordinates
and variances of Xi’s, Equations (1) and (3) provide

Xi = µi +

k∑
j=1

bijfj + ei, Var(Xi) =

k∑
j=1

b2ij + Var(ei), i = 1, . . . , p.

That is, every Xi depends on all of the common factors fj ’s, but only depends

on its own individual factor ei. Here
∑k

j=1 b
2
ij is the part of the variance of

Xi, accounted for the common factors, and it is called communality of Xi; this
makes sense when, instead of C, the correlation matrix of Xi’s is used (it indeed
has rational if Xi’s are measured on different scales).

Via counting the number of parameters, it is proved that unique solution
to (3) can be expected with the so-called Lederman bound

k ≤ 1

2
(2p+ 1−

√
8p+ 1).

Also observe that the structure described in (1) and (2) is not sufficient to
identify the factors and the factor loadings: if Q is a k × k orthogonal matrix,
then Qf and BQ−1 fulfill (1) and (2) as well as f and B do. However, when
the factors and factor loadings are linearly transformed as above, the common
components

∑k
j=1 bijfj and the specific components ei do not undergo any

change. The selection of a particular vector of factors, that is, the identification
of the factors, requires additional criteria. For example, one of the factors has
no impact on some of the variables or the sum of the squares of the loadings of
one of the factors is maximum. Such constraints also depend on the particular
application. There is a great variety of FA methods, we consider the following
two to be the most important:

• ML based FA: If we have an Np(m,C) distributed sample, then we max-
imize its log-likelihood function

−1

2
n ln |C| − 1

2
ntrC−1Ĉ + constant

with respect to B,D subject to C = BBT + D, where |C| is the deter-

minant of C and Ĉ is the sample covariance matrix, estimated from an
independent, identically distributed (iid) sample. To avoid the ambiguity
due to rotation, we also put the constraint that BTD−1B is diagonal.
Equivalently, we have to solve

ln |BBT + D|+ tr(BBT + D)−1Ĉ→ min, subject toBTD−1Bdiagonal.

There are both theoretical results and algorithms based on numerical
methods at our disposal to treat this problem.
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• PC based FA: If the variance of ei does not depend on i, that is, D = σ2Ip
with some σ > 0, then the columns of B span the same linear space as
the first k eigenvectors of C do. This is the rationale for using the first k
principal components of X to estimate the factors and the factor loadings,
a widespread though unwarranted practice. Actually, the Principal Com-
ponent transformation yields X = m+UY = m+(UΛ1/2)(Λ−1/2Y), that

gives rise to estimate the factor loading matrix with (
√
λ̂1û1, . . . ,

√
λ̂kûk),

where λ̂i’s and ûi’s are the first k eigenvalues and eigenvectors of Ĉ, and
k is selected according to the spectral gap of Ĉ.

As an example from meteorology, suppose that Xi’s are the yearly variations
of average temperatures, observed in p = 30 European cities for n = 60 years
(this is a sample). The factor structure above, with k = 1, would explain such a
variation as depending on one common stochastic latent variable, plus local vari-
ables that have zero covariance with one another. However, FA was developed
by psychometricians in the first half of the 20th century (Spearman, Thurstone),
and was used to find latent common factors behind rv’s corresponding to results
of psychological tests. The very meaning of the factors, like general intelligence,
was established by the experts, based on the loadings of the individual factors
in the variables Xi’s. The interpretation of the factors is the most straightfor-
ward if each variable is loaded highly on at most one factor, and if all the factor
loadings are either large (in absolute value) or near zero, with few intermediate
values. Then the variables can be divided into disjoint sets, each of which is
associated with one factor, and some variables may be left over. The factor fj
can be interpreted as the common feature of those Xi’s for which bij is large. We
can make advantage of a k × k rotation Q such that the factor loading matrix
BQ−1 is the best interpretable in the above sense. For this convenience, there
are methods of rotation elaborated, e.g., the VARIMAX rotation.
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