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Abstract. In this note we investigate the existence of flat orthogonal ma-
trices, i.e. real orthogonal matrices with all entries having absolute value close
to 1√

n
. Entries of ± 1√

n
correspond to Hadamard matrices, so the question of ex-

istence of flat orthogonal matrices can be viewed as a relaxation of the Hadamard
problem.

1. Introduction

Let M be a real orthogonal matrix of size n× n. We are interested in
the smallest and largest modulus among the entries of M :

(1) lM := min
1�i,j�n

|mi,j |, and uM := max
1�i,j�n

|mi,j |

and, more precisely, in estimating the maximal possible value for lM and
the minimal possible value of uM . In other words, we want to estimate the
following quantities:

(2) ln := max
M∈O(n)

lM and un := min
M∈O(n)

uM ,
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where O(n) denotes the group of orthogonal matrices.
In order to determine ln (respectively, un) one has to control the low-

est (resp. uppermost) absolute value in an orthogonal matrix M . It is also
natural to ask whether one can control both quantities simultaneously. For
this purpose we introduce the measure of “flatness” of an n× n orthogonal
matrix M as

(3) fM = min

{
ε > 0 :

1− ε√
n

� |mi,j | �
1 + ε√

n
, for all 1 � i, j � n

}
,

and we are interested in how flat an orthogonal matrix can be:

(4) fn := min
M∈O(n)

fM .

It is trivial to see that ln � 1√
n
, un � 1√

n
for all n, and the famous

Hadamard conjecture states that if 4|n then ln = un = 1√
n
. It is also easy to

see that fn � c
n , unless there exists an n× n Hadamard matrix (Propo-

sition 2.1 below). This note was motivated by the natural question of
L. Baratchart (personal communication), as to whether ln � c√

n
for some

absolute constant c. The answer to this question is positive and provided
by Theorem 2.2 below. We will also prove un � c√

n
with another absolute

constant c in Theorem 2.3. However, we list here some more restrictive ques-
tions on flat orthogonal matrices, all of which we have only partial answers
to.

Problem 1.1. Is it true that ln =
(
1 + o(1)

)
1√
n
?

Problem 1.2. Is it true that un =
(
1 + o(1)

)
1√
n
?

Can we control ln and un simultaneously?

Problem 1.3. Is it true that fn = o(1)?

These questions can be seen as relaxations of the Hadamard problem,
and the matrices leading to such bounds could be called almost Hadamard
matrices. However, a different notion of almost Hadamard matrices was al-
ready introduced and considered in [1,2] (in those papers the emphasis is
on various matrix norms and not on the entries of the matrix). Therefore,
to make a clear distinction, we prefer to use the terminology flat orthogonal
matrices here.

Finally, circulant matrices play a special role in applications, therefore
we can add this as an additional constraint.

Problem 1.4. Let f circ
n := minM∈O(n)∩Circ(n) fM , where Circ(n) denotes

the set of n× n circulant matrices and fM was defined in (3). Is it true that
f circ
n = o(1)?

Acta Mathematica Hungarica

PH. JAMING and M. MATOLCSI180



Acta Mathematica Hungarica 147, 2015

ON THE EXISTENCE OF FLAT ORTHOGONAL MATRICES 3

We firmly believe that the answer to the first three problems is positive,
while we are undecided as to the last one. Recall that a conjecture of Ryser
asserts that there are no n× n circulant Hadamard matrices if n > 4.

The remaining of this paper is split into two sections. The first one is
devoted to general constructions that lead to bounds on un and ln valid in
arbitrary dimension. We then devote the last section to improved bounds
when the size of the matrix have various arithmetic properties.

2. General constructions

We begin by a simple result which shows that the flatness parameter fn
cannot be expected to be very small. In other words, requiring fn to be very
small is equivalent to requiring a Hadamard matrix of order n to exist.

Proposition 2.1. Let n � 3 and let ε > 0 be such that

ε <

{
1/n if n is odd

2/n if n is even
.

Assume there exists an orthogonal matrix M such that for every j, k =
1, . . . , n,

(5)

(
1− ε

n

)1/2

� |mj,k| �
(
1 + ε

n

)1/2

.

Then n is a multiple of 4 and there exists a Hadamard matrix of order n.

Proof. Let S denote the matrix defined by the sign of the entries of M ,
i.e. sj,k = 1√

n
signmj,k. Consider two rows sj and sk of S. Let r denote the

number of columns where the entries in sj and sk match, and n− r where
they differ. Then, for the corresponding rows mj , mk of M we have

0 = ⟨mj ,mk⟩



� r

n
(1 + ε)− n− r

n
(1− ε) =

2r − n+ εn

n

� r

n
(1− ε)− n− r

n
(1 + ε) =

2r − n− εn

n
.

However, if n is odd the interval (2r − n− εn, 2r − n+ εn) does not con-
tain zero (or any even number), a contradiction. If n is even, the interval
(2r − n− εn, 2r − n+ εn) contains zero if and only if r = n

2 , in which case
the corresponding rows sj , sk are also orthogonal, and we conclude that S
is a Hadamard matrix. �

We continue with a simple block construction which proves that ln is at
least as large as 1

2
√
n
.
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Theorem 2.2. For any dimension n we have ln � 1
2
√
n
.

Proof. Assume n = 2r + q where q < 2r, and introduce the notation
s = 2r − q for brevity. Let H be a Hadamard matrix of order 2r (of course,
such a matrix exists, e.g. the tensorial power F⊗r

2 ). We use the normaliza-

tion that H has entries ± 1√
2r

instead of ±1. Let M̃ be the extension of H

by an identity matrix of order q in the lower right. Split M̃ into blocks of
size s and q and q as follows (the indexes simply indicating the sizes of the
blocks):

M̃ =




Hs,s Hs,q 0

Hq,s Hq,q 0

0 0 Iq


 .

Let U denote the following orthogonal block-matrix:

U =




Is 0 0

0 1√
2
Iq − 1√

2
Iq

0 1√
2
Iq

1√
2
Iq


 ,

and let M := UT M̃U . A direct calculation shows that

M =




Hs,s
1√
2
Hs,q − 1√

2
Hs,q

1√
2
Hq,s

1
2(Hq,q + Iq)

1
2(−Hq,q + Iq)

− 1√
2
Hq,s

1
2(−Hq,q + Iq)

1
2(Hq,q + Iq)


 .

The smallest modulus among the entries of M is 1
2
√
2r

� 1
2
√
n
, which proves

the theorem. (Note, however, that the largest appearing modulus is 1
2 +

1√
2r
,

so this construction gives no indication with respect to Problem 1.3.) �
Proving that un � c√

n
is also fairly easy, as one can use a block-diagonal

construction.

Theorem 2.3. For any dimension n we have un � 2+o(1)√
n

.

Proof. If A1 ∈ O(n1) and A2 ∈ O(n2) are orthogonal matrices then
the block-diagonal matrix A1 ⊕A2 is an orthogonal matrix of order n1 + n2.
This implies un+m � max{un, um}. Also, Propositions 3.1 and 3.2 below

show that up =
1+o(1)√

p whenever the dimension p is a prime. For general n

we must invoke the following weak-Goldbach type result from number the-
ory: for every ε > 0, every large enough odd number n can be written as
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a sum of three primes n = p1 + p2 + p3 where each pi lies in the interval[
(1− ε)n/3, (1 + ε)n/3

]
, while every large enough even number n can be

written as a sum of four primes n = p1 + p2 + p3 + p4 where each pi lies
in the interval

[
(1− ε)n/4, (1 + ε)n/4

]
. This follows from the method of

Vinogradov [7]. Hence, the block-diagonal construction together with this

weak-Goldbach type result implies un �
√
3+o(1)√

n
if n is odd, and un � 2+o(1)√

n

if n is even. �

Remark 2.4. In connection with ln and un it is natural to examine how
the entries of a typical random orthogonal matrix behave. It is well known
that for any coordinate z of a random unit vector we have P(|z| > t√

n)
� e−t2/2 (this can be seen by upper bounding the area of a spherical cap
of radius r by that of a sphere of radius r). This implies, via a simple cal-

culation, that uM � c
√
logn√
n

for a random orthogonal matrix M , with high

probability. Therefore, a random orthogonal matrix is typically “not far”
from the bound uM � c√

n
given in Theorem 2.3. On the contrary, the lowest

absolute value in a random unit vector is smaller than c
n with high probabil-

ity (this can be seen by generating a random unit vector as the normalized
vector of n independent Gaussian random variables). The same holds, a for-
tiori, for a random orthogonal matrix, which shows that the lowest entry is
typically very far from the optimal bound given in Theorem 2.2. �

Remark 2.5. If we assume that the Hadamard conjecture holds then
ln = un = 1√

n
for all n divisible by 4. By the simple construction of Propo-

sition 3.1 we also conclude that for n ≡ 3 (mod 4) the quantities ln and un
are both of the magnitude

(
1+ o(1)

)
1√
n
. However, we could not prove such

a statement for the case n ≡ 1, 2 (mod 4).

3. Specific constructions

In the rest of this note we give some positive partial results with respect
to Problems 1.1, 1.3, 1.4. As noted in [2, Section 3] symmetric balanced
incomplete block designs give rise to orthogonal matrices with two entries.
If the parameters of the block design are suitable then the entries will be
close to ± 1√

n
. Namely, we have the following special case.

Proposition 3.1. (i) If the dimension n is such that a Hadamard ma-
trix H of size (n+1)× (n+1) exists, then there exists an orthogonal matrix
M of size n×n with all entries having modulus

(
1+ o(1)

)
1√
n
. In particular,

this is the case if n = pr where p = 4k − 1 is a prime and r is odd.
(ii) If the dimension n is a prime of the form 4k − 1, then M can be

chosen to be circulant.
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Proof. (i) We can assume that the Hadamard matrix H is in standard
form, i.e. the first row and column of H consist of 1’s. Delete the first row
and column of H , and in the remaining matrix H ′ replace the entries +1
and −1 by the variables x and y, respectively. Orthogonality of any two
rows of H ′ is now equivalent to n−3

4 x2 + n+1
4 y2 + n+1

2 xy = 0, and the unit

length of the rows of H ′ is ensured by n−1
2 x2 + n+1

2 y2 = 1. This system of
equations admits the (non-unique) solution

x =
−1√

n+ 1− 1
, y =

2√
n+ 1

− 1√
n+ 1− 1

,

and we define M as the n× n matrix with these values. Note that both x
and y have the order of magnitude

(
1+o(1)

)
1√
n
. In fact, the error term o(1)

here has the order of magnitude O( 1√
n
). We remark that M corresponds to

the Hadamard design associated to H , and this construction is a special case
of the one described in [2, Section 3]. If n = pr where p = 4k − 1 is a prime
and r is odd, then a Hadamard matrix of size (n+1)× (n+1) exists by the
Paley construction.

(ii) If n is a prime of the form 4k − 1 then the Paley construction essen-
tially leads to a circulant matrix. Namely, consider the following circulant
matrix M corresponding to the quadratic character of Fp: [M ]i,j = x if i− j

is a quadratic residue, and [M ]i,j = y if i− j is a non-residue or zero. The
above values of x, y ensure orthogonality of M . �

When n is a prime of the form 4k + 1, the construction is much less
trivial, as described below.

Proposition 3.2. If the dimension is a prime p = 4k + 1, then there
exists a circulant orthogonal matrix M of size p× p with all entries having
modulus

(
1 + o(1)

)
1√
p .

Proof. For this proof it will be convenient to identify the cyclic
group Zp with the numbers (−p+1

2 , . . . , p−1
2 ), and use coordinates of vec-

tors accordingly. Also, let Q,NQ ⊂ Zp denote the set of quadratic residues
and non-residues, respectively (0 is not included in either Q or NQ). Con-
sider the vector v = (v−p+1

2
, . . . , v p+1

2
) given by the quadratic character, i.e.

v0 = 0, and for nonzero j we have vj = ±1 according to whether j ∈ Q or
j ∈ NQ. Note that v is symmetric, vj = v−j , because p = 4k + 1. Note

also that v̂(k) =
∑

j vje
2πijk/p = ±√

p for k ̸= 0, and v̂(0) = 0. We will need
a random modification of v. The construction is analogous to the one given
in [5, Theorem 9.2].

Fix ε > 0, and let ρ = 1√
p . AsNQ is symmetric, it can be written as a dis-

joint union of a set H and its negative, NQ = H ∪−H , in other words NQ =
∪y∈H{y,−y}. For each y ∈ H consider independent random variables ξy such

Acta Mathematica Hungarica

PH. JAMING and M. MATOLCSI184



Acta Mathematica Hungarica 147, 2015

ON THE EXISTENCE OF FLAT ORTHOGONAL MATRICES 7

that P(ξy = 1/2) = ρ, P(ξy = 0) = 1− ρ. For y = 0 set P(ξy = 1/4) = ρ,
P(ξy = 0) = 1−ρ. Consider the random vectorw = (w−p+1

2
, . . . ,w p−1

2
) given

by wy = ξy if y ∈ H or y = 0, wy = ξ−y if −y ∈ H , and wy = 0 if y ∈ Q. Let
us evaluate the Fourier transform of the random vector w.

(6) E
(
ŵ(k)

)
=

1

2
ρ

(
1

2
+

∑
y∈NQ

e2πiyk/p
)

=

{√
p/4 if k = 0,

±1/4 if k ̸= 0

and, for all k,

(7) D2
(
ŵ(k)

)
=

1

4
ρ(1− ρ)

(
1

4
+

∑
y∈H

(
e2πiyk/p + e−2πiyk/p

) 2) � 1

4

√
p.

We invoke here a large deviation inequality of Chernov as stated in [6,
Theorem 1.8]: let X1, . . . , Xn be independent random variables satisfying��Xi−E(Xi)

�� � 1 for all i. Put X = X1+ . . .+Xn and let σ2 be the variance
of X . For any t > 0 we have

P(
��X −E(X)

�� � tσ) � 2max
(
e−t2/4, e−tσ/2

)
.

Using this estimate with t = pε we obtain

P(
��ŵ(0)−√

p/4
�� � 1

2
p

1

4
+ε) � 2e−

p2ε

4 ,(8)

P

(����ŵ(k)∓ 1

4

���� �
1

2
p

1

4
+ε

)
� 2e−

p2ε

4 for all k ̸= 0.(9)

Therefore, with high probability none of the above events occur, and

we have
��ŵ(0)−√

p/4
�� � O(p

1

4
+ε) and

��ŵ(k)
�� � O(p

1

4
+ε). Fix such

a favourable vector w. We can also assume without loss of generality that
ξ0 = 1/4 and hence w0 = 1/4 (we are free to change w0 from 0 to 1/4, if
necessary, without altering the order of magnitude of ŵ).

Finally, consider the vector z = v+ 4w, and let u = 1
p ẑ. The vector z is

unimodular (some of the −1 entries in v were changed to +1 and the value
at 0 was changed to +1). Therefore the circulant matrix M with first row u

is orthogonal. Also, the entries of u are all of absolute value 1√
p(1+ p−

1

4
+ε),

by construction.
We remark that a similar construction works if the dimension p is of the

form 4k− 1 but the result is inferior to Proposition 3.1 in the sense that the
error term is larger. �

By combining the results of the propositions above we can answer Prob-
lem 1.3 and 1.4 for dimensions n which are composed of large prime factors.
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Corollary 3.3. For any fixed m let Nm denote the set of positive in-
tegers n = 2sp1 . . . pr such that each odd prime factor pj � n1/m (the primes
may appear with multiplicity).

(i) For every m and every n ∈ Nm there exists an orthogonal matrix M
of size n× n with all entries having modulus

(
1 + om(1)

)
1√
n
.

(ii) If all the odd primes pj appearing in the factorization of n are distinct
and s = 0 or s = 2 then there exists a circulant orthogonal matrix M of size
n× n with all entries having modulus

(
1 + om(1)

)
1√
n
.

Proof. (i) Let n = 2sp1 . . . pr ∈ Nm. Then r � m by the definition
of Nm. Let H denote a Hadamard matrix of size 2s (such matrix exists,
of course, e.g. H = F⊗s

2 ), and let Mpj
denote the matrices corresponding to

the primes pj , as constructed in Propositions 3.1 and 3.2. Let M be the ten-
sorial product of all the matrices H and Mpj

(where Mpj
is taken with the

same multiplicity as pj in n). As r � m for any n ∈ Nm, the errors do not
accumulate, and we still have

�� [M ]i,j
�� = (

1 + om(1)
)

1√
n
.

(ii) The matrices Mpj
are circulant by the constructions of Propositions

3.1 and 3.2. Let xj denote the first row of Mpj
. If s = 0, n = p1 . . . pr with

all pj distinct, then Zn ≡ Zp1
. . .Zpr

. Let k = (k1, . . . , kr) ∈ Zp1
. . .Zpr

and
let y(k) =

∏r
j=1 xj(kj). Then y generates a circulant matrix which is or-

thogonal (because all x̂j are unimodular, and hence so is ŷ), and the entries
of y are of absolute value

(
1 + om(1)

)
1√
n
. When s = 2 we can incorporate

the 4× 4 real circulant Hadamard matrix in the same manner. �

Remark 3.4. Problem 1.4 concerning the circulant case has an interest-
ing connection to ultraflat polynomials. It is well-known that x = (x1, . . . , xn)
generates a circulant orthogonal matrix if and only if the Fourier transform
x̂ = (w1, . . . , wn) is unimodular on Ẑn, i.e. |wj | = |wk| for all j, k. If x is
real, then w is conjugate symmetric, i.e. wj = wn−j . We also want that all
|xj | ≈ 1√

n
. Considering w1, . . . , wn as variables we are led to the problem of

constructing a polynomial P (z) =
∑n

j=1wjz
j where wj = wn−j and |wj | = 1

(after re-normalization), such that P (z) is “flat” at the nth roots of unity,
i.e.

��P (ωj)
�� = (

1 + o(1)
)√

n, where ω = e2iπ/n and j = 0, . . . n− 1. Drop-
ping the restriction wj = wn−j one can require P (z) to be flat all over the
unit circle (i.e.

��P (z)
�� = (

1+ o(1)
)√

n for all |z| = 1), and such polynomials
are called ultraflat. The existence of ultraflat polynomials was proven by Ka-
hane [4]. However, the extra condition wj = wn−j prevents P (z) from being
ultraflat as shown by Remark 5.1 in [3]: the restriction wj = wn−j implies

max|z|=1

��P (z)
�� � (1+ ε)

√
n with ε =

√
4/3− 1. However, this does not an-

swer Problem 1.4 because we require P (z) to be flat only at the nth roots
of unity. Problem 1.4 can therefore be regarded as a discretized version (at
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the nth roots of unity) of the question of existence of ultraflat polynomials
with the self-conjugacy restriction wj = wn−j .

Notice also that Corollary 3.3 gives an affirmative answer to Problem 1.4
for some dimensions n (e.g. when n = 4p, p being a prime). Therefore, try-
ing to prove Ryser’s conjecture on the non-existence of circulant Hadamard
matrices by giving a negative answer to Problem 1.4 cannot possibly work.
In the other direction, hoping to construct a circulant Hadamard matrix by
first constructing a circulant flat orthogonal matrix and then modifying its
entries is also rather naive and hopeless in our opinion. �

We saw in Proposition 3.1 that given any Hadamard matrix H one can
reduce the dimension by 1, and construct a flat orthogonal matrix. It is
natural to try also to increase the dimension by 1. The general construc-
tion given in Proposition 2.1 allows to do so, but will introduce an entry
of size 1/2, thus destroying the flatness. Our last specific construction con-
cerns the increase of dimension by 1 without destroying flatness, but it only
works under some restrition on the dimension. We recall that a Hadamard
matrix is called regular if the row sums and column sums of H are all equal.

Proposition 3.5. Assume the dimension n is such that a regular
Hadamard matrix H of order n exists (this implies n = 4k2 for some k).
Then there exists an orthogonal matrix M of size (n+ 1)× (n+ 1) with all
entries having modulus

(
1 + o(1)

)
1√
n+1

.

Proof. Let b = 1−(n+1)−1/2

n and replace the positive entries of H by
1√
n
− b, while the negative entries with − 1√

n
− b (the sign of b is purpose-

fully negative in both cases). Next, extend this matrix by a new row and
column filled with entries a = −1√

n+1
, and let M be the arising matrix. The

entries of M are of modulus
(
1 + o(1)

)
1√
n+1

(in fact, the error term is of

the order 1√
n
), and an easy calculation shows that M is orthogonal. �

We end this note by emphasizing that Problems 1.1, 1.3, 1.4 all remain
open for dimensions n with small prime factors, i.e. for dimensions n which
are not covered by Corollary 3.3.
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[3] T. Erdélyi, The phase problem of ultraflat unimodular polynomials: The resolution
of the conjecture of Saffari, Math. Ann., 321 (2001), 905–924.

[4] J. P. Kahane, Sur les polynomes a coefficient unimodulaires, Bull. London Math. Soc.,
12 (1980), 321–342.

[5] M. Matolcsi and I. Z. Ruzsa, Difference sets and positive exponential sums I. General
properties, J. Fourier Anal. Appl., 20 (2014), 17–41.

[6] T. Tao and V. H. Vu, Additive Combinatorics, Cambridge University Press (Cam-
bridge, 2006).

[7] M. Vinogradov, A new method in analytic number theory, Tr. Mat. Inst. Steklova, 10
(1937), 5–122 (in Russian).

Acta Mathematica Hungarica

188 PH. JAMING and M. MATOLCSI: ON THE EXISTENCE OF FLAT . . .


	ON THE EXISTENCE OF FLAT ORTHOGONALMATRICES
	Abstract
	1. Introduction
	2. General constructions
	3. Specific constructions
	References




