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Abstract
We use the connection between positive definite functions

and the character table of the symmetric group 𝑆6 to give

a short new proof of the nonexistence of a finite projec-

tive plane of order 6. For higher orders, like 10 and 12, the

method seems to be inconclusive as of now, but could be a

basis of further research.
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1 INTRODUCTION

In a recent paper [8] the authors (jointly with M. N. Kolountzakis) introduced a version of the Delsarte

LP-bound on noncommutative groups and applied it to the problem of mutually unbiased bases. Here,

we build on these ideas and investigate the existence of finite projective planes of a given order 𝑑. The

method yields an elegant new proof of nonexistence for order 6, and could be a basis of future research

for higher orders.

We begin by shortly describing the general background of what we call the Delsarte LP method

on a group. Given a finite group 𝐺 and a symmetric set 𝐴 = 𝐴−1 ⊂ 𝐺 (sometimes referred to as

the “forbidden set”), what is the maximal cardinality of a subset 𝐵 = {𝑏1,… , 𝑏𝑛} ⊂ 𝐺, such that all

“differences”𝑏−1
𝑗
𝑏𝑘 (𝑗 ≠ 𝑘) fall into 𝐴𝑐 , the complement of 𝐴? This is a very general type of question
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and many famous problems can be rephrased in this manner. In many applications 𝐺 is not finite, e.g.

𝐺 = ℝ𝑛 but we will only consider finite groups in this note.

The Delsarte LP-bound has often proved fruitful when dealing with such problems, e.g. in the context

of sphere-packing [2,16] or in the maximum number of code-words in error correcting codes [3]. It is

based on the observation that the function 1𝐵 ∗ 1𝐵−1 is positive definite on the group 𝐺. A Fourier-

analytic formulation of the method over commutative groups was described in [9], and the authors

used it to give computer-aided proofs for some existence and uniqueness results about finite projective

planes of small orders [10]. A recent version over noncommutative groups was given by the authors

(jointly with M. N. Kolountzakis) in [8, Theorem 2.3], based on previous work of F. M. Oliveira de

Filho and F. Vallentin [11, Theorem 2]. We will build on these ideas here, but will not directly use any

of the mentioned results to keep this short note self-contained.

For primepower orders, projective planes can be constructed using finite fields. Some other

constructions—not based on finite fields—are also known. However, it is widely believed that finite

projective planes do not exist if the order is not a primepower. In the beginning of the XX. century,

Tarry [15] proved that there exists no 6 × 6 Greco-Latin square, which is a stronger statement than the

nonexistence of a finite projective plane of order 6. However, his proof is based on a rather tedious

checking of each 6 × 6 Latin square. Some 40 years later, Bruck and Ryser [1] proved the celebrated

result that if a finite projective plane of order 𝑑 ≡ 1, 2 mod(4) exists, then 𝑑 must be a sum of two

squares. This result rules out an infinite family of nonprimepower orders (including 6, again), but

leaves the problem open for orders such as 𝑑 = 10 or 𝑑 = 12. Other proofs for the case 𝑑 = 6 were

later given by Stinson [14] and Dougherty [4]. As of today, for 𝑑 = 10 we only know the nonexistence

of a finite projective plane due to a massive computer search [7], and the question is still open for

𝑑 = 12. In this paper, we present a short new proof of nonexistence for 𝑑 = 6, which may shed new

light on the problem.

In order to use Delsarte's LP method we reformulate the existence of a projective plane of order 𝑑

in terms of the existence of a certain family of permutations in the symmetric group 𝑆𝑑 . This reformu-

lation is well-known but we include it here for completeness.

Instead of finite projective planes, we may work with some equivalent structures like that of finite

affine planes or complete sets of mutually orthogonal Latin squares. For our purposes, we shall depart

from a finite affine plane of order 𝑑. We fix and enumerate the lines of two of its parallel equivalence

classes so that we have a “coordinate system” in our plane. We will call these parallel classes “hori-

zontal” and “vertical.” As any further line 𝓁 intersects each horizontal and vertical line exactly once,

we can view 𝓁 as the graph of a bijective function {1, 2… , 𝑑} → {1, 2… , 𝑑}; that is, an element of

the permutation group 𝑆𝑑 . In this way, the remaining (𝑑 − 1)𝑑 lines of the affine plane are encoded in

(𝑑 − 1)𝑑 permutations 𝜎1, 𝜎2,… , 𝜎(𝑑−1)𝑑 ∈ 𝑆𝑑 . Note that two distinct lines 𝓁𝑗 ,𝓁𝑘 are parallel if and

only if 𝜎−1
𝑗
𝜎𝑘 has no fixed points, whereas they intersect each other if and only if 𝜎−1

𝑗
𝜎𝑘 has precisely

one fixed point.

Therefore, the question arises: what is the maximal cardinality of a subset

𝐵 = {𝜎1,… , 𝜎𝑀} ⊂ 𝑆𝑑 such that all the “differences” 𝜎−1
𝑗
𝜎𝑘 between any two distinct elements

𝜎𝑗, 𝜎𝑘 ∈ 𝐵 has zero or one fixed point. In other words, using the terminology above, the forbidden set

𝐴 consists of permutations with more than one fixed points. As we have seen, if the maximal number

𝑀 is strictly less than (𝑑 − 1)𝑑 then there can be no projective plane of order 𝑑. Note also, that we

actually have more information about the permutations 𝜎𝑗 than just the fact that the differences must

avoid the forbidden set 𝐴. If we assume that 𝐵 = {𝜎1,… , 𝜎(𝑑−1)𝑑} ⊂ 𝑆𝑑 comes from an affine plane

of order 𝑑, then we can tell exactly how many of the differences have one fixed point and how many of

them have none. We will make use of this fact.
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The version of the Delsarte LP-bound presented in [8] involves general positive definite functions on

𝐺. In our present case, however, the forbidden set 𝐴 is invariant under conjugations. As a consequence,

it suffices to consider positive definite functions that are also class-functions; i.e. ones that take constant

values on each conjugacy class. For this reason, rather than recalling the general result from [8], we shall

give a self-contained presentation here directly formulated in terms of class-functions and characters.

Assuming that 𝐵 = {𝜎1,… , 𝜎(𝑑−1)𝑑} ⊂ 𝑆𝑑 comes from an affine plane of order 𝑑, our method gives

a system of linear equations and inequalities regarding the number of differences 𝜎−1
𝑖
𝜎𝑗 falling in

each conjugacy class of 𝑆𝑑 . For 𝑑 = 6 this linear system has a unique solution. However, some easy

combinatorial arguments show that this unique solution cannot correspond to a finite projective plane,

thus proving the nonexistence result.

This can all be checked by hand because the character table of 𝑆𝑑 is well known (described by

the the so-called Murnaghan-Nakayama rule; see e.g. in the book [13]), and because 𝑆6 has only

11 conjugacy classes, and hence we have a rather small linear system to solve. For 𝑑 = 12, 𝑆𝑑 has

already 77 conjugacy classes and a similar computation by hand would be extremely cumbersome.

Nevertheless, using a computer it easy to solve the arising linear programming problem, and we went

ahead and tried out what happens up to 𝑑 = 12. We found that for 𝑑 ≤ 6 there is a unique solution,

but uniqueness breaks down starting from 𝑑 = 7 — even though up to equivalence, there is a unique

projective plane of order seven [5,10,12]. The space of solutions is always a convex body, and for

𝑑 = 12 our task would be to use some combinatorial arguments to conclude that no points within this

convex body can correspond to a finite projective plane. As of today, we cannot conclude non-existence

by this method for any 𝑑 > 6. Nevertheless, we still hope that the information given by our linear system

of equations will turn out to be useful for higher orders in the future.

2 CHARACTER TABLES AND A NONEXISTENCE RESULT
FOR 𝒅 = 𝟔

Let 𝐺 be a finite group with conjugacy classes 𝐶0 = {𝑒}, 𝐶1 … , 𝐶𝑟 and let 𝛾 be the function assigning

to each element the cardinality of the conjugacy class it is contained in: 𝛾(𝑔) = |𝐶𝑘| for all 𝑔 ∈ 𝐶𝑘..

Sometimes we use the following shorthand notation for this:

𝛾|𝐶𝑘
= |𝐶𝑘| (𝑘 = 0,… , 𝑟).

For 𝐵 = {𝑏1,… , 𝑏𝑛} ⊂ 𝐺 we shall consider the class-function 𝜃𝐵 counting the number of times the

difference between elements of 𝐵 falls in a certain conjugacy class; that is, 𝜃𝐵(𝑔) = |{(𝑗, 𝑚)|𝑏−1
𝑗
𝑏𝑚 ∈

𝐶𝑘}| for all 𝑔 ∈ 𝐶𝑘. In shorthand notation

𝜃𝐵|𝐶𝑘
= |{(𝑗, 𝑚)|𝑏−1

𝑗
𝑏𝑚 ∈ 𝐶𝑘}| (𝑘 = 0,… , 𝑟).

Note that 𝜃𝐵 takes nonnegative values (actually: nonnegative integer values), 𝜃𝐵(𝑒) = |𝐵| = 𝑛 and as

there are 𝑛2 differences altogether, we also have that
∑

𝑔∈𝐺
𝜃𝐵(𝑔)
𝛾(𝑔) = |𝐵|2 = 𝑛2. Apart from these obvious

properties, our main observation is the following.

Proposition 2.1. For any character 𝜒 of 𝐺, the value of the scalar product

⟨𝜒, (𝜃𝐵∕𝛾)⟩ ≡
1
|𝐺|

∑
𝑔∈𝐺

𝜒(𝑔)
𝜃𝐵(𝑔)
𝛾(𝑔)
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between 𝜒 and the class-function 𝜃𝐵∕𝛾 is a nonnegative real. Hence 𝜃𝐵∕𝛾 is a linear combination of
the irreducible characters of 𝐺 with nonnegative coefficients.

Proof. It is clearly enough to prove the first statement; as the irreducible characters form an orthonor-

mal bases in the space of class-functions, the value of the scalar product in question is precisely the

coefficient of 𝜃𝐵∕𝛾 in this basis corresponding to 𝜒 . Now let 𝑈 be the representation giving 𝜒 . As 𝐺 is

finite, we may safely assume that 𝑈 is actually a unitary representation. Then setting 𝑋 =
∑𝑛

𝑗=1 𝑈 (𝑏𝑗),
we have

|𝐺| ⟨𝜒, (𝜃𝐵∕𝛾)⟩ = ∑
𝑔∈𝐺

𝜒(𝑔)
𝜃𝐵(𝑔)
𝛾(𝑔)

=
𝑟∑

𝑘=0

(
𝜒 𝜃𝐵

) |𝐶𝑘
=

𝑟∑
𝑘=0

𝜒|𝐶𝑘
|{(𝑗, 𝑚)|𝑏−1

𝑗
𝑏𝑚 ∈ 𝐶𝑘}|

=
𝑛∑

𝑗,𝑚=1
𝜒(𝑏−1

𝑗
𝑏𝑚) =

𝑛∑
𝑗,𝑚=1

Tr(𝑈 (𝑏−1
𝑗
𝑏𝑚)) (1)

=
𝑛∑

𝑗,𝑚=1
Tr(𝑈 (𝑏𝑗)∗𝑈 (𝑏𝑚)) = Tr

(
𝑋∗𝑋

)
≥ 0,

showing the nonnegativity of the scalar product in question. □

Now let us consider the case when 𝐺 = 𝑆𝑑 and the subset 𝐵 = {𝜎1,… , 𝜎(𝑑−1)𝑑} is given by an

affine plane of order 𝑑 as explained in the introduction. Out of the total of ((𝑑 − 1)𝑑)2 differences

between the elements of 𝐵, (𝑑 − 1)𝑑 give the identity (as a difference between an element and itself),

(𝑑 − 1)2𝑑 have no fixed points (corresponding to distinct parallel lines) and (𝑑 − 2)(𝑑 − 1)𝑑2 have

one fixed point (corresponding to distinct nonparallel lines). Thus, denoting by 𝑗 the collection of

conjugacy classes of 𝑆𝑑 containing permutations with 𝑗 = 0, 1,… , 𝑑 fixed points, we have the linear

equations

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∀𝐶 ∉ ({𝑒} ∪ 0 ∪ 1) ∶ 𝜃𝐵|𝐶 = 0,
𝜃𝐵(𝑒) = (𝑑 − 1)𝑑,∑

𝐶∈0

𝜃𝐵|𝐶 = (𝑑 − 1)2𝑑,
∑
𝐶∈1

𝜃𝐵|𝐶 = (𝑑 − 2)(𝑑 − 1)𝑑2.

(2)

We also have the linear inequalities given by our previous proposition and the noted fact that 𝐵 takes

nonnegative values only:

⎧⎪⎨⎪⎩
∀𝐶 ∶ 𝜃𝐵|𝐶 ≥ 0,

∀𝜒 irr. char. ∶
∑
𝐶

(𝜒𝜃𝐵)|𝐶 ≥ 0. (3)

We view this linear system as a restriction on possible functions 𝜃𝐵 . Note that we dropped the conju-

gation signs as both 𝜃𝐵 and 𝜒 are real-valued functions: a particular feature of the permutation group

is that all of its characters are real-valued.

In particular, let us now consider the case 𝑑 = 6. 𝑆6 has 11 conjugacy classes, of which 2 are in

1 and 4 in 0. Since we do not need permutations with 2, 3, or 4 fixed points (as 𝜃𝐵 is constant
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zero over them), the following shortened version of the character table of 𝑆6 will be sufficient

for us:

S0
︷ ︸︸ ︷

S1
︷ ︸︸ ︷

e (123)(456) (12)(34)(56) (1234)(56) (123456) (123)(45) (12345)
χ1 1 1 1 1 1 1 1
χ2 1 1 -1 1 -1 -1 1
χ3 5 -1 -1 -1 -1 0 0
χ4 5 -1 1 -1 1 0 0
χ5 5 2 3 -1 0 -1 0
χ6 5 2 -3 -1 0 1 0
χ7 9 0 3 1 0 0 -1
χ8 9 0 -3 1 0 0 -1
χ9 10 1 2 0 -1 1 0

χ10 10 1 -2 0 1 -1 0
χ11 16 -2 0 0 0 0 1
θB 30 x y z v a b

150 720

In the last line we put (as parameters) the values of the function 𝜃𝐵 , already indicating the system (2)

of equalities; namely, that 𝜃𝐵(𝑒) = 5 ∗ 6 = 30, 𝑥 + 𝑦 + 𝑧 + 𝑣 = 52 ∗ 6 = 150 and 𝑎 + 𝑏 = 4 ∗ 5 ∗ 62 =
720. What remains is to make use of the inequalities (3), which tell us that all parameters 𝑥, 𝑦, 𝑧, 𝑣, 𝑎, 𝑏

as well as the scalar product of the last line of the table (corresponding to 𝜃𝐵) with any other line is

nonnegative.

In particular, considering that the sum of the lines corresponding to the characters 𝜒5, 𝜒7, 𝜒8 and

𝜒10 is (33, 3, 1, 1, 1,−2,−2), we have the inequality:

33 ∗ 30 + 3𝑥 + 𝑦 + 𝑧 + 𝑣 − 2𝑎 − 2𝑏 = 990 + 2𝑥 + (𝑥 + 𝑦 + 𝑧 + 𝑣) − 2(𝑎 + 𝑏) ≥ 0. (4)

Thus, as 𝑥 + 𝑦 + 𝑧 + 𝑣 = 150 and 𝑎 + 𝑏 = 720, we have that 990 + 2𝑥 + 150 − 2 ∗ 720 ≥ 0 that results

in 𝑥 ≥ 150. On the other hand, 𝑥 is at most 150, as 𝑥 + 𝑦 + 𝑧 + 𝑣 = 150. Hence we must have 𝑥 = 150
and 𝑦 = 𝑧 = 𝑣 = 0. Then the scalar product with the lines corresponding to 𝜒5 and 𝜒7 can be simplified

resulting in the inequalities

5 ∗ 30 + 2 ∗ 150 − 𝑎 ≥ 0, 9 ∗ 30 − 𝑏 ≥ 0. (5)

Hence 𝑎 ≤ 450 and 𝑏 ≤ 270. But 𝑎 + 𝑏 = 720, and hence 𝑎 = 450, 𝑏 = 270 follows. Therefore, the

unique solution is:

𝑥 = 150, 𝑦 = 0, 𝑧 = 0, 𝑣 = 0, 𝑎 = 450, 𝑏 = 270. (6)

It is easy to check that these values indeed give a solution that satisfy all nonnegativity constraints.

The main point is that the arguments above show that this solution is unique. We now use some

combinatorial arguments to show that this solution cannot correspond to a finite projective plane of

order 6.

Proposition 2.2. There exists no finite projective plane of order 6.
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Proof. Assume that there exists a projective—and hence also an affine —plane of order 𝑑 = 6. Then, as

explained there should exist a collection of 5 ∗ 6 = 30 permutations 𝐵 = {𝜎1,… , 𝜎30} ⊂ 𝑆6 describ-

ing the lines of 𝑑 − 1 = 5 parallel classes of our affine plane, with corresponding “difference-counting”

function 𝜃𝐵 given by (6). In particular, out of the total 900 differences, 450 should be of negative par-

ity. This is only possible, if half of our permutations (i.e. 15 out of the 30) are of positive, and half

are of negative parity (forming 30 ∗ 15 = 450 ordered pairs with opposing signs); in any other case

there would be fewer differences of negative parity. However, as 𝑦 = 𝑣 = 0, all differences with zero

fixed points are of positive parity and hence the permutations corresponding to the lines of a single

parallel class should have the same sign. Thus, the number of elements in 𝐵 with positive parity should

be divisible by 6 (as each parallel class contains six lines), which contradicts to what we established

earlier; namely, that precisely 15 of the elements of 𝐵 should have positive parity. □

In conclusion, we remark that the proof relies heavily on the fact that the solution (6) is unique. We

could then exclude this unique solution by some further combinatorial arguments. However, for 𝑑 > 6
the solution space of our linear system (2), (3) is a convex body (not just a single point), and as of now

we are unable to exclude all points of this body to prove nonexistence results for e.g. 𝑑 = 10 or 12.
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