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Abstract
For a set A of points in the plane, not all collinear, we denote by tr(A) the number of
triangles in a triangulation of A, that is, tr(A) = 2i + b − 2, where b and i are the
numbers of boundary and interior points of the convex hull [A] of A respectively. We
conjecture the following discrete analog of the Brunn–Minkowski inequality: for any
two finite point sets A, B ⊂ R

2 one has

tr(A + B) ≥ tr(A)1/2 + tr(B)1/2.

We prove this conjecture in the cases where [A] = [B], B = A∪{b}, |B| = 3 and if A
and B have no interior points. A generalization to larger dimensions is also discussed.

Keywords Brunn–Minkowski theory · Triangulations · Minkowski sum

1 Introduction

In this paper we write A, B to denote finite subsets of Rd , and | · | stands for their
cardinality. We say that A ⊂ R

d is d-dimensional if it is not contained in any affine
hyperplane ofRd . Equivalently, the real affine span of A isRd . For subsets X1, . . . , Xk

of Rd , [X1, . . . , Xk] denotes their convex hull. Here and in what follows we denote
A+B := {a+b : a ∈ A, b ∈ B} and A−B := A+(−B). The lattice generated by A
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is the additive subgroup � = �(A) ⊂ R
d generated by A − A = {x − y : x, y ∈ A},

and A is called saturated if it satisfies A = [A] ∩ �(A).
Our starting point are two classical results. The first one is from the 1950’s, due to

Kemperman [10], and popularized by Freiman [4]: if A and B are finite non-empty
subsets of R, then

|A + B| ≥ |A| + |B| − 1, (1)

with equality if and only if A and B are arithmetic progressions of the same difference.
The other result, the Brunn–Minkowski inequality, dates back to the 19th century. It
says that if X ,Y ⊂ R

d are compact non-empty sets then

λ(X + Y )1/d ≥ λ(X)1/d + λ(Y )1/d ,

where λ stands for the Lebesgue measure. Moreover, assuming λ(X)λ(Y ) > 0, equal-
ity holds if and only if X and Y are convex homothetic sets.

Various discrete analogues of the Brunn–Minkowski inequality have been estab-
lished in Bollobás and Leader [1], Gardner and Gronchi [5], Green and Tao [6],
González-Merino and Henze [11], Hernández et al. [8], Huicochea [9] in any dimen-
sion, and Grynkiewicz and Serra [7] in the planar case. Most of these papers use the
method of compression, which changes a finite set into a set better suited for sumset
estimates, but does not control the convex hull.

Unfortunately the known analogues are not as simple in their form as the original
Brunn–Minkowski inequality. For instance, a formula due to Gardner and Gronchi [5]
says that, if A is d-dimensional, then

|A + B| ≥ (d!)−1/d(|A| − d)1/d + |B|1/d . (2)

Concerning the case A = B, Freiman [4] proved that, if the dimension of A is d,
then

|A + A| ≥ (d + 1)|A| −
(
d + 1

2

)
. (3)

Both estimates are optimal. In particular, we cannot expect a true discrete analogue of
the Brunn–Minkowski inequality if the notion of volume is replaced by cardinality.

We here conjecture and discuss a more direct version of the Brunn–Minkowski
inequality where the notion of volume is replaced by the number of full dimensional
simplices in a triangulation of the convex hull of the finite set.

For any finite d-dimensional set A ⊂ R
d we write TA to denote some triangulation

of A, by which we mean a triangulation of [A] with set of vertices equal to A. We
denote by |TA| the number of d-dimensional simplices in TA.

In dimension two the number |TA| is the same for all triangulations of A, so we
denote it by tr(A). More precisely, if �A and �A denote the number of points of A
in the boundary ∂[A] and in the interior int [A], respectively, then it is easy (see, e.g.,
[3, Lem. 3.1.3]) to show that

tr(A) = �A + 2�A − 2 = 2|A| − �A − 2. (4)

Therefore around 2005, Matolcsi and Ruzsa conjectured in dimension two the follow-
ing discrete analogue of the Brunn–Minkowski inequality (see [2]).
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Conjecture 1.1 If finite A, B ⊂ R
2 in the plane are not collinear, then

tr(A + B)1/2 ≥ tr(A)1/2 + tr(B)1/2.

One case where Conjecture 1.1 holds with equality is when A and B are homothetic
saturated sets with respect to the same lattice; that is, A = �∩k · P and B = �∩m · P
for a lattice�, polygon P and integers k,m ≥ 1. This follows from the original Brunn–
Minkowski equality as follows: for saturated sets tr(A) = 2area([A])/ det�, because
every triangle in a triangulation is a fundamental lattice triangle, of area (1/2) det�.
On the other hand, A+ B = �∩ (k +m) · P and tr(S) ≤ 2area([S])/ det� for every
subset S ⊂ �, such as S = A + B.

Concerning �A and �B in (4), we observe that any side of [A + B] is of the form
e+ f where e and f are a side or a vertex of [A] and [B], respectively, with the same
exterior unit normal, and |(e + f ) ∩ (A + B)| ≥ |e ∩ A| + | f ∩ B| − 1 by (1). This
implies that

�A+B ≥ �A + �B . (5)

We also note that Conjecture 1.1, together with the equality (4) and (5), would imply
the following inequality of Gardner and Gronchi [5, Theorem 7.2] for sets A and B
saturated with respect to the same lattice:

|A + B| ≥ |A| + |B| + (2|A| − �A − 2)1/2(2|B| − �B − 2)1/2 − 1.

Unfortunately we have not been able to prove Conjecture 1.1 in full generality. Our
main results are the following four cases of it: if [A] = [B] (Theorem 1.2), in which
case we also determine the conditions for equality in Conjecture 1.1; if A and B differ
by one element (Theorem 1.4); if either |A| = 3 or |B| = 3 (Theorem 1.7); and if
none of A and B have interior points (Theorem 1.8). Actually, the last two theorems
satisfy a stronger conjecture (Conjecture 1.5) discussed below.

We start with the case [A] = [B], which naturally includes the case A = B.

Theorem 1.2 Let A, B ⊂ R
2 be finite two-dimensional sets. If [A] = [B] then Con-

jecture 1.1 holds. Moreover equality holds if and only if A = B, and

(a) either A is a saturated set, or
(b) A = {z1, . . . , zk} for k ≥ 4, where z1, . . . , zk−3 ∈ int [zk−2, zk−1, zk], and

z1, . . . , zk−2 are collinear and equally spaced in this order (see Fig. 1).

Let us mention that Theorem 1.2 (in fact, its particular case A = B) gives a simple
proof of the following structure theorem of Freiman [4] for a planar set with small
doubling. We recall that according to (3), if finite A ⊂ R

d is two-dimensional, then
|A+ A| ≥ 3|A| − 3 and, if the dimension of A is at least 3, then |A+ A| ≥ 4|A| − 6.

Corollary 1.3 (Freiman) Let A ⊂ R
2 be a finite two-dimensional set and ε ∈ (0, 1). If

|A| ≥ 48/ε2 and

|A + A| ≤ (4 − ε)|A|,
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Fig. 1 An illustration of case (b) in Theorem 1.2

then there exists a line l such that A is covered by at most

2

ε
·
(
1 + 32

|A|ε2
)

lines parallel to l.

We note that, for A the grid {1, . . . , k} × {1, . . . , k2} and large k,

|A + A| ≤ (4 − ε) |A|, (6)

with ε = εk = 2/k and A cannot be covered by less than k parallel lines. Therefore
the constant 2 in the numerator of 2/ε is asymptotically optimal in Corollary 1.3.

The next case we address is when A and B differ by one element.

Theorem 1.4 Let A ⊂ R
2 be a finite two-dimensional set. If B = A ∪ {b} for some

b /∈ A then Conjecture 1.1 holds.

For our next results we need the notion of mixed subdivision (see De Loera et al.
[3] for details). For finite d-dimensional sets A, B ⊂ R

d and triangulations TA and
TB corresponding to A and B, we call a polytopal subdivision M of [A + B] a mixed
subdivision corresponding to TA and TB if

(i) every k-cell of M is of the form F + G where F is an i-simplex of TA and G is a
j-simplex of TB with i + j = k; in particular, all vertices of M are in A + B;

(ii) for any d-simplices F of TA and G of TB , there is a unique b ∈ B and a unique
a ∈ A such that F + b ∈ M and a + G ∈ M .

In dimension two, every mixed subdivision consists of |TA| + |TB | triangles, trans-
lated from those of TA and TB , together with a certain number of parallelograms that
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Fig. 2 An illustration of the example described in Proposition 1.6

we denote by M11. Since we can triangulate each parallelogram into two triangles,
the following is stronger than Conjecture 1.1, and offers a geometric and algorithmic
approach to prove Conjecture 1.1.

Conjecture 1.5 For every finite two-dimensional sets A, B ⊂ R
2 there exist triangu-

lations TA and TB of [A] and [B] using A and B, respectively, as the set of vertices,
and a corresponding mixed subdivision M of [A + B] such that

|M11| ≥ √|TA| · |TB |. (7)

The following example shows that one cannot a priori fix any of the triangulations
TA and TB in Conjecture 1.5 (Fig. 2):

Proposition 1.6 Let

A = {(0, 0), (−1,−2), (2, 1)}.

For k ≥ 145, let

B = {p, q, l0, . . . , lk, r0, . . . , rk−1},

where p = (−1, k+1), q = (k+1,−1), li = (i, i) for i = 0, . . . , k and ri = (i, i+1)
for i = 0, . . . , k − 1.

Let TB be the triangulation of B consisting of the triangles

[p, li , ri ], [q, li , ri ], i = 0, . . . , k − 1 and [p, li , ri−1], [q, li , ri−1], i = 1, . . . , k.

Then, no mixed subdivision of A + B corresponding to TB and any triangulation TA
of A satisfies (7) for d = 2.

Now Conjecture 1.5 is verified if either A or B has only three elements.
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Theorem 1.7 If |B| = 3, then Conjecture 1.5 holds for any finite two-dimensional set
A ⊂ R

2.

Remark It follows that if B is the sum of sets of cardinality three, then Conjecture 1.1
holds for any finite two-dimensional set A ⊂ R

2. For example, if m ≥ 1 is an integer,
and B = {(t, s) ∈ Z

2 : t, s ≥ 0 and t + s ≤ m}, or B = {(t, s) ∈ Z
2 : |t |, |s| ≤

m and |t + s| ≤ m}.
Conjecture 1.1 was verified by Böröczky, Hoffman [2] if A and B are in convex

position; that is, if A ⊂ ∂[A] and B ⊂ ∂[B]. Here we even verify Conjecture 1.5
under these conditions.

Theorem 1.8 Let A, B ⊂ R
2 be finite two-dimensional sets. If A ⊂ ∂[A] and B ⊂

∂[B] then Conjecture 1.5 holds.
Part of the reason why we could not verify Conjecture 1.1 in general is that, except

for Theorem 1.7, our arguments actually prove the inequality tr(A + B) ≥ 2(tr(A) +
tr(B)), which is stronger than Conjecture 1.1, but which does not hold for all pairs
with A ⊂ B. For example, if A are the lattice points with non-negative coordinates
and with the sum of coordinates at most k, and B is the same with sum of coordinates
at most l, we have tr(A + B) = (k + l)2, tr(A) = k2 and tr(B) = l2. So we have
tr(A + B) < 2(tr(A) + tr(B)) if k �= l.

We now turn to higher dimensions. The first difference is that we can no longer
define tr(A) for a point configuration, since different triangulations of A have different
numbers ofd-simplices (seeExample 1.11below). Still, there is the following analogue
of Conjecture 1.5. For a mixed subdivision M corresponding to triangulations TA and
TB of A and B, let us denote by ‖M‖ the weighted number of d-polytopes inM , where
F + G has weight

(i+ j
i

)
if F is an i-simplex of TA, and G is a j-simplex of TB with

i + j = d. The reason for these weights is that every triangulation (without additional
vertices) of such an F + G has exactly

(i+ j
i

)
d-simplices (see e.g. [3, Prop. 6.2.11]).

Thus, ‖M‖ is the number of d-simplices of any triangulation of A+ B that refines M
without additional vertices.

Hence, wemay ask for which triangulations TA and TB there exists a corresponding
mixed subdivision M for [A + B] such that

‖M‖1/d ≥ |TA|1/d + |TB |1/d . (8)

Question 1.9 Is it true that for every finite sets A, B ⊂ R
d there are triangulations

TA and TB and a corresponding mixed subdivision M of [A + B] satisfying (8)?

It is easy to show that the answer is positive if A = B:

Theorem 1.10 For a finite d-dimensional set A ⊂ R
d and for any triangulation TA of

[A] using A as the set of vertices there exists a corresponding mixed subdivision M
of [A + A] such that

‖M‖ = 2d |TA|.

123



Discrete & Computational Geometry

Therefore in certain cases, mixed subdivisions point to a higher dimensional gen-
eralization of Conjecture 1.1. This is specially welcome knowing that, if d ≥ 3, then
the order of the number of d-simplices in a triangulation of the convex hull of a finite
A ⊂ R

d spanningRd might be as low as |A|d and as high as �(|A|
d/2�) for the same
A, as the following example shows. In particular, one cannot assign the number of
d-simplices as a natural notion of discrete volume if d ≥ 3.

Example 1.11 Let A be any set of n points in general position inRd (that is, no d+1 in
any affine hyperplane) and such that [A] is a simplex. Any such A has triangulations
of size 1+ d(n − d − 1) via the following construction: in a first step, consider [A] as
the single d-simplex in your triangulation. Then, one by one add the n−d −1 interior
points to the triangulation as follows: at each step one stellarly subdivides the simplex
containing the new point into d + 1 simplices, all having the new point as a common
vertex. At the end, as claimed, we have a triangulation of A of size 1+ d(n − d − 1).

If, moreover, the n−d −1 interior points of A are the vertices of a cyclic polytope,
then you can also triangulate A with size �(n
d/2�) (and this is optimal by [3, Corr.
6.1.20]): triangulate first the cyclic polytope with size �(n
d/2�) and then add one
by one the d + 1 outer points, at each step conning the new point to the part of the
boundary of the previous triangulation that is visible from that point.

2 Proof of Theorem 1.2

We will actually prove that

tr(A + B) ≥ 2tr(A) + 2tr(B), (9)

a stronger inequality than Conjecture 1.1.
For a finite two-dimensional set X ⊂ R

2, we define

fX (z) =
{
1 if z ∈ ∂[X ],
2 if z ∈ int [X ],

thus (4) yields that

tr(X) =
( ∑

z∈X
fX (z)

)
− 2. (10)

Lemma 2.1 Let A, B ⊂ R
2 satisfy [A] = [B]. Then inequality (9) holds. Moreover,

equality in (9) yields A = B.

Proof. Let T be a triangulation of [A] = [B] such that the set of vertices is A∩ B. One
nice thing about inequality (9) is that, since it is linear, it is additive over the triangles
of T . Therefore, it suffices to show that, for each triangle t of T , if At = A ∩ t and
Bt = B ∩ t , then

tr(At + Bt ) ≥ 2 tr(At ) + 2 tr(Bt ), (11)
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and that equality in (11) implies that At = Bt consists of the three vertices of t alone.
According to (10), inequality (11) is equivalent to

∑
p∈At+Bt

fAt+Bt (p) ≥ 2

⎛
⎝ ∑

p∈At

fAt (p)

⎞
⎠ + 2

⎛
⎝ ∑

p∈Bt
fBt (p)

⎞
⎠ − 6. (12)

Let At ∩ Bt = {v1, v2, v3} be the three vertices of the triangle t = [At ] = [Bt ]. We
claim that if i, j ∈ {1, 2, 3}, p ∈ (At ∪ Bt )\{v1, v2, v3} and q ∈ At ∪ Bt , then

vi + p = v j + q yields vi = v j and p = q. (13)

We may assume that vi is the origin and, to get a contradiction, vi �= v j . Then the
line l passing through v j and parallel to the side of t opposite to v j separates t and
v j + t , and intersects t only in v j �= p. Since v j + q ∈ v j + t , we get the desired
contradiction.

It follows from (13) that the six points vi + v j , 1 ≤ i ≤ j ≤ 3, and the points of
the form vi + p, i = 1, 2, 3, and p ∈ (At ∪ Bt )\{v1, v2, v3} are all different. Since
the six points vi + v j , 1 ≤ i ≤ j ≤ 3, belong to ∂(At + Bt ), we have

∑
i, j=1,2,3

f At+Bt (vi + v j ) =
(

3∑
i=1

f At (vi )

)
+

⎛
⎝ 3∑

j=1

fBt (v j )

⎞
⎠ = 6. (14)

On the other hand, we claim that, if p ∈ At\{v1, v2, v3} and q ∈ Bt\{v1, v2, v3}, then
3∑
j=1

f At+Bt (p + v j ) > 2 f At (p),

3∑
i=1

f At+Bt (vi + q) > 2 fBt (q).

(15)

Indeed, if p ∈ ∂[At ], then the inequality readily holds, and if p ∈ int [At ], then
p + v j ∈ int [At + Bt ] for j = 1, 2, 3, as well, yielding (15).

By combining (14) and (15) we get (12) and in turn (9). Moreover, (15) shows that
if equality holds in (11) for a triangle t of T , then At = Bt , and, therefore, if equality
holds in (9), then A = B.

For a finite two-dimensional set A ⊂ R
2 and a triangulation T of A we denote by

AT the union of A and the set of midpoints of the edges of T (see Fig. 3).

Lemma 2.2 Let A ⊂ R
2 be a finite two-dimensional set. Then the equality

tr(A + A) = 4 · tr(A)

holds if and only if for every triangulation T of [A], we have AT = (A + A)/2.
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Fig. 3 A triangulation and its midpoints

Proof. Divide each triangle t of T into four triangles using the vertices of t and the
midpoints of the sides of t . This way we obtain a triangulation of [A] = [AT ] using
AT as the vertex set. Therefore

tr(A + A) = tr

(
1

2
(A + A)

)
≥ tr(AT ) = 4 · tr(A).

Moreover, there is equality if and only if AT = (A + A)/2.

We observe that the equation in Lemma 2.2 is equivalent to Conjecture 1.1 for the
case A = B. Therefore all we have left to prove is that tr(A + A) = 4 · tr(A) if and
only if A is of the form either (a) or (b) in Theorem 1.2. The if part is simple.

Lemma 2.3 Suppose that either (a) or (b) in Theorem 1.2 hold for the finite set A.
Then

AT = 1

2
(A + A).

Proof. Suppose first that we have property (b). Then there is a unique triangulation
T of [A] using A as vertex set. For 1 ≤ i < j ≤ k, [zi , z j ] is an edge of T , unless
j ≤ k − 2, an hence we have AT = (A + A)/2.
So, for the rest of the proof we assume (a): A = [A] ∩ � for a lattice �. For a

triangulation T corresponding to A, readily the midpoints of sides of triangles of T
are in (A + A)/2. On the other hand, let m ∈ (A + A)/2, and let t be a triangle of T
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containing m. We may assume that the origin o is a vertex of t , and hence the other
two vertices p and q form a basis of �. Since m ∈ (�+�)/2, both of its coordinates
in the basis p and q are integers or half of integers, thus m is either a vertex of t , or
the midpoint of a side of t . Therefore m ∈ AT .

The next lemma shows the reverse direction and concludes the proof ofTheorem1.2.

Lemma 2.4 Let A ⊂ R
2 be a finite two-dimensional set. If every triangulation T of A

satisfies

AT = 1

2
(A + A),

then either (a) or (b) from Theorem 1.2 hold.

Proof. We prove the lemma by induction on |A| ≥ 3. If |A| = 3, then A is readily a
saturated set.

If |A| ≥ 4, then we claim that

there exists a vertex v of [A] such that A\{v}
is two-dimensonal and does not satify (b).

(16)

Let v′ be any vertex of [A]. If A\{v′} is collinear, then we can choose v to be any
other vertex of the triangle [A]. If Ã = A\{v′} is two-dimensional and satifies (b),
then there exists a line 	 such that Ã = {v1, v2} ∪ (	 ∩ Ã) where v1 and v2 are strictly
separated by 	. Wemay assume that the closed half plane bounded by 	 and containing
v1 also contains v′. Then we may choose v = v2, as A′ = A\{v2} satisfies that 	 is a
supporting line of [A′] and |	∩ A′| ≥ 3, proving (16). This finishes the proof of claim
(16).

Now, let v ∈ A be as in (16), and let A′ = A\{v}. We fix a triangulation T ′ of A′,
and extend it to a triangulation T of A. We observe that the triangles in T \T ′ are of
the form [v, u, w] where there exists side e of [A′] whose line strictly separates v and
int [A′] and u, v ∈ e ∩ A′ are consecutive points. Applying the induction hypothesis
to A′

T ′ , we deduce from (16) that A′ satisfies (a); it is a saturated set with respect to
some lattice �.

For any side e of [A′], let 	e be the line parallel to e and intersecting [A′] ∩ �,
which is closest to e among the lines with these properties and not containing e. We
claim that

	e ∩ A′ �= ∅. (17)

To prove (17), we may assume that� = Z
2, (0, 0), (1, 0) ∈ e and (x, y) ∈ A′ for y ≥

1. It follows from the convexity of [A′] that (x/y, 1), ((x + y − 1)/y, 1) ∈ [A′] ∩ 	e.
Since there exists a multiple z · y, z ∈ Z, of y among x, . . . , x + y − 1, we have
(z, 1) ∈ 	e ∩ A′ by the saturatedness of A′.

We distiguish two cases depending on whether A would eventually satify (a) or (b).

Case 1: For any side e of [A′] whose line strictly separates v and int [A′], there exists
a p ∈ 	e ∩ A′ such that [p, v] ∩ [A′] �= {p}.
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In this case, we prove that A is also saturated with respect to �; namely,

if e is a side of [A′] whose line strictly separates v and int [A′], then

[e, v] ∩ � = {v} ∪ (e ∩ �). (18)

To prove (18) for e, let p ∈ 	e ∩ A′ be such that [p, v] ∩ [A′] �= {p}. It follows
from [p, v] ∩ [A′] �= {p} that (p + v)/2 cannot lie in AT \A′

T ′ , therefore it lies in
A′
T ′ by AT = (A + A)/2. Since p ∈ 	e, we have (p + v)/2 ∈ e, and actually

(p + v)/2 = (u + w)/2 for u, w ∈ e ∩ �. In turn, we conclude (18), and hence A is
a saturated set.

Case 2: There exists a side e of [A′] whose line strictly separates v and int [A′], and
[p, v] ∩ [A′] = {p} for any p ∈ 	e ∩ A′.

In this case, we prove that A satifies (b). Let p ∈ 	e ∩ A′. Since p ∈ 	e and
[p, v]∩ [A′] = {p}, there exists a side f of [A′] such that f meets e in a vertex of [A′]
and p ∈ f . Since [p, v]∩ [A′] = {p} and the line of e strictly separates v and int [A′],
we may also assume that the line of f strictly separates v and int [A′]. In particular,
we may asssume that � = Z

2, e ∩ f = (0, 0), w = (1, 0) ∈ e and p = (0, 1), and
then v = (s, t) where s, t < 0. For q = (1, 1), we have [q, v] ∩ int [A′] �= ∅, and
hence q /∈ A′ in Case 2. Therefore either A′ = {p}∪ (e∩Z

2) or A′ = {w}∪ ( f ∩Z
2),

thus A satisfies (b) in Case 2, verifying Lemma 2.4.

3 Proof of Theorem 1.4

The inequality between the quadratic and arithmetic means gives that, if a, k > 0,
then

(4a + 2k)1/2 > a1/2 + (a + k)1/2.

Therefore to prove Theorem 1.4, it is sufficient to verify the following: Let B = A∪{b}
for b /∈ A.

(∗) If tr(A) = a and tr(B) = a + k, then tr(A + B) ≥ 4a + 2k.

We fix a triangulation T of A, and let AT be the union of A and the set of midpoints
of the edges of T . It follows by (4) that

�AT + 2�AT − 2 = tr(AT ) = 4a.

To estimate tr(A + B) = tr
( 1
2 (A + B)

)
, we isolate certain subset V of A in a way

such that

AT ∩
(
1

2
(V + {b})

)
= ∅. (19)
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b

Fig. 4 An illustration of Case 1

Therefore, (4) and (19) give

tr(A + B) ≥ 4a + 2
∣∣∣1
2

(V + {b}) ∩ int [B]
∣∣∣

+
∣∣∣1
2

(V + {b}) ∩ ∂[B]
∣∣∣ + |AT ∩ ∂[A] ∩ int [B]|.

(20)

We distinguish two cases depending on how to define V .

Case 1: b /∈ [A]
We say that x ∈ [A] is visible if [b, x] ∩ [A] = {x}. In this case x ∈ ∂[A]. We

note that there are exactly two visible points on ∂[B], which are on the two supporting
lines to [A] passing through b (see Fig. 4). Let k + 1 be the number of visible points
of A, and hence k ≥ 1. Now k−1 visible points of A lie in int [B], thus (4) yields that
tr(B) = a + k. Let V be the set of visible points of A. The condition (19) is satisfied
because [A] ∩ ( 1

2 (V + {b})) = ∅. We have
∣∣ 1
2 (V + {b})∣∣ = k + 1, and 2k − 1 visible

points of AT lie in int [B]. In particular, (∗) follows as (20) yields

tr(A + B) ≥ 4a + 2k − 1 + k + 1 = 4a + 3k > 4a + 2k.

Case 2: b ∈ [A]
In this case tr(B) = a + k for k ≤ 2 by (4), and b is contained in a triangle

T = [p, q, r ] of T (see Fig. 5). We may assume that b is not contained in the sides
[r , p] and [r , q] of T . We take V = {p, q, r}, which satisfies (19). Since (b+ q)/2 ∈
int T ⊂ int [A], (20) yields tr(A + B) ≥ 4a + 4. In turn, we conclude Theorem 1.4.
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b

Fig. 5 An illustration of Case 2

Remark The argument does not work if we only assume that A ⊂ B, because we may
have equality in Conjecture 1.1 in this case.

4 Proof of Theorem 1.7

Let A ⊂ R
2 be finite and not contained in any line. By a path σ on A we mean a

concatenation of segments [a0, a1],…, [a	−1, a	] where a0, . . . , a	 ∈ A are distinct
points and the segments do not intersect A or one another except at their endpoints.We
call the number 	 of segments the length of σ , and denote it |σ |. We allow the case that
σ is a point, and in this case we set |σ | = 0. We say that σ is transversal to a non-zero
vector u if every line parallel to u intersects σ in at most one point; equivalently, if
u · (ai+1 − ai ) is non-zero and of the same sign for all i . In this case, the segments in
σ induce a subdivision of σ + [o, u] into |σ | parallelograms if |σ | ≥ 1. For the proof
of Theorem 1.7 the idea is to find an appropriate set of paths on A with total length at
least

√
tr(A).

First, we explore the possibilities using only one or two paths. We will see in
Remark 4.1 that one path is not enough, but Proposition 4.2 shows that using two
paths σ1, σ2 almost does the job.

Observe that for any given non-zero vector w, the length of the longest path on A
transversal to w equals the number of lines parallel to w intersecting A, minus one.
The next remark indicates that we may need a least two paths to get the total length
close to

√
TA.
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Remark 4.1 Given pairwise independent vectors w1, . . . , wn let f (w1, . . . , wn, s) be
the minimal number such that, for every finite set A ⊂ R

2 with tr(A) = s, there is a
wi and a path on A transversal to wi of length f (w1, . . . , wn, s).

For n = 2, f (w1, w2, s) ≥ √
s/2, with equality provided that k := √

s/2 is
an integer. An extremal configuration consists of the points {iw1 + jw2 : i, j ∈
{0, . . . , k}}.

For n = 3, f (w1, w2, w3, s) ≥ √
2s/3 and equality holds provided that s = 6k2.

Assumingwithout loss of generality thatw1+w2+w3 = 0, an extremal configuration
is given by the points of the lattice generated by w1, w2 in the affine regular hexagon
[±kw1,±kw2,±kw3].

Let e1 = (1, 0) and e2 = (0, 1), and let σ1, σ2 be paths on A. We say that the
ordered pair (σ1, σ2) is a horizontal-vertical path if

(i′) σi is transversal with respect e3−i (possibly a point), i = 1, 2;
(ii′) the right endpoint a of σ1 equals the upper endpoint of σ2;
(iii′) writing R+ = {t ∈ R : t > 0}, if |σ1|, |σ2| > 0, then

((σ1\{a}) + R+e2) ∩ ((σ2\{a}) + R+e1) = ∅.

We call σ1 the horizontal branch, and σ2 the vertical branch, and a the center.
We observe that if σ ′

i is the image of σi by reflection through the line R(e1 + e2),
then the ordered pair (σ ′

2, σ
′
1) is also a horizontal-vertical path.

For any polygon P and non-zero vector u, we write F(P, u) to denote the face of
P with exterior normal u. In particular, F(P, u) is either an edge or a vertex.

Proposition 4.2 For every finite A ⊂ R
2 not contained in a line, and for every tri-

angulation T of [A] having A as the set of vertices, there exists a horizontal-vertical
path (σ1, σ2) whose vertices belong to A, and satisfies

|σ1| + |σ2| ≥ √|T | + 1 − 1

2
.

Proof. Let us write

ξ = |F([A],−e1) ∩ F([A],−e2)| ≤ 1,

�′
A = ∣∣(A ∩ ∂[A])\(F([A],−e1) ∪ F([A],−e2))

∣∣.
By the invariance with respect to reflection through the line R(e1 + e2), we may

assume that
|F([A],−e2) ∩ A| ≥ |F([A],−e1) ∩ A|. (21)

We set {〈e1, p〉 : p ∈ A} = {α0, . . . , αk}withα0 < · · · < αk , k ≥ 1. For i = 0, . . . , k,
let Ai = {p ∈ A : 〈e1, p〉 = αi }, let xi = |Ai |, and let ai be the top-most point of
Ai ; that is, 〈e2, ai 〉 is maximal. In particular, x0 = |F([A],−e1) ∩ A|. For each
i = 1, . . . , k, we consider the horizontal-vertical path (σ1i , σ2i ) where

σ1i = {[a0, a1], . . . , [ai−1, ai ]},
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and the vertex set of σ2i is Ai . In particular, the total length of the horizontal-vertical
path is (σ1i , σ2i ) is

|σ1i | + |σ2i | = i + xi − 1.

The average length of these paths for i = 1, . . . , k is

∑k
i=1(|σ1i | + |σ2i |)

k
=

∑k
i=1(i + xi − 1)

k
= |A| − x0

k
+ k

2
− 1

2
.

We observe that 2|A| = |T | + �A + 2, according to (4), and (21) yields

2 + �A − 2x0 = 2 + �′
A + |F([A],−e2) ∩ A| − ξ − x0 ≥ �′

A + 1.

Therefore we deduce from the inequality between the arithmetic and geometric mean
that

∑k
i=1(|σ1i | + |σ2i |)

k
= 2|A| − 2x0

2k
+ k

2
− 1

2

≥ 1

2

( |T | + �′
A + 1

k
+ k

)
− 1

2
(22)

≥
√

|T | + �′
A + 1 − 1

2
. (23)

Therefore there exists some horizontal-vertical path (σ1i , σ2i ) satisfying (23).

The estimate of Proposition 4.2 is close to be optimal according to the following
example.

Example 4.3 Let k ≥ 2 and t > 0. Let A′ be the saturated set with [A′] having vertices
(0, 0), (0, k), (k − 1, 0) and (k − 1, 1), and let A = A′ ∪ {(k + t, 0)}. A triangulation
T of A has k2 + k − 1 triangles and every horizontal-vertical path (σ1, σ2) on A has
total length

|σ1| + |σ2| ≤ k <
√|T | + 2 − 1

2
.

We next proceed to the proof of Theorem 1.7 by a similar strategy using three
paths. Let B = {v1, v2, v3} and, for {i, j, k} = {1, 2, 3} denote by ui the exterior unit
normal to the side [v j , vk] of B. A set of three paths (σ1, σ2, σ3) on A with a common
endpoint a is called a proper star (with respect to B = {v1, v2, v3}) if the following
conditions hold:

(i) σi is transversal with respect v j − vk (possibly σi = {a});
(ii) writing R+ = {t ∈ R : t > 0}, if |σ j |, |σk | > 0, then

(
(σ j\{a}) + R+(vk − vi )

) ∩ (
(σk\{a}) + R+(v j − vi )

) = ∅;
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a

v3 v1

v2

σ1

σ2

σ3

a

v3 v1

v2

σ1

σ2

σ3

Fig. 6 A proper star with respect to v1, v2, v3 centered at a. On the right, paralellograms based on the
proper star

(iii) the other endpoint bi of σi lies in ∂[A] and ui is an exterior unit normal to [A] at
bi ; in particular,

〈bi , ui 〉 = max{〈x, ui 〉 : x ∈ A}.

We note that the three paths are allowed to have common vertices and edges, but they
do not cross one another by (ii).

If the paths σi\{a}, i = 1, 2, 3, are all non-empty and pairwise disjoint (except for
their common endpoint a), then (ii) means that they come around a in the same order
as the orientation of the triangle [v1, v2, v3] (see Fig. 6 for an illustration).

The next lemma shows how to construct an appropriate mixed subdivision of A+B
using a proper star.
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Lemma 4.4 Let A and B be finite non-collinear sets in R2 with B = {v1, v2, v3}, and
let us a consider a proper star on A with respect to B with rays σ1, σ2, σ3 and center a
such that |σ1| + |σ2| + |σ3| > 0. Then there exists a triangulation TA for A extending
the paths σ1, σ2, σ3, and a mixed subdivision M for A + B satisfying

|M11| = |σ1| + |σ2| + |σ3|.

Proof. We may assume that |σ1| > 0 and v3 = o. Let TA be a triangulation using all
the edges in the given proper star, and partition the triangles of TA into three subsets
1, 2, 3 (some of the i might be empty). The idea is that if the semi-open paths
σi\{a}, i = 1, 2, 3, are all non-empty and pairwise disjoint and {i, j, k} = {1, 2, 3},
theni consists of the triangles of TA cut off by σ j ∪σk . We also use Jordan’s theorem
for a simple closed polygonal path σ ; namely, it encloses an open bounded set D such
that x ∈ D if and if whenever a ray 	 emanating from x does not contain any edge of
σ , then |	 ∩ σ | is finite and odd.

A triangle τ of TA is in 1 if and only if for any p ∈ (int τ)\(a + Rv1) such that
p − R+v1 does not contain any edge of σ2 or σ3, we have

|(p − R+v1) ∩ σ2| + |(p − R+v1) ∩ σ3|

is finite and odd. Similarly, τ ∈ TA is in2 if and only if for any p ∈ (int τ)\(a+Rv2)

such that p − R+v2 does not contain any edge of σ1 or σ3, we have

|(p − R+v2) ∩ σ1| + |(p − R+v2) ∩ σ3|

is finite and odd. The rest of the triangles of TA form 3.
The mixed subdivision M is constructed as follows. Concerning triangles, [B] + a

is in M , and if τ ∈ i , then the corresponding triangle in M is τ + vi . For the
parallelograms, if {i, j, k} = {1, 2, 3} and e is an edge of σi , then e + [v j , vk] is in
M . It follows from properties (i) and (ii) of the proper star that these parallelograms
do not overlap, and taking also (iii) into account, we obtain a mixed triangulation of
A + B.

For the rest of the section, we fix finite A ⊂ R
2 and B = {v1, v2, v3} ⊂ R

2 such
that both of them span R

2 affinely, and confirm Conjecture 1.5 in this case.
The following statement is a simple consequence of the definition of a proper star.

Lemma 4.5 Assuming B = {v1, v2, v3} with v1 = (1, 0) = −u1, v2 = (0, 1) = −u2
and v3 = (0, 0), and hence u3 = (1/

√
2, 1/

√
2), if (σ1, σ2) is a horizontal-vertical

path for A centered at a ∈ A, then

(a) there exists a proper star (σ ′
1, σ

′
2, σ

′
3) centered at a such that σ1 ⊂ σ ′

1, σ2 ⊂ σ ′
2,

(b) if in addition a /∈ F([A], u3), then |σ ′
3| ≥ 1.

Proof. A triple of paths (σ̃1, σ̃2, σ̃3) meeting at a will be called a semi-proper star
extending (σ1, σ2) if it satisfies properties (i) and (ii) above and σi ⊂ σ̃i for i = 1, 2.
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In particular, (σ1, σ2, {a}) is a semi-proper star extending (σ1, σ2). We show that if
(σ̃1, σ̃2, σ̃3) is a semi-proper star extending (σ1, σ2) and

max{〈x, ui 〉 : x ∈ σ̃i } < max{〈x, ui 〉 : x ∈ A} for an i ∈ {1, 2, 3},

then there exists a semi-proper star (σ ′
1, σ

′
2, σ

′
3) extending (σ1, σ2) such that

σ ′
j = σ̃ j for j �= i, σ̃i ⊂ σ ′

i and σ̃i �= σ ′
i . (24)

Let bi ∈ σi be the other endpoint of σ̃i ; namely,

〈bi , ui 〉 = max{〈x, ui 〉 : x ∈ σ̃i }.

To prove (24), we consider the open half plane H+
i = {x ∈ R

2 : 〈x, ui 〉 > 〈bi , ui 〉},
and distinguish two cases. First, if H+

i ∩ σ̃ j = ∅ for j �= i , then we choose any
z ∈ A ∩ H+

i . The points of A ∩ [bi , z] divide [bi , z] into a path, and adding this path
to σ̃i we obtain the required σ ′

i in (24).
The second case in proving (24) is that if there exists j �= i such that H+

i ∩ σ̃ j �= ∅.
We consider the z ∈ A ∩ σ̃ j ∩ H+

i such that

〈u j , x〉 ≥ 〈u j , z〉 for x ∈ A ∩ σ̃ j ∩ H+
i .

Let {1, 2, 3} = {i, j, k}. Since

σ̃ j + R+(vi − vk) ⊂ bi + R+(vi − vk) + R+(z − bi )

by the choice of z and as σ̃ j is transversal with respect to vi − vk , and in addition,
vk − v j ∈ R+(vi − vk) + R+(z − bi ), we deduce that

([z, bi ] + R+(v j − vk)
) ∩ (

σ̃ j + R+(vi − vk)
) = ∅. (25)

Similarly,

〈x, uk〉 < 〈bi , uk〉 for x ∈ [z, bi ] + R+(vk − v j ),

〈x, uk〉 > 〈bi , uk〉 for x ∈ σ̃k + R+(vi − v j )

imply that ([z, bi ] + R+(vk − v j )
) ∩ (

σ̃k + R+(vi − v j )
) = ∅. (26)

Again, the points of A ∩ [bi , z] divide [bi , z] into a path, and adding this path to σ̃i
we obtain the σ ′

i , which, together with σ ′
j = σ̃ j and σ ′

k = σ̃k , satifies (ii) by (25) and
(26). In turn, we conclude (24).

Since A is finite, repeated application of (24) leads to the required proper star
satifying (iii), as well.
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Proof of Theorem 1.7 We apply the same idea as in the proof of Proposition 4.2, only
applying Lemma 4.5 at a certain point to improve the bound.

We may assume that B = {v1, v2, v3}with v1 = (1, 0) = −u1, v2 = (0, 1) = −u2
and v3 = (0, 0), and hence u3 = (1/

√
2, 1/

√
2). In addition, we may assume that

|F([A], u2) ∩ A| ≥ |F([A], u1) ∩ A|.

Using the notation of the proof of (22), we set {〈−u1, p〉 : p ∈ A} = {α0, . . . , αk}with
α0 < · · · < αk , and�′

A = |(A∩∂[A])\(F([A], u1)∪ F([A], u2))|. For i = 0, . . . , k,
let Ai = {p ∈ A : 〈u1, p〉 = αi }, let xi = |Ai | and let ai be the top-most point of Ai ;
namely, 〈−u2, ai 〉 is maximal. According to (22) and (23), we have

∑k
i=1(i + xi − 1)

k
≥ |TA| + �′

A + 1

2k
+ k

2
− 1

2
≥ √|TA| + 1 − 1

2
. (27)

Let I be the set of all i ∈ {1, . . . , k} such that

i + xi − 1 ≥
⌈ |TA| + �′

A + 1

2k
+ k

2
− 1

2

⌉
= ξ. (28)

Since ξ ≥ √|TA| + 1 − 1/2, if strict inequality holds for some i in (28), then using
Lemma 4.4 for the proper star constructed in Lemma 4.5 (a) concludes the proof of
Theorem 1.7. Thus we assume that

i + xi − 1 = ξ for i ∈ I .

If i ∈ I and ai /∈ F([A], u3), then ξ ≥ √|TA| + 1 − 1/2 and using Lemma 4.4 for
the proper star constructed in Lemma 4.5 (b) concludes the proof of Theorem 1.7.

Therefore we may assume that

ai ∈ F([A], u3) for i ∈ I . (29)

Let θ = |I |. Since i ≥ 1 for i ∈ I and |F([A], u3) ∩ F([A], u2))| ≤ 1, we deduce
that

θ ≤ |F([A], u3)\F([A], u1)| ≤ min{�′
A + 1, k}. (30)

Since i + xi − 1 ≤ ξ − 1, if i /∈ I , we have

ξ −
∑k

i=1(i + xi − 1)

k
≥ ξ − θ · ξ + (k − θ) · (ξ − 1)

k
= k − θ

k
.
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We deduce from (27) that if i ∈ I , then

i + xi − 1 = ξ ≥
∑k

i=1(i + xi − 1)

k
+ k − θ

k

≥ |TA| + �′
A + 1

2k
+ k

2
− 1

2
+ k − θ

k

= |TA| + �′
A + 1

2k
+ k

2
+ 1

2
− θ

k
.

Finally, if (29) holds and i ∈ I , then we apply both inequalities in (30) and later the
inequality between the arithmetic and the geometric mean to obtain

i + xi − 1 ≥ |TA| + θ

2k
+ k

2
+ 1

2
− θ

k
= |TA|

2k
+ k

2
+ 1

2
− θ

2k

≥ |TA|
2k

+ k

2
≥ √|TA|.

Therefore, we conclude Theorem 1.7 by Lemmas 4.4 and 4.5 (a).

5 Proof of Theorem 1.8

We assume in this section that there are no points of A (resp. B) in the interior of [A],
(resp. [B]).

Recall that �X denotes the number of points of X in the boundary of [X ]. It is easy
to check that �A+B has at least as many points as �A and �B together, that is

�A+B ≥ �A + �B = tr(A) + tr(B) + 4.

As amotivation for the proof, we note that Conjecture 1.1 follows if the number�A+B

of points of A + B in int [A + B] is at least
tr(A) + tr(B) − 2

2
= �A + �B

2
− 3.

Naturally we aim at the stronger Conjecture 1.5. So, let A and B be in convex position.
By Theorem 1.7, we can further assume that |A|, |B| ≥ 4. We need to show that then
there exists a mixed subdivision of A + B satisfying

|M11| ≥ tr(A) + tr(B)

2
. (31)

Throughout the proof we assume that [B] has at most as many vertices as [A] and
v denotes a unit vector (which we assume pointing upwards) not parallel to any side
of [A + B]. We denote by a0 and a1 the leftmost and rightmost vertex of [A] and by
b0 and b1 the leftmost and rightmost vertex of [B].
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To prove (31), we say that A and B form a strange pair if [B] is a triangle and the
three exterior normals to [B] are also exterior normals of edges of [A].

We will use that, for t, s ≥ 1,

ts ≥ t + s − 1. (32)

Case 1: A and B are not strange pairs.
We choose a unit vector v as above in the following way: if B is a triangle, then the

upper arc of ∂[B] is an side such that [A] has no side with same exterior unit normal;
if [B] has at least four edges, then the two supporting lines of [B] parallel to v touch
at non-consecutive vertices of [B]. For the existence of the latter pair of supporting
lines, we note that while continuously rotating [B], the number of upper minus lower
vertices changes by either zero or two units at a time when an edge of [B] is parallel
to v, and after rotation by π it changes to its opposite. Hence, at some position that
difference is zero or one which implies, since [B] has at least four vertices, that at that
position there is at least one upper and one lower vertex, as required.

Claim 1 One of the following two statements hold:

∣∣((A + b0) ∪ (a1 + B)
) ∩ int [A + B]∣∣ ≥ �A + �B

2
− 3, or

∣∣((a0 + B) ∪ (A + b1)
) ∩ int [A + B]∣∣ ≥ �A + �B

2
− 3.

(33)

Proof. We may assume that b1 = a0 = o (see Fig. 7). Observe first that the only
repetitions x + b0 = a1 + y or x + b1 = a0 + y in these configurations are the points
a1 + b0 and a0 + b1 (which are interior to [A+ B] by our hypothesis). To prove (33),
we verify first that

(i) for every x ∈ A\{a0, a1} except perhaps two of them, at least one of x + b0 or
x + b1 is interior in A + B,

(ii) for every y ∈ B\{b0, b1} except perhaps two of them, at least one of a0 + y or
a1 + y is interior in A + B.

For (i), we note that if both x + b0 or x + b1 are in ∂[A + B], then they are the
endpoints of a segment translated from [b0, b1] and only two such translations have
their endpoints in ∂[A+ B] because A and B are not a strange pair. The argument for
(ii) is similar.

Now (i) and (ii) say that counting the interior points of (A + b0) ∪ (a1 + B) and
(a0+B)∪(A+b1) excepta0+b1 anda1+b0 we have altogether at least |�A|+|�B |−8
of them. Including the latter we have at least |�A|+ |�B |−6 of them and at least half
of these in either (A+ b0) ∪ (a1 + B) or (a0 + B) ∪ (A+ b1), which yields (33).

Let us construct the suitable mixed triangulation of [A + B]. For every path σ on
A, we assume that every point of A in σ is a vertex of σ . According to (33), we may
assume that ∣∣(A ∪ B) ∩ int [A + B]∣∣ ≥ �A + �B

2
− 3. (34)
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a0

a1 = b0

b1
b0 + A B + a1o

a0

a1 = b0

b1

B + a0

o
b1 + A

Fig. 7 An illustration of the proof of Claim 1

Let aupp (alow) be the neighboring vertex of [A] to o on the upper (lower) arc of ∂[A],
and let bupp (blow) be the neighboring vertex of [B] to o on the upper (lower) arc of
∂[B]. We writeωA

upp andωA
low to denote the paths determined by [o, aupp] and [o, alow]

and ωB
upp and ωB

low to denote the paths determined by [o, bupp] and [o, blow], and hence
the two-dimensionality of [A] and [B] implies

|ωA
upp|, |ωA

low|, |ωB
upp|, |ωB

low| ≥ 1.
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a0

a1 = b0

b1
A B

Fig. 8 An illustration of the parallelograms of the mixed subdivision in Case 1

Next let σ A
upp (σ

A
low) be the longest path on the upper (lower) arc of ∂[A] starting from

o such that every segment s of σ A
upp (σ

A
low) satisfies that s + [o, bupp] (s + [o, blow]) is

a parallelogram that does not intersect int [A]. Similarly, let σ B
upp (σ

B
low) be the longest

path on the upper (lower) arc of ∂[B] starting from o such that every segment s of
σ B
upp (σ

B
low) satisfies that s + [o, aupp] (s + [o, alow]) is a parallelogram that does not

intersect int [B]. Since a1 = b0 = o is a common point of σ A
upp, σ

A
low, σ

B
upp, σ

B
low, we

deduce from (34) that

1 + (|σ A
upp| − 1) + (|σ A

low| − 1) + (|σ B
upp| − 1) + (|σ B

low| − 1) ≥ �A + �B

2
− 3,

equivalently,

|σ A
upp| + |σ A

low| + |σ B
upp| + |σ B

low| ≥ �A + �B

2
. (35)

We construct the mixed subdivision by considering the subdivisions into suitable
paralleograms of σ A

upp + ωB
upp and σ B

upp + ωA
upp that have ωA

upp + ωB
upp in common, and

the subdivisions into suitable parallelograms of σ A
low +ωB

low and σ B
low +ωA

low that have
ωA
low + ωB

low in common (see Fig. 8).
In particular, |ωA

upp|, |ωB
upp| ≥ 1, (32) and (35) yield that

|M11| ≥ (|σ A
upp| − |ωA

upp|)|ωB
upp| + (|σ B

upp| − |ωB
upp|)|ωA

upp| + |ωA
upp| · |ωB

upp|
+ (|σ A

low| − |ωA
low|)|ωB

low| + (|σ B
low| − |ωB

low|)|ωA
low| + |ωA

low| · |ωB
low|

≥ (|σ A
upp| − |ωA

upp|) + (|σ B
upp| − |ωB

upp|) + |ωA
upp| + |ωB

upp| − 1
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+ (|σ A
low| − |ωA

low|) + (|σ B
low| − |ωB

low|) + |ωA
low| + |ωB

low| − 1

≥ �A + �B

2
− 2 = tr(A) + tr(B)

2
,

proving (31) in Case 1.

Case 2: A and B form a strange pair with |A|, |B| ≥ 4, and [A] and [B] are not similar
triangles

We write αupp (αlow) to denote the number of segments that the points of A divide
the upper (lower) arc of ∂[A]. We denote by b2 the third vertex of [B] and by [x0, x1]
the side of A with x1 − x0 = t(b1 −b0) for t > 0. For i = 0, 1, 2, let si be the number
of segments that the points of B divide the side of [B] opposite to bi .
Claim 2 There exists a v such that one of the following holds:

αupp ≥ 2 and αupp + s0 + s1 ≥ 1

2
(�A + �B), or (36)

αlow, s2 ≥ 2 and αlow + s2 ≥ 1

2
(�A + �B). (37)

Proof. Since αupp + αlow = �A and s0 + s1 + s2 = �B , the claim easily follows if
there is a v such that, for each the sets A and B, both the upper arc and the lower arc
contain a point of the set strictly between the two supporting lines parallel to v.

Otherwise, choose a v such that the side [b0, b1] of [B] contains at least three
points of B (this is possible since |B| ≥ 4). Then [x0, x1] has no other point of A
than x0, x1 and the other side of [A] at xi , i = 0, 1 is parallel to [bi , b2]. As [A] and
[B] are not similar triangles , [A] has some more edges, which in turn yields that
[bi , b2] ∩ B = {bi , b2} for i = 0, 1. In summary, we have αupp = s0 = s1 = 1 and
αlow, s2 ≥ 2. Since αlow + s2 > αupp + s0 + s1, we conclude (37).

To prove (31) based on (36) and (37), we introduce some further notation. After a
linear transformation, we may assume that v is an exterior normal to the edge [b0, b1]
of [B]. We say that p, q ∈ ∂[A] are opposite if there exists a unit vector w such that
w is an exterior normal at p and −w is an exterior normal at q. If p, q ∈ ∂[A] are not
opposite, then we write pq for the arc of ∂[A] connecting p and q and not containing
opposite pair of points.

First we assume that (36) holds and b2 = o. Since [x0, x1] has exterior normal v

and αupp ≥ 2, there exists a ∈ A\{x0, x1} such that v is an exterior normal to ∂[A] at
a. We write lupp and rupp to denote the number of segments the points of A divide the
arcs ax0 and ax1, into, respectively. To construct a mixed subdivision, we observe that
every exterior normal u to a side of [A] in ax0 satisfies 〈u, b0〉 > 0, and every exterior
normal w to a side of [A] in ax1 satisfies 〈w, b1〉 > 0. We divide ax0 + [o, b0] into
suitable s1lupp parallelograms, and ax1 + [o, b1] into suitable s0rupp parallelograms.
It follows from (32) that

|M11| = s1lupp + s0rupp ≥ lupp + rupp + s0 + s1 − 2 = αupp + s0 + s1 − 2

≥ 1

2
(�A + �B) − 2 = 1

2
(tr(A) + tr(B)).
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Secondly we assume that (37) holds. Since s2 ≥ 2, we may assume that o ∈
([b0, b1]\{b0, b1}) ∩ B. For i = 0, 1, we write s2i to denote the number of segments
the points of B divide [o, bi ] into. Let x̃0 and x̃1 be the leftmost and rightmost points
of A such that −v is an exterior normal to ∂[A], where possibly x̃0 = x̃1. Since [A]
has sides parallel to the sides [b2, b0] and [b2, b1] of [B], we deduce that x̃0 �= x0 and
x̃1 �= x1. To construct a mixed subdivision, we set mlow = 0 if x̃0 = x̃1, and mlow to
be the number of segments the points of A divide x̃0, x̃1 if x̃0 �= x̃1. In addition, we
write llow ≥ 1 and rlow ≥ 1 to denote the number of segments the points of A divide
the arcs x̃0x0 and x̃1x1, into, respectively.We divide x̃0x0+[o, b0] into suitable llows20
parallelograms, and x̃1x1 + [o, b1] into suitable rupps21 parallelograms. In addition, if
x̃0 �= x̃1, then we divide [x̃0 x̃1] + [o, b2] into suitable mlow parallelograms. It follows
from (32) that

|M11| = llows20 + rlows21 + mlow ≥ llow + rlow + mlow + s20 + s21 − 2

= αlow + s2 − 2 ≥ 1

2
(�A + �B) − 2 = 1

2
(tr(A) + tr(B)),

finishing the proof of (31) in Case 2.

Case 3: [A] and [B] are similar triangles and |A|, |B| ≥ 4
We recall that s1, s2 and s3 denote the number of segments the points of B divide

the sides of [B] into and let s′
1, s

′
2, s

′
3 be the number of segments the points of A

divide the corresponding sides of [A] into. We have tr(A) = s′
1 + s′

2 + s′
3 − 2 and

tr(B) = s1 + s2 + s3 −2. We may assume that s1 is the largest among the six numbers
and that s′

2 ≥ s′
3. Readily

|M11| ≥ max{s1s′
2, s

′
1s2, s

′
1s3}. (38)

If s′
2 ≥ 3, then

|M11| ≥ 3s1 ≥ 1

2
(s1 + s2 + s3 + s′

1 + s′
2 + s′

3) >
1

2
(tr(A) + tr(B)).

If s′
2 = 2, then s′

3 ≤ 2 and

|M11| ≥ 2s1 ≥ 1

2
(s1 + s2 + s3 + s′

1 + s′
2 + s′

3 − 4) = 1

2
(tr(A) + tr(B)).

Therefore we assume that s′
2 = s′

3 = 1. In particular, wemay also assume that s2 ≥ s3.
Since s′

1 ≥ 2 and s2 ≥ 1 we have s′
1s2 ≥ s′

1 + 2s2 − 2. Therefore,

|M11| ≥ max{s1, s′
1s2} ≥ 1

2
(s1 + s2 + s3 + s′

1 − 2)

= 1

2
(tr(A) + tr(B)),

and we conclude (31) in Case 3, as well.
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6 Proof of Theorem 1.10

Let A = {a1, . . . , an}. Naturally, [A + A] has a triangulation {F + F : F ∈ TA},
which we subdivide in order to obtain M . We define M to be the collection of the
sums of the form

[ai0 , . . . , aim ] + [aim , . . . , aik ],

where k ≥ 0, 0 ≤ m ≤ k, i j < il for j < l, and [ai0 , . . . , aik ] ∈ TA.
To show that we obtain a cell decomposition, let

F = [ai0 , . . . , aik ] ∈ TA

be a k-simplex with k > 0 where i j < il for j < l, and hence

F + F =
{

k∑
i=0

α j ai j :
k∑

i=0

α j = 2 & for all α j ≥ 0

}
.

We write relintC to denote the relative interior of a compact convex set C . For some
0 ≤ m ≤ k, α0, . . . , αk ≥ 0 with

∑k
i=0 α j = 2, we have

k∑
i=0

α j ai j ∈ relint
([ai0 , . . . , aim ] + [aim , . . . , aik ]

) ⊂ F + F

if and only if
∑

j<m α j < 1 and
∑m

i=0 α j > 1 where we set
∑

j<0 α j = 0. We
conclude that M forms a cell decomposition of [A + A].

For any d-simplex F ∈ TA, and for any m = 0, . . . , d, we have constructed one
d-cell of M that is the sum of an m-simplex and a (d − m)-simplex. Therefore

‖M‖ = |TA|
d∑

m=0

(
d

m

)
= 2d |TA|.

7 Proof of Corollary 1.3

In this section, let A ⊂ R
2 be finite and not contained in a line.We prove four auxiliary

statements about A. The first is an application of the case A = B of Conjecture 1.1
(see Theorem 1.2).

Lemma 7.1

|A + A| ≥ 4|A| − �A − 3.
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Proof. We have readily �A+A ≥ 2�A. Thus (4) and Theorem 1.2 yield

|A + A| = 1

2
(tr(A + A) + �A+A + 2) ≥ 2tr(A) + �A + 1 = 4|A| − �A − 3.

We note that the estimate of Lemma 7.1 is optimal, the configuration of Theo-
rem 1.2 (b) being an extremal set.

Next we provide the well-known elementary estimate for |A + A| only in terms of
boundary points.

Lemma 7.2 Let mA denote the maximal number of points of A contained in a side of
[A]. We have,

|A + A| ≥ �2
A

4
− �A(mA − 1)

2
.

Proof. We choose a line l not parallel to any side of [A], that we may assume to be
a vertical line, and denote by s1, . . . , sk the sides of [A] on the upper chain of [A] in
left to right order. Let Ai be the set obtained from A ∩ si by removing its rightmost
point. We may assume that

|A1| + · · · + |Ak | ≥ �A

2
.

We observe that, for 1 ≤ i < j ≤ k, we have

|Ai + A j | = |Ai | · |A j | and (Ai + A j ) ∩ (Ai ′ + A j ′) = ∅ if {i, j} �= {i ′, j ′}.

It follows that

|A + A| ≥
∑

1≤i< j≤k

|Ai + A j | =
∑

1≤i< j≤k

|Ai | · |A j | =
( k∑
i=1

|Ai |
)2

−
k∑

i=1

|Ai |2

≥
(

�A

2

)2

− (mA − 1)
�A

2
.

The following lemma can be found in Freiman [4].

Lemma 7.3 Let 	 be a line intersecting [A] in m points of A. If A is covered by exactly
s lines parallel to 	, then

|A + A| ≥ 2|A| + (s − 1)m − s. (39)

Moreover,

|A + A| ≥
(
4 − 2

s

)
, |A| − (2s − 1). (40)
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Proof. We may assume that 	 is the vertical line through the origin, that a1, . . . , as
are s points of A ordered left to right such that A = ⋃s

i=1(A ∩ (	 + ai )) and that
|A ∩ (	 + a1)| = m. Let Ai = A ∩ (ai + 	). Then

|A + A| = |A1 + A| + |(A\A1) + As |

≥
s∑

i=1

(|A1| + |Ai | − 1) +
s∑

i=2

(|Ai | + |As | − 1)

= 2|A| + (s − 1)(|A1| + |As |) − (2s − 1),

from which (39) follows. On the other hand,

|A + A| =
s∑

i=1

|2Ai | +
s−1∑
i=1

|Ai + Ai+1|

≥
s∑

i=1

(2|Ai | − 1) +
s−1∑
=1

(|Ai | + |Ai+1| − 1)

= 4|A| − (|A1| + |As |) − (2s − 1).

If the latter estimate is larger than the former one we obtain (40), otherwise we get the
stronger inequality |A + A| ≥ (4 − 2/s2)|A| − (2s − 1).

Proof of Corollary 1.3 Let |A + A| ≤ (4 − ε)|A| where ε ∈ (0, 1) and ε2|A| ≥ 48. To
simply formulae, we set � = �A and m = mA.

We deduce from Lemma 7.1 that � ≥ ε|A| − 3. Substituting this into Lemma 7.2
yields

(4 − ε)|A| ≥ �2

4
− �(m − 1)

2
≥ �(ε|A| − 3)

4
− �(m − 1)

2

= �

2
·
(
1

2
ε|A| − m − 1

2

)
≥ ε|A| − 3

2
·
(
1

2
ε|A| − m − 1

2

)
.

Therefore

1

2
ε|A| − (m − 1) ≤ 8

ε

(
1 − ε

4

)(
1 + 3

ε|A| − 3

)
+ 3

2
<

12

ε
,

as ε|A| − 3 ≥ 48/ε − 3 > 12/ε. In particular, m − 1 > ε|A|/2 − 12/ε.
Next let l be the line determined by a side of [A] containing m = mA points of A,

and let s be the number of lines parallel to l intersecting A. According to (39),

(4 − ε)|A| ≥ 2|A| + (s − 1)(m − 1) − 1 > 2|A| + (s − 1)

(
1

2
ε|A| − 12

ε

)
− 1,

123



Discrete & Computational Geometry

thus first rearranging, and then applying ε2|A| ≥ 48 yield

2|A| > s ·
(
1

2
ε|A| − 12

ε

)
≥ s · 1

4
ε|A|.

Therefore s < 8/ε.
We deduce from (40) and s < 8/ε that

(4 − ε)|A| >

(
4 − 2

s

)
|A| − 2s >

(
4 − 2

s

)
|A| − 16

ε
.

Rearranging, and then applying ε2|A| ≥ 48 imply

s <
2

ε

(
1 − 16

ε2|A|
)−1

<
2

ε

(
1 + 32

ε2|A|
)

.

8 Proof of Proposition 1.6

We call the points of A,

a0 = (0, 0), a1 = (−1,−2), a2 = (2, 1).

If k ≥ 2, then we show that every mixed subdivision M corresponding to TA and
TB satisfies

|M11| ≤ 24. (41)

We prove (41) in several steps. First we verify

[a1, a2] + li is not an edge of M for i = 0, . . . , k, (42)

[a1, a2] + ri is not an edge of M for i = 0, . . . , k − 1. (43)

For (42), we observe that a1 + li+1 if i ≤ k − 1 or a1 + li−1 if i ≥ 1 is a point of
A + B in [a1, a2] + li different from the endpoints. Similarly, for (43), we observe
that a1 + ri+1 if i ≤ k − 2 or a1 + ri−1 if i ≥ 1 is a point of A + B in [a1, a2] + ri
different from the endpoints.

Next, we have

[a0, a2] + [li , ri ] is not a parallelogram of M for i = 0, . . . , k − 1, (44)

[a0, a1] + [ri , li+1] is not a parallelogram of M for i = 0, . . . , k − 1, (45)

as li+1 ∈ int [a0, a2] + [li , ri ] and li ∈ int [a0, a1] + [ri , li+1].
Let us call the edges of TB of the form either [li , ri ] or [ri , li+1] for i = 0, . . . , k−1

small edges, and the edges of TB of the form either [p, li ], [q, li ] for i = 0, . . . , k,
or [p, ri ], [q, ri ] for i = 0, . . . , k − 1 long edges. In other words, long edges of TB
contain either p or q, while small edges of TB contain neither.
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Concerning long edges, we prove that that the number of parallelograms of M of
the form

eA + eB for an edge eA of TA and a long edge eB of TB is at most 12. (46)

If eA is an edge of TA, then there exist at most two cells of M whose sides are p+ eA.
Since TA has three edges, there are at most six of parallelograms of M of the form
eA + eB where eA is an edge of TA and eB is an edge of TB with p ∈ eB . Since the
same estimate holds if q ∈ eB , we conclude (46).

Finally, we prove that that the number of parallelograms of M of the form

eA + eB for an edge eA of TA and a small edge eB of TB is at most 12. (47)

The argument for (47) is based on the claim that if eA + eB is a parallelogram of M
for an edge eA of TA and a small edge eB of TB , then there is a long edge e′

B of TB
such that

eA + e′
B is a neighboring parallelogram of M . (48)

We have eA �= [a1, a2] according to (42) and (43). If eA = [a0, a1], then eB = [li , ri ]
for some i ∈ {1, . . . , k − 1} according to (45). Now ri + eA intersects the interior
of [A + B] as ri ∈ int [A], thus it is the edge of another cell of M , as well. This
other cell is either a translate of [A], which is impossible by (42), (43), and as ri /∈
p + [A], q + [A], or of the form eA + e′

B for an edge e′
B �= eB of TB containing ri .

However, e′
B �= [ri , li+1] by (45), therefore e′

B is a long edge.
On the other hand, if eA = [a0, a2], then eB = [ri , li+1] for some i ∈ {1, . . . , k−1}

according to (44), and (48) follows as above.
Now if eA + e′

B is a parallelogram of M for an edge eA of TA and a long edge e′
B

of TB , then there is at most one neighboring parallelogram of the form eA + eB for a
small edge eB of TB because eA + eB does not intersect eA + p and eA + q. In turn,
(47) follows from (46) and (48). Moreover, we conclude (41) from (46) and (47).

Finally, it follows from (41) that if k ≥ 145, then

|M11| ≤ 24 <
√
4k = √|TA| · |TB |.
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