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Abstract
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1 Introduction

The concept of weak tiling was introduced recently in [15], in connection with
Fuglede’s conjecture for convex bodies in R

d . In this note we will study the rela-
tion of tiling, weak tiling and spectral sets in finite abelian groups, with particular
attention to elementary p-groups (Zp)

d . Our motivation is to give a new tool to prove
the “spectral → tile” direction of Fuglede’s conjecture in finite abelian groups.

We begin by recalling the necessary notions and fixing our notation.
The cardinality of any finite set A will be denoted by |A|. We use the standard

notation A ± B = {a ± b : a ∈ A, b ∈ B}, and k A = {ka : a ∈ A}, for any positive
integer k. For any n, let Zn denote the cyclic group of order n.

Let G be a finite abelian group. A character is a homomorphism from G to the
complex unit circleT. The dual group, denoted by ̂G, is the collection of all characters
of G. For a function f : G → C, the Fourier transform ̂f : ̂G → C is defined as

̂f (γ ) =
∑

x∈G
f (x)γ (x).

A set A ⊂ G is called spectral if the function space L2(A) admits an orthogonal
basis consisting of characters restricted to A. Such an orthogonal basis of characters
is called a spectrum of A. (The spectrum, if it exists, is not necessarily unique.)

We say that a set A ⊂ G tiles G if there exists another set B ⊂ G such that each
g ∈ G can be written uniquely as g = a+b, where a ∈ A, b ∈ B. We usually express
this relation as A ⊕ B = G or, in the functional notation, 1A ∗ 1B = 1G , where ∗
denotes convolution. The convolution of any two functions f , g : G → C is defined
in the standard way as ( f ∗ g)(x) = ∑

y∈G f (x − y)g(y).
For any function f : G → C the function f− is defined as f−(x) = f (−x). Some

basic properties of theFourier transform read as follows: f̂ ∗ g = ̂f ·ĝ,̂f−(γ ) = ̂f (γ ),
f̂ ∗ f− = | ̂f |2, and for real-valued even functions ̂

̂f = |G| f .
Fuglede’s conjecture [7] stated that a set A ⊂ G is spectral if and only if it tiles

G. The conjecture was formulated explicitly in R
d , but Fuglede already mentioned

that the notions make sense in any locally compact abelian group G. In fact, the first
counterexample by Tao [20] in R

5 was based on a counterexample in the finite group
(Z3)

5. Since then, further counterexamples [5, 12] have been constructed (all based
on examples in finite groups) to both directions of the conjecture in R

d , d ≥ 3. The
conjecture (both directions of it) remains open forR andR

2. Some further connections
between the discrete and the continuous settings have been revealed by Dutkay and
Lai in [2].

In this paper we will restrict our attention to finite abelian groups, and mostly to the
case G = (Zp)

d with p being a prime. For finite abelian groups, several results have
been discovered in recent years [3, 4, 6, 8–11, 13, 14, 16–19, 21]. For the purposes
of this note, we single out the results of [8] and [6, 17]. In [8] the authors prove both
directions of Fuglede’s conjecture in (Zp)

2. To the contrary, in [6] and [17] the authors
prove (independently of each other) that for odd primes p there exist spectral sets in
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(Zp)
d , d ≥ 4, which do not tile the group, thus exhibiting a counterexample to the

“spectral → tile” direction of Fuglede’s conjecture in these groups.
In connection with Fuglede’s conjecture, the notion of weak tiling was introduced

in [15]. For us, in the case of finite abelian groups, weak tiling can be formulated as
follows. A set A ⊂ G tiles another set E ⊂ G weakly, if there exists a nonnegative
function h : G → R such that 1A ∗ h = 1E . We will soon see that it makes sense to
introduce the further restrictions that h(0) = 1, the function h is positive definite (i.e.
̂h ≥ 0), and restrict our attention to the case E = G.

Definition 1.1 We say that a set A ⊂ G pd-tiles G weakly if there exists a nonnegative
function h : G → R such that h(0) = 1, 1A ∗ h = 1G , and̂h ≥ 0.

In the terminology, ”pd” stands for positive definite. Note that, due to positive
definiteness, h is necessarily an even function, h(x) = h(−x). The assumption h(0) =
1 is essential, otherwise the constant function h = 1

|A| would provide a weak pd-tiling
for any set A ⊂ G. Note also, as a comparison with the terminology in [15], that if A
pd-tiles G weakly then A tiles its complement weakly.

A simple but important observation, also essentially contained in [15], is that if A
pd-tiles G weakly with a function h, then

A − A ∩ supp h = {0}. (1)

The reason is that x = a−a′ and h(x) > 0 would imply 1A ∗ h(a) ≥ h(0)1A(a)+
h(x)1A(a′) = 1 + h(x) > 1.

Next, we show that a proper tiling always induces a weak pd-tiling of G.

Lemma 1.2 If A⊕B = G is a tiling, then A pd-tiles G weakly with h1 = 1
|B|1B ∗1−B.

Proof A⊕B = G implieŝ1A ·̂1B = |G|δ0, so that the supports of the functionŝ1A and
̂1B are essentially disjoint (only intersect at 0). This implies that̂1A · 1

|B| |̂1B |2 = |G|δ0,
which, in turn, implies 1A ∗

(

1
|B|1B ∗ 1−B

)

= 1G . 
�
We remark that the notation h1 above (instead of using simply h) is for later

convenience.
The essential observation in [15] is that if a set A is spectral, then it tiles its

complement weakly. However, slightly more is true.

Lemma 1.3 Let G be a finite abelian group. If A ⊂ G is spectral, then A pd-tiles G
weakly.

Proof Let S ⊂ ̂G be a spectrum of A. Then |S| = |A| because the space L2(A)

has dimension |A|, and S is a basis. Let h1 = 1
|A|2 |̂1S|2. Then h1 ≥ 0, h1(0) = 1,

̂h1 = |G|
|A|2 1S ∗ 1−S ≥ 0, so h1 is nonnegative, normalized and positive definite, as

required. Also, the weak tiling condition 1A ∗ h1 = 1G is most easily seen by taking

Fourier transforms. ̂1A ·
( |G|

|A|2 1S ∗ 1−S

)

= |G|δ(0) is true because ̂1A(0) = |A|,
1S ∗ 1−S(0) = |S| = |A|, and the support of 1S ∗ 1−S is S − S, which is a subset of
{̂1A = 0} ∪ {0} by the orthogonality of S in L2(A). 
�
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By this lemma, we can establish the “spectral → tile” direction of Fuglede’s con-
jecture in a finite abelian group G, if we prove that any set that pd-tiles G weakly,
actually tiles G properly. This motivates the following definition.

Definition 1.4 Assume that a finite abelian group G has the property that whenever a
set A pd-tiles G weakly then A tiles G properly. Then we call the group G pd-flat.

In the remainder of this note we will focus our attention on elementary p-groups
G = (Zp)

d . As mentioned above, for odd primes and d ≥ 4, there exist spectral sets
in G which do not tile G. Therefore, (Zp)

d is not pd-flat for d ≥ 4.
In Sect. 2 we introduce an averaging technique which leads to a natural generaliza-

tion of spectral sets and tiles in (Zp)
d . Finally, in Sect. 3 we show that (Zp)

d is pd-flat
for d = 1, 2, and we give some partial results and conjectures for d = 3.

2 Averaging

It is natural to go one step further with the generalization of tiling.

Definition 2.1 Let f , h : G → R be nonnegative functions such that f (0) = h(0) =
1, ̂f ≥ 0,̂h ≥ 0.We say that the pair ( f , h) is a functional pd-tiling ofG if f ∗h = 1G .

It turns out that this notion is very flexible, and for G = (Zp)
d it gives rise to a

natural averaging procedure. In connection with this, we introduce a special class of
functions.

Definition 2.2 We say that a function f : (Zp)
d → C is ray-type, if for any x ∈ (Zp)

d ,
and any k = 1, . . . , p − 1 we have f (kx) = f (x).

That is, a ray-type function is constant on any punctured line through the origin
(but may have a different value at the origin).

We also need some information on the zeroes of the Fourier transform of the indica-
tor function 1A of a set A ⊂ (Zp)

d .Wemake the identificationG = {0, 1, . . . , p−1}d ,
and the same for the dual group ̂G = {0, 1, . . . , p − 1}d . It is sometimes useful to
think of the elements of G as column vectors of length d, and elements of ̂G as row
vectors of length d. Also, in notation, we will use boldface letters for elements of G
and ̂G to indicate that they are vectors. With these identifications in mind, the action
of a character t ∈ ̂G on an element x ∈ G is given by e2iπ〈t,x〉/p.

For a function f : G → C, and t ∈ ̂G, we have ̂f (t) = ∑

x∈G f (x)e2iπ〈t,x〉/p .
In particular, for A ⊂ G, the Fourier transform of 1A takes the form ̂1A(t) =
∑

a∈A e
2iπ〈t,a〉/p.

The important point here is that for any t �= 0 we either havê1A(kt) = 0 for all
k = 1, 2, . . . , p − 1, or̂1A(kt) �= 0 for all k = 1, 2, . . . , p − 1. This is well-known,
and the reason is that̂1A(t) = 0 if and only if the sum

∑

a∈A e
2iπ〈t,a〉/p contains the

same number of terms for each pth root of unity, in which case
∑

a∈A e
2iπ〈kt,a〉/p also

contains the same number of terms of each pth root of unity.
Therefore, the zeros of the Fourier transform̂1A consist of punctured lines through

the origin (for t �= 0 a punctured line L̇ is given by L̇ = {t, 2t, . . . , (p − 1)t}; note
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that 0 /∈ L̇ , and we use the notation L = L̇ ∪ {0}). The same is true for the zeroes of
the Fourier transform of f = 1

|A|1A ∗ 1−A, because ̂f = 1
|A| |̂1A|2.

We can now perform the first half of the averaging.

Lemma 2.3 Let G = (Zp)
d , and 1A ∗ h1 = 1G be a weak pd-tiling of G by a

set A. Then, for any k = 1, . . . , p − 1, 1k A ∗ h1 = 1G is also a weak pd-tiling.
Furthermore, with the notation fk = 1

|A|1k A ∗ 1−k A, we have that fk ∗ h1 = 1G is

a functional pd-tiling. Finally, for f = 1
p−1

∑p−1
k=1 fk we have that f is a ray-type

function, supp f ∩ supp h1 = {0}, and f ∗ h1 is also a functional pd-tiling.

Proof Note that ̂1k A(t) = ̂1A(kt), so the zeroes of these functions are the same
punctured lines through the origin.

The assumption 1A ∗ h1 = 1G is equivalent tô1Âh1 = |G|δ0. Due to the fact that
the zeroes of ̂1A and ̂1k A coincide, and |A| = |k A|, we have ̂1k Âh1 = |G|δ0, and
therefore 1k A ∗ h1 = 1G is a weak pd-tiling.

The function fk = 1
|A|1k A ∗ 1−k A is nonnegative, fk(0) = 1, ̂fk = 1

|A| |̂1k A|2 ≥ 0,

and the zeroes of ̂fk and̂1k A coincide. Also, ̂fk(0) = |A| =̂1k A(0), therefore ̂fk̂h1 =
|G|δ0, which implies that fk ∗ h1 is a functional pd-tiling. Also, supp fk = k A− k A,
and hence supp fk ∩ supp h1 = {0} by (1).

Finally, for the average f = 1
p−1

∑p−1
k=1 fk , we clearly have f ≥, 0, ̂f ≥ 0,

f (0) = 1 and f ∗ h1 = |G|δ0 is a functional pd-tiling since these properties hold for
each fi . Also, by averaging, it is clear that f is ray-type, and the property supp f ∩
supp h1 = {0} is inherited. 
�

We can perform a second step of averaging for the function h1.

Lemma 2.4 Let G = (Zp)
d , and 1A ∗ h1 = 1G be a weak pd-tiling of G by a set

A, and define the ray-type function f as in Lemma 2.3. For any k = 1, . . . , p − 1,
let hk(x) = h1(kx), and let h = 1

p−1

∑p−1
k=1 hk. Then, for each k, f ∗ hk = 1G is a

functional pd-tiling, the average h is a ray-type function, and f ∗h is also a functional
pd-tiling such that supp f ∩ supp h = {0}.
Proof Recall from Lemma 2.3 that f is a ray-type function. We claim that ̂f is also
ray-type. To see this, note that f can be written in the form f = cδ0 + ∑

i ci1Li

for some lines Li (for convenience, we use proper lines in this decomposition, not
punctured lines; the difference is absorbed in the constant c at the origin). The Fourier
transform of 1Li is p1Hi with the hyperplane Hi being orthogonal to Li , and therefore
the ̂f = c1

̂G + p
∑

i 1Hi , which is clearly ray-type.
By Lemma 2.3 we have that f ∗ h1 = 1G , which implies ̂f̂h1 = |G|δ0. This

means that supp ̂f ∩ supp ̂h1 = {0}. As ̂f is ray-type, its support is a union of
lines Ri , and hence ̂h1 must be 0 on the punctured lines Ṙi . But ̂hk(t) = ̂h1(t/k),
so ̂hk is also 0 on Ṙi , and hence ̂f̂hk = |G|δ0 holds (for the value at zero we have
̂h1(0) = ̂hk(0) = |G|/|A|). In turn, this implies that f ∗hk = 1G is indeed a functional
pd-tiling.

Also, supp f ∩ supp h1 = {0} by Lemma 2.3, and f is ray-type, so the support
of h1 is contained in rays where f = 0. This clearly implies that the support of hk is
also contained in these rays, and therefore supp f ∩ supp hk = {0}
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After averaging, it is clear that h is ray-type, and the functional pd-tiling property
f ∗ h is preserved, as well as the condition supp f ∩ supp h = {0}. 
�

We see from Lemmas 1.2 and 1.3 that A pd-tiles G weakly in both cases when A
tiles G, or A is spectral in G. After applying Lemmas 2.3 and 2.4 we arrive at the
following corollary.

Corollary 2.5 Let G = (Zp)
d , and assume A pd-tiles G weakly with 1A ∗ h1 = 1G (in

particular, this is the case if A tiles G, or A is spectral in G). For k = 1, . . . , p − 1,
let fk = 1

|A|1k A ∗1−k A, hk(x) = h1(kx), and f = 1
p−1

∑p−1
k=1 fk , h = 1

p−1

∑p−1
k=1 hk.

Then

|A| =
∑

x∈G
f (x), (2)

and the 4-tuple of functions ( f , h, ̂f ,̂h) satisfy the following properties:

1. f , h, ̂f ,̂h are all ray-type functions,
2. f ≥ 0, h ≥ 0,
3. f (0) = 1, h(0) = 1,
4. f ∗ h = 1G ,
5. supp f ∩ supp h = {0},
6. ̂f ≥ 0,̂h ≥ 0,
7. ̂f (0) = |A|, ̂h(0) = |G|/|A|,
8. ̂f ∗̂h = |G|1

̂G ,
9. supp ̂f ∩ supp̂h = {0}.

Proof Only 8 needs further explanation, and it follows by taking Fourier transform of
the equation, noting that ̂̂f = |G| f (and the same for h), and applying 5 and 3. 
�

This corollary motivates the following definition.

Definition 2.6 A 4-tuple of functions ( f , h, ̂f ,̂h) is called a complementary 4-tuple
if they satisfy conditions (i)-(ix) of Corollary 2.5. (We do not necessarily require that
f be constructed from a set A.)

The notion of complementary 4-tuples is very appealing, because it puts the func-
tions f , h and their Fourier transform ̂f ,̂h on equal footing. When studying spectral
sets and tiles in (Zp)

d it is natural to try to characterize all complementary 4-tuples.
We will do this for d = 1, 2 in the next section, and present some partial results for
d = 3.

We also remark that an analogous averaging procedure can be carried out in cyclic
groups Zn , leading to a similar notion of complementary 4-tuples in those groups.
Studying these 4-tuples could lead to some insights concerning the Coven-Meyerowitz
conjecture. This is subject to future research.
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3 Complementary 4-tuples in (Zp)
d

In this section we analyze complementary 4-tuples in (Zp)
d , and prove that (Zp)

d is
pd-flat for d = 1, 2, and also give some partial results for d = 3.

For convenience, we recall here what is known about Fuglede’s conjecture in these
groups. Both directions of the conjecture are true for d = 1, 2, with d = 1 being fairly
trivial, and d = 2 being treated in [8]. A simpler proof of the case d = 2 can be found
in [10]. For d = 3 it is known that all tiles are spectral [1], but it is not known whether
all spectral sets are tiles. For d ≥ 4 (and p being odd) there are examples of spectral
sets which do not tile the group [6, 17] but the tile-spectral direction of the conjecture
is open.

We now turn to the main results of this section. We emphasize here that a group
G being pd-flat is formally stronger than the “spectral → tile” direction of Fuglede’s
conjecture in G.

Proposition 3.1 G = (Zp)
d is pd-flat for d = 1, 2, that is, every set A which pd-tiles

G weakly, tiles G properly. Also, G is not pd-flat for d ≥ 4.

Proof Assume A pd-tiles G weakly. Then there exists a complementary 4-tuple
( f , h, ̂f ,̂h) with the properties listed in Corollary 2.5, and f is constructed from
1A as in Corollary 2.5.

For d = 1 the support of any ray-type function is either {0} or G. If supp f = {0}
then |A| = 1, and A tiles G trivially. If supp f = G then necessarily supp h = {0},
and h(0) = 1 implies h = δ0, and hence f must be the constant function 1. Therefore,
|A| = p by (2), and hence A = G.

For d = 2 we must perform a case-by-case analysis of the function f . Let c =
infx∈G f (x) ≥ 0, and let Li be the lines in the support of f . Then f can be decomposed
uniquely as f = c1G + ∑

i di1Li + mδ0 with some di ≥ 0 and m ∈ R (note that Li

denotes the full line here, not the punctured line).
If c > 0 then supp f = G, and hence supp h = {0}, h = δ0, so f = 1G . By (2) we

obtain that |A| = p2 and A = G.
If c = 0 and m > 0 then ̂f > 0 everywhere on ̂G, so supp ̂h = {0}. Thus h is

constant, and h(0) = 1 implies that h is constant 1. This implies that f = δ0, and
|A| = 1.

If c = 0 andm = 0, then the totalmass of f is exactly p times themass at 0, because
this is true for all 1Li . The mass at zero is f (0) = 1, and hence we have |A| = p, by
equation (2). Also, c = 0 implies that f must be zero on some punctured line Ṙ, so
A can have at most one element in each coset of the line R since A − A ⊂ supp ( f ).
But |A| = p, so A must have exactly one element in each coset of R, and therefore
A ⊕ R = G is a tiling.

Finally, we claim that c = 0 andm < 0 is not possible. Indeed, c = 0 means that f
must be zero on some punctured line Ṙ, and therefore ̂f = m < 0 on the orthogonal
punctured line Ṙ⊥, contradicting the nonnegativity of ̂f .

For d ≥ 4 we know that there exist spectral sets in (Zp)
d which do not tile the

group [6, 17]. Therefore, (Zp)
d cannot be pd-flat. 
�
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For d = 3, we conjecture that (Zp)
3 is pd-flat, but unfortunately we cannot give a

complete characterization of complementary 4-tuples, we can only prove some par-
tial results in this direction. Therefore, the “spectral → tile” direction of Fuglede’s
conjecture remains open in this case. We have the following partial result.

Proposition 3.2 Let G = (Zp)
3, and assume A ⊂ G pd-tiles G weakly with 1A ∗h1 =

1G. Let ( f , h, ̂f ,̂h) be the complementary 4-tuple constructed in Corollary 2.5. Then
either A tilesG properly, or the functions f , h, ̂f ,̂h all have the following“dispersive”
property: for any 2-dimensional subspaces S ⊂ G, S′ ⊂ ̂G the intersections supp f ∩
S, supp h ∩ S, supp ̂f ∩ S′ and supp̂h ∩ S′ are all non-trivial (i.e. not equal to {0} or
the whole plane).

Proof Exploiting the fact that all appearing functions are ray-type, we can represent
each function in the following normalized form. Let us label the planes and lines
through the origin as S1, S2, . . . , Sp2+p+1 and L1, L2, . . . , L p2+p+1. Then f can be
represented uniquely as

f = w1G +
∑

i

(ci1Si + di1Li ) + mδ0, (3)

where the coefficients w, ci , di ≥ 0, m ∈ R are defined by the following greedy
algorithm: w is the maximal value such that f − w1G ≥ 0, c1 is the maximal value
such that f − w1G − c11S1 ≥ 0, c2 is the maximal value such that f − w1G −
c11S1 − c21S2 ≥ 0, etc, and subsequently d1 is the maximal value such that f −
w1G − (

∑p2+p+1
i=1 ci1Si )−d11L1 ≥ 0, etc. We can represent f , h, ̂f ,̂h in this manner

uniquely, after fixing the order of planes and lines in G and ̂G.
We will show that if any of f , h, ̂f ,̂h does not have the dispersive property (stated

in the proposition), then A tiles G. This is done by a case-by-case analysis, where we
will use the properties of complementary 4-tuples stated in Corollary 2.5.

Case I. Let us first consider the trivial casewhen the support of someof the appearing
functions is the whole underlying group.

(a) If supp f = G, then supp h = {0} by 5, and hence h = δ0 by 3, and f = 1G
by 4, and |A| = p3 by (2). Therefore, A = G, and A tiles the group trivially.

(b) Similarly, if supp h = G then supp f = {0}, and |A| = 1, and A tilesG trivially.
(c) If supp ̂f = ̂G, then supp ̂h = {0} by 9, and hence h is a constant function,

h = 1G by 3, and therefore f = δ0 by 4, and again |A| = 1.
(d) Similarly, if supp̂h = ̂G, then ̂f = {0}, and hence f is constant 1, and |A| = p3

by (2).
Having dealt with Case I, we can assume for the rest of the argument that w = 0

in equation (3). Moreover, this also implies that m ≤ 0 in (3) because m > 0 would
imply supp ̂f = ̂G. Altogether, we can conclude that the representation of f takes
the form

f =
∑

i

(ci1Si + di1Li ) + mδ0, (4)
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where ci , di ≥ 0, and m ≤ 0. The same is true for the representations of h, ̂f ,̂h.
Case II. Next, assume that the support of one of the appearing functions intersects

a plane only at 0.
(a) Let supp f ∩ S = {0}. Let L̇ ⊂ ̂G denote the punctured line orthogonal to

S. Then ̂f = m ≤ 0 on L̇ , and the nonnegativity of ̂f implies m = 0. Also, the
“empty” plane S intersects every other plane Si , so every Si has at least one “empty”
line S ∩ Si , and hence the weight ci must be 0 in equation (4) for every i . Hence, f
can be represented in the form f = ∑

i di1Li , and therefore the total mass of f is p
times the mass at 0 (as this is the case for every Li ), and hence |A| = p is implied by
(2) and f (0) = 1. Furthermore, the fact that S is empty means that A− A ∩ S = {0},
so there is exactly one point of A on each coset of S. Therefore, A⊕ S = G is a tiling.

(b) If supp h ∩ S = {0}, then the same argument as in (a) shows that h has a

decomposition h = ∑

i d̃i Li , and therefore
∑

x∈G h(x)
h(0) = p. Considering h(0) = 1,

this implies
∑

x∈G h(x) = p, and hence |A| = p2 by 4. Also, supp f �= G, so there
exists a line L such that A − A ∩ L = {0}, and hence A ⊕ L = G is a tiling.

(c) If supp ̂f ∩ S′ = {0}, then the same argument as in (a) shows that ̂f has a

decomposition ̂f = ∑

i d
′
i L

′
i , and therefore

∑

t∈̂G
̂f (t)

̂f (0)
= p. Considering that ̂f (0) =

∑

x∈G f (x) and
∑

t∈̂G
̂f (t) = p2 f (0), we obtain

∑

x∈G f (x) = p2, that is |A| = p2

by (2). We can finish the argument as in (b): as supp f �= G, there exists a line L such
that A − A ∩ L = {0}, and hence A ⊕ L = G is a tiling.

(d) If supp ̂h ∩ S′ = {0}, then the same argument as in (a) shows that ̂h has

a decomposition ̂h = ∑

i d̃
′
i L

′
i , and therefore

∑

t∈̂G
̂h(t)

̂h(0)
= p. This implies that

∑

x∈G h(x) = p2, and
∑

x∈G f (x) = p. This implies that in the decomposition
(4) all coefficients ci = 0 and m = 0, otherwise the total mass of f would be greater
than p times the mass at 0 (recall that ci ≥ and m ≤ 0). Therefore, f = ∑

i di1Li .
Also, as supp ̂f �= ̂G, we have a line L ′ ⊂ ̂G such that ̂f = 0 on L̇ ′, which implies
that f = 0 on the punctured plane S = L ′⊥. Finally, as |A| = p and A− A ∩ S = {0}
we have that A ⊕ S = G is a tiling.

Case III. Finally, assume that the support of one of the appearing functions contains
a whole plane. In this case, we can invoke 5 and 9 to conclude that the support of some
other function intersects the same plane at 0 only, and we are done by Case II above.


�
It is worth summarizing here what this result means for spectral sets. For a spectral

set A ⊂ (Zp)
3, perform the avearaging procedure leading to the complementary 4-

tuple in Corollary 2.5. If any of the functions f , h, ̂f ,̂h does not have the dispersive
property described in Proposition 3.2 then A necessarily tiles (Zp)

3. If all appearing
functions have the dispersive property, they must have a representation

∑

i

di1Li + mδ0, (5)

where the lines Li are situated such that they do not cover any plane fully, and do not
leave any plane empty. Furthermore, di > 0, m < 0 (the latter is true because m ≥ 0
would imply the Fourier transform being positive on the planes L⊥

i ).
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It would be tempting to conjecture that this situation cannot occur, that is, comple-
mentary 4-tuples ( f , h, ̂f ,̂h) with all functions having the dispersive property do not
exist. However, unfortunately, the following example shows that this is not the case.

Example 3.3 Let S1, S2, S3 be three different planes through the origin in (Zp)
3, and

let L1 = S2 ∩ S3, L2 = S1 ∩ S3, L3 = S1 ∩ S2 be the lines of intersection. For the
sake of easier calculations we will use a representation for f and h different from (5).
(It is not difficult to re-write the representations below according to equation (5), and
we invite the reader to do so.)

Let f0 = 2 · 1G − 2(1S1 + 1S2 + 1S3) + p(1L1 + 1L2 + 1L3), and h0 = (1S1 +
1S2 + 1S3) − 2(1L1 + 1L2 + 1L3) + 2pδ0.

Then, ̂f0 = p2(1L⊥
1

+ 1L⊥
2

+ 1L⊥
3
) − 2p2(1S⊥

1
+ 1S⊥

2
+ 1S⊥

3
) + 2p3δ0, and ̂h0 =

2p1
̂G − 2p(1L⊥

1
+ 1L⊥

2
+ 1L⊥

3
) + p2(1S⊥

1
+ 1S⊥

2
+ 1S⊥

3
).

Based on these formulae, it is easy (but somewhat tedious) to check that the nor-
malized functions f = 1

3p−4 f0, h = 1
2p−3h0, and their Fourier transforms ̂f ,̂h form

a complementary 4-tuplet ( f , h, ̂f ,̂h), such that none of the appearing functions have
the dispersive property of Proposition 3.2.

It may be easier to visualize this example if we identify the punctured lines L̇i

of (Zp)
3 with points of the projective plane PG(2, Zp). In this picture, Si become

lines on the projective plane, and the functions f and h can be described in terms of
a triangle in the projective plane. For example, the function h is positive on the lines
of a triangle (with the exception of the vertices, where h is 0), and zero everywhere
outside. We leave the details to the reader.

Notice, however, that in this example neither f nor h can come from the averaging
of an indicator function of a set A as in Lemma 2.3. The reason is that by Eq. (2)

we would have |A| = p2(2p−3)
3p−4 or |A| = p(3p−4)

2p−3 , neither of which is an integer for
p �= 2, 3, and for p = 2, 3 it is easy to check (with a finite case-by-case analysis) that
f and h cannot be a result of averaging an indicator function of any set A.
Example 3.3 can be generalized: one can take k points on the projective plane, with

k − 1 lying on a line, and one point being outside. Then, a complementary 4-tuple
( f , h, ̂f ,̂h) can be constructed, such that the function h is positive on all the lines
connecting these points (with exception of the points themselves, where h is 0), and
zero everywhere outside. The function f is then supported on the complement supp h.
The exact formulae are somewhat cumbersome, so we choose to omit them.

Given that such examples exist, we cannot yet decide whether the “spectral→ tile”
direction of Fuglede’s conjecture holds in these groups.

As a final remark we mention here Rédei’s conjecture which concerns the structure
of tilings in (Zp)

3. It states that in any normalized tiling A⊕ B = (Zp)
3 (normalized

meaning that 0 ∈ A, B is assumed) we must have that either A or B is contained in a
proper subgroup.

A complete characterization of complementary 4-tuples in (Zp)
3 could, in

principle, lead to the solution of both Fuglede’s and Rédei’s conjecture in these groups.
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