
Exercise sheet 1, Analysis 2, 2023

Exercises marked with E are meant to be fairly easy, only requiring the know-
ledge of basic definitions. Exercises marked with ∗ are meant to be hard in some
sense: either the solution requires a clever trick, or the solution is long and cum-
bersome. Unmarked exercises are meant to be of medium difficulty.

(1) E Prove that any finite set A = {a1, . . . , an} ⊂ Rd is Jordan measurable
and λJ(A) = 0.

(2) Let A = Q ∩ [0, 1]. Prove that λ∗J(A) = 1 but λ∗,J(A) = 0, therefore A
is not Jordan measurable. (This means that the historically used phrase
"Jordan measure" is misleading because it is not a measure, as the Jordan
measurable sets do not form a σ-algebra.)

(3) Show that in the definition of Jordan inner measure we could equivalently
take countable unions (instead of finite unions), i.e. sup{

∑∞
n=1 λ(Tn) :

∪̇Tn ⊂ A} = λ∗,J(A).

(4) E Let X = {x1, x2, x3} be a set with three elements. Construct all possible
σ-algebras over X.

(5) E Prove that any σ-algebra A is closed under countable intersection, i.e. if
An ∈ A then ∩∞n=1An ∈ A.

(6) E Let (X,M, µ) be a measure space, and E,F ∈ M. Prove that µ(E) +
µ(F ) = µ(E ∪ F ) + µ(E ∩ F ).

(7) E Let (X,M, µ) be a measure space, and E ∈ M. Let µE(A) = µ(A ∩ E)
for any A ∈M. Prove that µE is also a measure on (X,M).
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(8) E Let X be any non-empty set, and A ⊂ X. Determine the σ-algebra
generated by the set systems

(a) {A}
(b) {B : B ⊂ A}

(9) Consider the open sets in a metric space (X, d). Do they form a σ-algebra?
Determine the special case when they do.

(10) E Let f : X → Y be any function. Prove that
(a) if B is a σ-algebra on Y , then {f−1(B) : B ∈ B} is also a σ-algebra

on X. (This is called the "pull-back σ-algebra.)
(b) If A is a σ-algebra on X, then {B ⊂ Y : f−1(B) ∈ A} is also a

σ-algebra on Y . (This is called the "push-forward" σ-algebra.)

(11) Prove that the intervals {(a, b] : a ≤ b} generate the Borel σ-algebra on R.
(Recall, that the Borel σ-algebra, by definition, is generated by the open
sets in R.)

(12) ∗ Let B(R) be the Borel σ-algebra on R, and let Y ⊂ R be any set. Prove
that the Borel σ-algebra on Y is given by B(Y ) = {A ∩ Y : A ∈ B(R)}.

(13) Let A ⊂ Rd. In the definition of the Jordan outer measure we used a finite
number of boxes to cover A. Instead, we define the Lebesgue outer measure
by allowing countably many boxes:
λ∗(A) = inf{

∑∞
i=1 λ(Ti) : A ⊂ ∪∞i=1Ti},

where λ(Ti) is the product of the sides of Ti. Prove that for A = Q ∩ [0, 1]
we have λ∗(A) = 0 (and hence we see that the Lebesgue outer measure is
not the same as the Jordan outer measure!)

(14) E Let (X,A, µ) be a measure space, and let N = {N ∈ A : µ(N) = 0},
and A = {E ∪ F : E ∈ A, F ⊂ N for some N ∈ N}. Prove that A is also a
σ-algebra on X.

(15) In the previous exercise, let µ(E ∪ F ) = µ(E). Prove that µ is a measure
on A. Prove that it has the following completeness property: if µ(A) = 0

for a set A ∈ A, then every subset B ⊂ A is also measurable and µ(B) = 0.
(The space (X,A, µ) is called the completion of (X,A, µ).)
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In the exercises below, λ always denotes the Lebesgue measure.

(16) E Let A ⊂ Rd be a set such that its Lebesgue outer measure is 0. Prove
A is Lebesgue measurable and λ(A) = 0. (Hint: use the definition of meas-
urability: the splitting property.)

(17) E Let X = [0, 1]2, and let E denote the family of rectangles Tab = {(x, y) ∈
X : 0 ≤ a ≤ x ≤ b ≤ 1, 0 ≤ y ≤ 1}. Let ρ : E → [0, 1], ρ(Tab) = b − a.
Let µ∗ be the outer measure generated by ρ. Prove that the diagonal D =
{(x, y) ∈ X : x = y} is not measurable (i.e. it does not have the splitting
property).

(18) E Prove that if E ⊂ [0, 1], λ(E) = 1, then E is dense in [0, 1]. (Hint: prove
equivalently that if a set is not dense, then its complement must contain
an open interval, and therefore its measure must be smaller than one.)

(19) Prove that the Lebesgue measure on Rd is open regular, i.e. for any meas-
urable set E we have λ(E) = inf{λ(U) : U ⊃ E,U is open}.

(20) Prove that the Lebesgue measure on Rd is compact regular, i.e. for any
measurable set E we have λ(E) = sup{λ(K) : K ⊂ E,K is compact}.

(21) E Let A0 be the family of subsets of Rd which can be written as finite
union of disjoint boxes

∏n
j=1(ai, bi]. Let A1 be the family of subsets of

Rd which can be written as finite union of (not necessarily disjoint) boxes∏n
j=1(ai, bi]. Prove that A0 = A1, and it is an algebra, but not a σ-algebra.

(An algebra is a system of sets closed under complements and finite unions.
Hint: make a drawing in 2-dimensions.)

(22) In the Caratheodory theorem, let us accept the fact the family of µ∗ meas-
urable sets form a σ-algebra, and µ∗ is a measure on this σ-algebra. Prove
that this measure is complete, as the theorem states.

(23) ∗ Let H ⊂ R, λ(H) = 0. Prove that there exists a c ∈ R such that all the
numbers c+ h (h ∈ H) are irrational.

(24) Prove that the Cantor set is compact, nowhere dense, its Lebesgue measure
is 0, and it cardinality is continuum.

(25) Prove the Borel-Cantelli lemma: "if Ai are events such that the sum of
their probability is finite, then the probability that infinitely many of them
occurs is 0". More formally, if µ is a probability measure on a σ-algebra A,
and Ai ∈ A are such that

∑∞
i=1 µ(Ai) < +∞ then µ(∩n∈N ∪k≥n Ak) = 0.

(Note here that the event ∩n∈N ∪k≥n Ak describes exactly that infinitely
many of the Ai’s occur. Hint: use the continuity property of the measure.)
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(26) E Let (Xi,Ai) be measurable spaces for all positive integers i. Prove that
the product σ-algebra

⊗∞
i=1 Ai is generated by "generalized boxes" of the

form
∏∞
i=1Ai, Ai ∈ Ai. (Recall from class, that the product σ-algebra is,

by definition, generated by cylinder sets.)

(27) Prove that B(Rd) =
⊗d

i=1 B(R). (Hint: the LHS is generated by open sets,
the RHS is generated by generalized boxes. Prove that all open sets can be
built up from such boxes and, conversely, all cylinder sets can be built up
from open sets.)

(28) ∗ Let (X,A), (Y,M) be measurable spaces, and let T ∈ A⊗M be a set in the
product σ-algebra. Prove that all cross-sections Tx = {y ∈ Y : (x, y) ∈ T}
and Ty = {x ∈ X : (x, y) ∈ T} are measurable for all x ∈ X and y ∈ Y .

(29) E Prove that the Lebesgue-measure is translation invariant, i.e. for all
Lebesgue-measurable set A ⊂ R, and all t ∈ R, we have λ(A) = λ(t + A).
(Hint: check that the definition of the Lebesgue outer measure is translation
invariant.)

(30) E Let A = {(x, y) ∈ R2 : x2 + y2 ≤ 1, y > 0}. Prove that A is Lebesgue-
measurable. (Hint: prove that it is a Borel set, and use the property that
all Borel sets are Lebesgue-measurable.)
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(31) E Let µ be a finite Borel measure on R (i.e. a finite measure on the Borel
subsets of R). Let F (x) = µ((−∞, x]). Prove that F is monotonically inc-
reasing and right-continuous. (F is called the distribution function of µ.)

(32) E Let F (x) = 0 if x < 0, and F (x) = 1 if x ≥ 0. Follow the construction of
the Lebesgue-Stieltjes measure induced by F , and prove that µF = δ0, the
Dirac measure situated at 0.

(33) E Let F1(x) = [x] (the integer part of x), and F2(x) = 2x. What are the
Lebesgue-Stieltjes measures induced by F1 and F2?

(34) E Let g : (X,A)→ (Y,M) and f : (Y,M)→ (Z,E) be measurable functions.
Prove that f ◦ g is also measurable.

(35) Let (X,A), (Y1,M1), (Y2,M2) be measurable spaces. Prove that a function
f = (f1, f2) : X → Y1 × Y2 is A −M1 ⊗M2-measurable iff f1 is A −M1-
measurable, and f2 is A−M2-measurable. (Use the definition of the product
σ-algebra.)

(36) E Let (X,A, µ) be a complete measure space, and let f, g : X → R be func-
tions such that f = g µ-almost everywhere. Prove that if f is measurable,
than so is g.

(37) Let f : R → Rn be a Borel measurable function, and let g(x) = ‖f(x)‖∞.
Prove that g : R→ R is also Borel measurable.

(38) Let f, g : R → R be Borel measurable functions. Prove that f + g is also
Borel measurable.
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(39) Let f ∈ L+(X). Prove that
∫
X
fdµ = 0 iff f(x) = 0 for µ-almost every

x ∈ X. (Hint: use the definition of
∫
X
fdµ.)

(40) E Let X = N, and µ the counting measure (i.e. µ(A) = |A| if A is a finite
set, and µ(A) = ∞ if A is not finite). Prove that in this case L+(X) is
the set of nonnegative sequences, and for any f = (an) ∈ L+ we have∫
X
fdµ =

∑∞
n=0 an. (Hint: use the definition of L+(X), and the definition

of
∫
X
fdµ.)

(41) E Let (X,A) be a measurable space, and µ1 ≤ µ2 ≤ · · · ≤ µn ≤ . . .
be measures on it. Prove that µ(E) = supn∈N µn(E) is also a measure on
(X,A)-n. (Hint: use the previous exercise and the monotone convergence
theorem.)

(42) E Give an example of a sequence of functions fn ∈ L+(R), fn(x) → f(x)
for all x ∈ R, but

∫
f 6= limn→∞

∫
fn.

(43) E Prove that
∫ 1

0
xa(1 − x)−1 log x dx = −

∑∞
k=1(a + k)−2 for all a > −1.

(Hint: take the power series of (1−x)−1 and use the monotone convergence
theorem.)

(44) E Calculate limn→∞
∫ n
0
e−2x(1 + x

n )
ndx. (Hint: use the monotone conver-

gence theorem or the Lebesgue dominated convergence theorem.)

(45) E Calculate limn→∞
∫ n
1
π+2x2 arctan(nx)

2x4+sin 1
n

dx. (Hint: use the Lebesgue domi-
nated convergence theorem.)

(46) E Calculate
∫∞
0

n sin(x/n)
x(x2+1) dx. (Hint: for t = x/n we have sin t

t → 1, and then
use the Lebesgue dominated convergence theorem.)

(47) E Calculate limn→∞
∫ 1

0
nxn

1+xdx. (Hint: first integrate by parts, and then use
Lebesgue dominated convergence theorem.)

(48) Let F (x) = arctan(2x + 1) if x < 0 and F (x) = 2x+1
x+1 if x ≥ 0. Let µ be

the Lebesgue-Stieltjes measure induced by F , i.e. µ((a, b]) = F (b) − F (a).
Calculate

∫ 1

−1(2 + x)dµ. (Hint: do not forget the jump of F at 0.)
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(49) E Let A1 = [0, 1), A2 = (2, 4). Determine the σ-algebra on R generated by
A1, A2.

(50) E Let (X,A), (Y,M) be measurable spaces. Let N = {E ⊂ X ∩ Y : E ∈
A ∩M}. Is it true that N is a σ-algebra on X ∩ Y ?

(51) E Let A = {(x, y) ∈ R2 : x2 + y2 ≤ 1, x > 0}. Prove that A is Lebesgue
measurable, and calculate its measure λ(A).

(52) E Prove that for any non-empty open set U ⊂ Rn we have λ(U) 6= 0.

(53) E Let H be a Lebesgue measurable set in R. Prove that λ(−H) = λ(H).
(Hint: prove this for the Lebesgue outer measure by the definition.)

(54) E Let f, g : R → Rn be Borel-measurable functions. Prove that h(x) =
〈f(x), g(x)〉 is also Borel-measurable (〈·, ·〉 denotes the usual scalar pro-
duct).

(55) Let f : R→ R be a monotonically increasing function. Prove that f is Borel
measurable.

(56) E For any t ∈ R let δt denote the Dirac measure situated at t. Let µ =
δ−1+δ1, and ν = δ0+δ2. Consider the product measure µ×ν on R2. What
is the value of µ× ν(D) for D = {(x, y) ∈ R2 : x2 + y2 ≤ 2}?

(57) E Prove that for any f, g ∈ L1(X), we have f + g ∈ L1(X).

(58) E Calculate limn→∞
∫ 1

0
nxn

cos xdx. (Hint: integrate by parts, and then LDCT.)

(59) Calculate limn→∞
∫∞
1

n
1+n2x2 dx, and limn→∞

∫∞
0

n
1+n2x2 dx. (Hint: in both

cases you can actually evaluate the integrals by integrating by substitution.
But please also check whether the LDCT can be used.)

(60) Calculate limn→∞
∫∞
0

1
(1+ x

n )n n
√
x
dx. (Hint: calculate the pointwise limit for

each x > 0, and then LDCT.)
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(61) E Let R = {(x, y) ∈ R2 : 1 ≤ x ≤ 3, 0 ≤ y ≤ 2 be a rectangle and
T = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, 2x + y ≤ 3} a triangle in the plane. And
let f(x, y) = (x + y)2x, and let λ2 denote the Lebesgue measure on R2.
Calculate

∫
R
f(x, y)dλ2 and

∫
T
f(x, y)dλ2. (Use Fubini, and please calculate

both ways: dxdy and dydx.)

(62) E Calculate:
∫ 1

x=0

∫ 1

y=x
x sinh y

y dydx. (Hint: notice that you get stuck in this
order of integration, and use Fubini to change the order.)

(63) ∗ Prove that
∫∞
0

e−x

x sinxdx = π/4. (Hint: apply Fubini to the function
e−xy sinx.)

(64) E Let f, g ∈ L1(R). Prove that ‖f + g‖1 ≤ ‖f‖1 + ‖g‖1. (This is basically
trivial, and this is Minkowski’s inequality for the exponent p = 1. For other
exponents the proof is more difficult.)

(65) E Let 1 ≤ p < r < +∞. Show examples of functions f, g : R → R such
that f ∈ Lp(R), f /∈ Lr(R), and g ∈ Lr(R), g /∈ Lp(R). That is, Lp(R) and
Lr(R) mutually do not contain each other. (Hint: restrict the function xα
to an appropriate domain, with an appropriate exponent α.)

(66) E Let 1 ≤ p < r < +∞. Contrary to the previous exercise, prove that
Lr[0, 1] ⊂ Lp[0, 1]. (Hint: for a function f ∈ Lr[0, 1] split the interval [0, 1]
according to whether f(x) ≤ 1 or f(x) > 1, and prove that on both parts
the integral of |f |p is finite.)

(67) ∗ The previous exercise is true in a stronger form. Let µ(X) < +∞. Prove
that for any 1 ≤ p < r < ∞ we have Lr(X) ⊂ Lp(X), and ‖f‖p ≤
µ(X)

1
p−

1
r ‖f‖r. (Hint: for the functions f and the constant 1 function use

Hölder’s inequality with appropriate exponents.)

(68) E Prove that the function F (t) =
∫∞
0
e−txdx is differentiable infinitely

many times on (0,+∞), calculate F (n)(1) and hence calculate the value of∫∞
0
xne−xdx. (Hint: We can differentiate under the integral sign.)

(69) Let 1 ≤ p < +∞. Prove that the step functions are dense in Lp(R). (Hint:
for a nonnegative function f ∈ Lp(R) approximate f from below with step
functions, as in a theorem in a previous class. For the general case, take
f = f+ − f−.)
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For the Fourier series of a function f : [−π, π]→ R we use the notation
a0 = 1

2π

∫ π
−π f(x)dx, ak = 1

π

∫ π
−π f(x) cos kxdx, bk = 1

π

∫ π
−π f(x) sin kxdx

for all k ≥ 1, and ck = 1
2π

∫ π
−π f(x)e

−ikxdx for all k ∈ Z. For a function
f ∈ L1(R) we use the notation f̂ for the Fourier transform of f , i.e. f̂(ξ) =∫∞
−∞ f(x)e−iξxdx.

(70) E Let f(x) = 1+cosx−4 sin 2x, for−π ≤ x < π. Calculate the Fourier series
of f . (Please calculate the real coefficients ak, bk, as well as the complex
coefficients ck). What do you observe? Calculate the value of

∫ π
−π |f(x)|

2dx.

(71) E Let f(x) = |x|, for −π ≤ x < π. Calculate the Fourier series of f . (Only
the coefficients ak, bk.) Prove that the Fourier series converges uniformly.
Substitute x = 0 and hence calculate the value of

∑∞
k=1

1
k2 .

(72) E Prove that if f ∈ L1(R), and g(x) = f(x − a) then ĝ(ξ) = e−iaξ f̂(ξ).
Also, if h(x) = eiaxf(x) then ĥ(ξ) = f̂(ξ − a).

(73) E Prove that if f ∈ L1(R), and g(x) = 1
δ f(

x
δ ) then ĝ(ξ) = f̂(δξ). (Hint:

direct computation.)

(74) Assume f ∈ L1(R) is continuously differentiable and f ′ ∈ L1(R). Prove
that f̂ ′(ξ) = iξf̂(ξ).

(75) Assume f ∈ L1(R), and g(x) = xf(x) ∈ L1(R). Prove that ĝ(ξ) = i(f̂(ξ))′.

(76) Let f, g ∈ L1(R). Prove that f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).

(77) E Let f = 1[−a,a] be the indicator function of the interval [−a, a]. Calculate
f̂ .

(78) E Calculate the Fourier transform of h(x) = e−|x|.

(79) Prove that
∫∞
−∞ e−x

2

dx =
√
π. (Hint: first calculate the integral

∫
R2 e
−x2−y2dxdy

with polar coordinates, then separate the variables.)

(80) Calculate the Fourier transform of f(x) = e−x
2

. (Hint: use the result of the
previous exercise in a complex contour integral along an appropriate path.)
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(81) E Recall that the Schwartz space of function was defined as
S(R) = {f ∈ C∞(R) : ∀p, q ∈ N, xpDqf(x)→ 0 (|x| → ∞)}.
Prove that an equivalent definition would be the following:
S(R) = {f ∈ C∞(R) : ∀p, q ∈ N, xpDqf(x) is bounded}.

(Hint: if the limit was not 0 for some p.q then, after multiplying by x,
the function xp+1Dqf(x) would not be bounded.)

(82) Prove that for any f ∈ S(R) and for any p, q ∈ N we have ‖Dq(xpf(x))‖1 <
+∞. (Hint: we can estimate each term after differentiating multiple times.)

(83) E Let f ∈ S(R), f̂(ξ) =
∫∞
−∞ f(x)e−iξxdx. Prove that ˆ̂

f(x) = 2πf(−x).
Prove that if f is real valued, then f̂ is conjugate symmetric, i.e. f̂(ξ) =

f̂(−ξ)). And conversely, if f is conjugate symmetric, then f̂ is real valued.
Prove that if f is a real valued, even function then f̂ is also real valued and
even, and ˆ̂

f = 2πf . (Hint: inversion formula).

(84) For any a > 0 calculate the Fourier transform of the following functions:
f(x) = a

x2+a2 ,

f(x) =
(
sin ax
x

)2
(Hint: instead of using the definition, use the properties we have learnt

about scaling and products.)

(85) E Let f, g ∈ S(R). Prove that f ∗ g is differentiable and (f ∗ g)′ = f ′ ∗ g =
f ∗ g′. (Hint: direct calculation.)

(86) Prove that
∫∞
−∞

sin t sin 2t
t2 dt = π. (Hint: Parseval/Plancherel formula.)

(87) E Let g(x) = e−x
2

, and gε(x) = 1
εg(

x
ε ). Plot the graph of g(x), g0.01(x),

and g100(x).

(88) Let f, g ∈ S(R), g ≥ 0,
∫
R g = 1, and let gε(x) = 1

εg(
x
ε ). Prove that for

every x ∈ R we have f ∗ ge(x)→ f(x) as ε→ 0.
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(89) E Let f, g ∈ L1(R) be nonnegative functions. Show that ‖f∗g‖1 = ‖f‖1‖g‖1.

(90) E Let f, g ∈ S(R). Show that f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).

(91) E Let f(x) = 1[−a,a](x). Calculate f ∗ f(x).

(92) E Show that the Fourier transform is a linear operator, i.e. f̂ + g = f̂ + ĝ,
and α̂f = αf̂ for all, f, g ∈ L1(R), and α ∈ R.

(93) Let f1(x) = 1[−1,1](x) and f2(x) = 1[−2,−1](x) + 1[1,2](x). Let g(x) =
1√
π
e−x

2

, and gε(x) = 1
εg(

x
ε ) for some small value of ε, like ε = 0.01. Try to

plot the graph of f1 ∗ ge and f2 ∗ ge. If you can use a software like Matlab
or Mathematica to plot the graphs, please do so.

(94) E Let f, g ∈ L2(R). Prove that |f ∗ g(x)| ≤ ‖f‖2‖g‖2 for all x ∈ R. (Hint:
Cauchy-Schwarz.)

(95) E Let f ∈ L1(R), and |g(x)| ≤ K for all x ∈ R. Prove that |f ∗ g(x)| ≤
K‖f‖1 for all x ∈ R. (Hint: direct calculation.)

(96) ∗ Prove that for all n ∈ N and all x ∈ R we have
∣∣( ddx )n( sin xx )

∣∣ ≤ 1
n+1 .

(Hint: Fourier transform both sides of the equation.)

(97) Let f ∈ S(R). Solve the differential equation u′′ − u = f . (Hint: Fourier
transform both sides of the equation.)

(98) ∗ Let f ∈ L2(R), g ∈ S(R),
∫
R g = 1. Prove that f ∗ g(x) is finite for all

x ∈ R, f ∗g is a smooth function, and for gε(x) = 1
εg(

x
ε ) we have f ∗ge → f

in L2 norm as ε→ 0. (Moral of the story: the convolution has a smoothing
effect, and the functions gε can be used to approximate any f ∈ L2(R).)



Exercise sheet 12, Analysis 2, 2023

For the Fourier series of a function f : [−π, π]→ R we use the notation
a0 = 1

2π

∫ π
−π f(x)dx, ak = 1

π

∫ π
−π f(x) cos kxdx, bk = 1

π

∫ π
−π f(x) sin kxdx

for all k ≥ 1, and ck = 1
2π

∫ π
−π f(x)e

−ikxdx for all k ∈ Z. Also, sometimes
we use the notation f̂(k) = ck.

(99) Let f, g ∈ S(R). Prove that f̂ · g(ξ) = 1
2π f̂ ∗ ĝ(ξ).

(100) Let f(x) = e−x
2

+e−|x|+ sin x
x , g(x) = xe−|x|, and h(x) = x2e−x

2

. Calculate
f̂ , ĝ, ĥ.

(101) E Let f(x) = x, for −π ≤ x < π. Calculate the Fourier series of f . (Please
calculate the complex coefficients ck, as well as the real coefficients ak, bk.)

(102) E Let f : R → R be a 2π-periodic function. Show that
∑N
k=−N cke

ikx =

a0 +
∑N
k=1 ak cos kx + bk sin kx, i.e. the partial sums of the Fourier series

are exactly the same whether you consider the complex Fourier series or
the real one.

(103) Prove the closed formula for the Dirichlet kernel: DN (x) =
∑N
k=−N e

ikx =
sin(N+ 1

2 )x

sin 1
2x

.

(104) Plot the Dirichlet kernel for large N .

(105) ∗ Prove that
∫ π
−πDN (t)dt = 2π for all N ∈ N , but

∫ π
−π |DN (t)|dt → +∞

as N →∞.

(106) ∗ Prove the closed formula for the Fejér kernel: Kn(t) =
1

n+1

∑n
k=0Dk(t) =

1
n+1 (

∑n
k=0 e

i(k−n
2 )t)2 = 1

n+1 (
sin

(n+1)t
2

sin t
2

)2.

(107) E Plot the Fejér kernel Kn for large n. Prove that
∫ π
−πKn(t)dt = 2π.

(108) E Let f : R → C be n-times continuously differentiable 2π-periodic func-
tion. Prove that for all k ∈ Z we have f̂ (n)(k) = (ik)nf̂(k). (That is, we have
a completely analogous formula as we had for Fourier transforms. The rule
of thumb here: the smoother the function, the faster the Fourier coefficients
converge to 0.)

(109) Let f, g : R→ C be continuous 2π-periodic functions. Assume that f̂(k) =
ĝ(k) for all k ∈ Z. Show that f = g. (Hint: use Fejér’s theorem.)

(110) E Let f : R→ R be a continuous 2π-periodic function and let g(t) = f(t−y)
for some fixed y ∈ R. Prove that ĝ(k) = e−iky f̂(k). (That is, shifting the
function will result in a phase factor on the Fourier side.)



Exercise sheet 13 (summary for midterm 2), Analysis 2, 2023

(111) Let F (x) = arctan(3x + 1) if x < 0 and F (x) = 3x+1
x+1 if x ≥ 0. Let µ be

the Lebesgue-Stieltjes measaure induced by F , i.e. µ((a, b]) = F (b)−F (a).
Calculate µ([−1, 0)), µ([0, 1]) and

∫ 2

−1 2 + xdµ.

(112) Let f(x) = sin x
|x|3/2 , g(x) =

1−cos x
x2 . Decide whether f, g ∈ L1(R) or L2(R.

(113) Prove that if f ∈ L2(−π, π) then f ∈ L1(−π, π), and ‖f‖1 ≤
√
2π‖f‖2.

(114) Let 1 ≤ p ≤ q ≤ r < +∞. Prove that if f ∈ Lp(R) and f ∈ Lr(R), then
f ∈ Lq(R).

(115) Prove that if f ∈ S(R), then for every 1 ≤ p < +∞ we have f ∈ Lp(R).

(116) Calculate the Fourier transform of the following functions:
f(x) = 1[10,30], g(x) = xe−9x

2

, h(x) = 1
x2+2x+2 .

(117) Let f ∈ S(R) be a real valued, even function, and letg = f ∗ f . Prove that
ĝ is also a real valued, even function, and prove also that ĝ(ξ) ≥ 0 for every
ξ ∈ R.

(118) Let f : R → R be a 2π-periodic function. Prove that for every a ∈ R we
have

∫ a+2π

a
f(t)dt =

∫ π
−π f(t)dt.

(119) Let g(x) = sin2(x), and f(x) = −1, ha −π ≤ x < 0, and f(x) = 1, if
0 ≤ x < π. Calculate the Fourier series of g and f . (Both the complex
coefficients cn and the real coefficients an, bn.)

(120) Let f : R→ R be a π-periodic function. Prove that in the Fourier series of
f all the coefficients with odd indices are zero.

(121) Let f ∈ L2[−π, π]. Prove that |f̂(k)| ≤ 1√
k
is satisfied for infinitely many

indices k. (Hint: Parseval.)

(122) ∗ Let f : [0, π] → R be continuously differentiable and f(0) = f(1) = 0.
Prove that

∫ π
0
|f(t)|2 ≤

∫ π
0
|f ′(t)|2. (This is the Wirtinger-inequality.)


