
Practise exercises 1.

(1) Prove that ∥x− y∥ ≥ |∥x∥ − ∥y∥| for all x,y ∈ Rp.

(2) Let K > 0 be an arbitrary fixed positive number. Prove that xn → a if and
only if for every ε > 0 there exists N such that for every n ≥ N we have
∥xn − a∥ < Kε.

(3) Prove that for any A ⊂ Rp we have int(A) ∪ ∂(A) ∪ ext(A) = Rp, and the
unions are disjoint.

(4) Consider Q ⊂ R. Find int(Q), ∂(Q), ext(Q).

(5) Prove that int(A) is open for any set A ⊂ Rp.

(6) Prove that ∂A is closed for any A ⊂ Rp.

(7) Let C denote the Cantor set (defined by always removing the middle third
of the remaining intervals, as in class). Prove that int(C) = ∅.

(8) Prove that if A ̸= ∅,Rp then A cannot be open and closed at the same time.

(9) Let A2 = {(x, y) ∈ R2 : x = 1/n(n = 1, 2, . . . ), y ∈ (0, 1)}. Draw a picture
of A2 and find int(A2) and ∂(A2).

(10) Prove that if xn → a ∈ Rp then ⟨xn,b⟩ → ⟨a,b⟩.

(11) Find the following limits, if they exist:

lim(x,y)→(2,3)
x−2
y−3

lim(x,y)→(0,0)

3
√

x2y5

x2+y2

lim(x,y)→(0,0)
sin x−sin y

x−y

lim(x,y)→(0,0)(1 + x)y

lim(x,y)→(1,1)
xy−1
x−1
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(12) Let A = {(x, y) ∈ R2 : 0 < x ≤ 2, 0 < y < x2} and B = {(x, y) ∈ R2 : 0 <
x < 1, y = sin 1

x}. Determine intA, intB, ∂A, ∂B.

(13) Prove that G = {(x, y) ∈ R2 : 0 < y, x2 + y2 < 1} is open, and F =
{(x, y, z) ∈ R3 : 0 ≤ x, 0 ≤ y, z ≤ ex+y} is closed.

(14) Find the following limits, if they exist:

lim(x,y)→(0,0)
sin(xy)√
x2+y2

lim(x,y)→(0,0)
x−2y
3x+y

lim(x,y)→(1,0)
ln(x+ey)
x3+y3

(15) Prove that if ∥x∥ = ∥y∥ = 1 and x ⊥ y (i.e. ⟨x,y⟩ = 0) then ∥x−y∥ =
√
2.
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(16) Prove that (x− y) ⊥ (x+ y) if and only if ∥x∥ = ∥y∥.

(17) Prove that if xn → a and yn → b then ⟨xn,yn⟩ → ⟨a,b⟩.

(18) Calculate the partial derivatives of the following functions:

f(x, y) = sinxy + xy2 − ln(x+ y)

f(x, y) = e−1/(x2+y2)

f(x, y) = xy√
x2+y2

f(x, y, z) = arctan(x2 + y4 + z6 + 1)
(19) Let f(x, y, z) = x3 + y4 + x2ye2z. Calculate all partial derivatives of f up

to order 2 (i.e. all expressions like ∂f2

∂x∂y , ∂f2

∂x∂z , etc).

(20) Consider the surface given by z = 16
xy . Give the equation of the tangent

plane at the point (x, y, z) = (1, 2, 8).

(21) Let f(x, y) = x2 − xy + 3y2, (x0, y0) = (1, 2), u = (−3, 4). Give the direc-
tional derivative of f at (x0, y0) in the direction of u. (Normalize u first!)
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(22) The equation z = x2y + xy2 + x + 3y − 1 defines a landscape, and at the
point (4, 1, 26) of this landscape there is a spring. In which direction will
the water flow from the spring?

(23) Give the second order Taylor polynomial of the following functions at the
given points:

f(x, y) = x
y at (1, 2)

f(x, y, z) = x3 + y3 + z3 at (1, 2, 3)

f(x, y) = sin(x+ 2y) at (π/4, π/6).

(24) Find the local maxima and local minima of the following functions:

f(x, y) = x2 + xy + y2 − 3x− 3y

f(x, y) = x3y2(2− x− y)

f(x, y) = x3 + y3 − 9xy

f(x, y) = x4 + y4 − 2x2 + 4xy − 2y2

(25) Find the maximal region in the plane where the function f(x, y) = x3 +
y3 − 9xy is convex.

(26) Find the derivative (i.e. the Jacobian matrix) of the following functions:

f(x, y) = (x2y, x+ y, yex)

f(x, y) = (sin(x− 3y), ln(x+ y))

f(x, y, z) = (x+ y2 + z3, z4 sin(yex))



(27) Let f : Rp → R be differentiable, and let a,b ∈ Rp. Let F (t) = f(a+t(b−a)
for t ∈ [0, 1]. Prove that F ′(t) = ⟨f ′(a + t(b − a),b − a⟩ for every t ∈
[0, 1]. Prove also that this implies that there exist a c ∈ [a,b] such that
f(b)− f(a) = ⟨f ′(c),b− a⟩. (This is the Mean Value Theorem.)
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(28) Chain Rule: Let f(t) =
(
t2 − t, 1

1+t2 , e
t
)
, g(x, y, z) = x2y − z, and t0 = 1,

a = (1, 2, 3). Determine (f ◦ g)′(a) and (g ◦ f)′(t0) by applying the chain
rule.

(29) Inverse functions: let φ : R2 → R2, φ(u, v) = (u3 + uv + v3, u2 − v2).
Plug in (u, v) = (1, 1) to obtain φ(1, 1) = (3, 0) Show that in a small
neighbourhood of (3, 0) the inverse function φ−1 exists and determine the
derivative ((φ−1)′((3, 0).

(30) Lagrange multipliers: determine the local maxima and minima of the follo-
wing functions under the following constraints:

f((x, y, z) = x− y + 3z, x2 + y2/2 + z2/3 = 1;

f(x, y, z) = x2 + y2 + z2, x+ 2y + z = 1, 2x− y − 3z = 4;

f(x, y, z, t) = x2 + 2y2 + z2 + t2, x+ 3y− z + t = 2, 2x− y+ z + 2t = 4.

(31) Implicit differentiation: consider the equation
x2y + 3x3z2 − xyz + ln(2x+ y − z)− 23 = 0. Show that the point (1, 2, 3)
satisfies the equation. Determine the derivatives ∂z/∂y, ∂z/∂x and ∂y/∂x
at this point.
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(32) Chain rule: let r(x) = r(x, y, z) =
√
x2 + y2 + z2. Differentiate r5(x, y, z)

in two ways: first write out r5(x, y, z) = (x2 + y2 + z2)5/2 and calculate its
partial derivatives one by one. Second, use the chain rule for the functions
f(t) = t5/2 and g(x, y, z) = x2 + y2 + z2. (Of course, you should get the
same result.)

(33) Reminder: the product rule for derivatives of scalar functions f, g : Rp → R
is given by (f ·g)′ = gf ′+fg′. Let u,v ∈ R3 be a fixed vectors, and consider
the inner product with u, f(x) = ⟨u,x⟩. First show that f ′(x) = u for all
x ∈ R3. Also, let g : R3 → R3 be given by h(x) = ⟨u,x⟩⟨v,x⟩. Show that
h′(x) = ⟨u,x⟩v + ⟨v,x⟩u.

(34) Let f : R → R, f(x) = x + x3 + cosx. Prove that f−1 : R → R exists on
the whole real line, f−1 is differentiable, and (f−1)′(1) = 1.

(35) Lagrange multipliers. Determine the local maxima and minima of the fol-
lowing function with the given constraints: f(x, y, z) = x2 + y2 − x − z,
x+ y + z = 0, 2x2 − y + z = 0.



(36) Implicit differentiation. Consider the equations

x3
1y2 + x1x3 + 3x1x2y

2
1 + x3y1y

2
2 = 3

x2
1x2y1 − x3y

2
1y2 + 7x2y

5
2 = −5

Show that the point (0, 2, 1, 3,−1) satisfies these equations. Show that
in a small neighbourhood of the point (0, 2, 1) we can express the variables
y1, y2 as a function (y1, y2) = φ(x1, x2, x3) and determine the derivative
matrix φ′(0, 2, 1).

(37) Repeat the calculation we did in class to calculate the volume of the k-
dimensional unit ball: γ2k = πk

k! and γ2k+1 = πk22k+1k!
(2k+1)! .

(38) Assume H ⊂ Rp−1 is a convex set. Consider the cone C determined by a
point (z1, . . . , zp) ∈ Rp (where zn > 0) and H embedded in the coordinate-
hyperplane xn = 0. Show that this cone is also convex. As all convex sets
are Jordan measurable, this shows that C is Jordan measurable. Next, by
taking horizontal slices, show that the measure of C is tp(C) = 1

p t
p−1(H)zp.

(39) Draw a picture and calculate the area of the region T = {(x, y) ∈ R2 :
x2 + y2 ≤ 1, x2 ≤ y}.

(40) Let T be the trapezoid in R2 given by the points (0, 0), (3, 0), (2, 1), (1, 1),
and let f(x, y) = 3x− y2. Calculate

∫
T
f .

(41) Polar coordinates. Let T = {(x, y) ∈ R2 : 9x2 + y2

4 ≤ 1, x ≥ 0}, and

f(x, y) = 1 +
√
9x2 + y2

4 . Calculate
∫
T
f
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(42) Prove that if x ⊥ y, then for all α ∈ R we have ∥x+ αy∥ ≥ ∥x∥.

(43) Let A = {(x, y) ∈ R2 : x2 + 4y2 < 9, x + y ≥ 1}. Draw a picture of A and
determine int(A) and ∂(A).

(44) Find the following limits if they exist:

lim(x,y)→(0,0)
y3−3x2y
x2+xy+y2

lim(x,y)→(0,0)
4x2−2xy+3y2

x2−xy+2y2

(45) Consider the surface given by the equation z = 4x2y + xy3 + ln(2x − y).
Show that the point (x, y, z) = (1, 1, 5) is on the surface. Find the equation
of the tangent plane at this point. Also, find the directional derivative at
this point in the direction u = (−5, 12).

(46) Give the second order Taylor polynomial of the function xy at the point
(2, 3) and give an estimate of 2.012.98 accordingly.

(47) Find the local minima and maxima of the following functions:

f(x, y) = x3 + y3 − 3xy

f(x, y) = 4x2 + 2xy − 5y2 + 2



(48) Find the maxima and minima of the following function under the given
constraints:

f(x, y, z) = x2 + y2 − x− z, 2x+ y + z = 0, 2x2 − y + z = 0

(49) Chain rule: let f(u, v) =
√
u2 + v2 and z(x, y) = f(xey, x2−3y). Determine

∂z/∂x and ∂z/∂dy.

(50) Implicit differentiation: consider the equation z sin(x− y)+ 3x2yz+ ln(x+
2y− z) = 6. Show that the point (1, 1, 2) satisfies this equation, and deter-
mine the value of ∂z/∂x and ∂z/∂dy at this point.

(51) Inverse functions: let φ : R2 → R2, φ(u, v) = (2u3v + uv + uv2, u ln(3u −
v) + 3v2). Plug in (u, v) = (1, 2) to obtain φ(1, 2) = (10, 12) Show that
in a small neighbourhood of (10, 12) the inverse function φ−1 exists and
determine the derivative ((φ−1)′((10, 12).

(52) Draw a picture and calculate the area of the region T = {(x, y) ∈ R2 :
x2 + y2 ≤ 1, y ≥ 0, x ≤ y, x2 ≤ y}.

(53) Let T be the triangle given given by the points (0, 0), (2, 0), (1, 1), and let
f(x, y) = 3x2 − y + xy. Calculate

∫
T
f(x, y)dxdy.

(54) Polar coordinates. Let T = {(x, y) ∈ R2 : x2+ y2

4 ≤ 1, y ≥ 0}, and f(x, y) =

x+ 3y. Calculate
∫
T
f .
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(55) Cylindrical coordinates: let f(x, y, y) = z2 and V = {(x, y, z) ∈ R3 : x2 +
y2 ≥ 1, x2 + y2 + z2 ≤ 4}. Calculate

∫
V
f .

(56) Cylindrical coordinates: let f(x, y, z) = 2yex
2+z2

and V = {(x, y, z) ∈ R3 :
x2 + z2 ≤ 1, 0 ≤ y ≤ 1}.

(57) Spherical coordinates: determine the center of gravity of the half-ball V =
{(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1, z ≥ 0}.

(58) Calculate the arc-length of the curve r(t) = (t+ 1, t2

2 ,
2
√
2t3

3 ), t ∈ [−2, 0].

(59) Calculate the arc-length of the curve r(t) = (cos t− t sin t, sin t− t cos t, t),
t ∈ [0, 1].

(60) Normal vector and tangent plane at a point of a surface: let r(u, v) =
(u2 − 2v2, uv− v3, u4 − 2v) describe a surface. Calculate the normal vector
to the surface at the point (u, v) = (−1, 1), and give the equation of the
tangent plane.

(61) Let r(u, v) = (u + v, u2 + v2, u3 + v3). Calculate the normal vector at the
point (u, v) = (1,−1) and give the equation of the tangent plane.

(62) Calculate the surface area of the following surface: r(u, v) = (u2, 2u cos v, 2u sin v,
u ∈ [0, 1], v ∈ [0, π/2].

(63) Calculate the surface area of the following surface: r(u, v) = (u cos v, u sin v, v),
u ∈ [−1, 1], v ∈ [0, 2π]. Try to visualize the surface.



(64) Integration along a curve: a curve G is given by r(t) = (t, t2, t3), 0 ≤ t ≤
2, and a vector field F (x, y, z) = (y2 − x2, 2yz,−x2) is given. Calculate∫
G
F (r)dr.

(65) Let A = (1,−2, 3), B = (2, 1, 4), and consider the line segment L joining A
and B. Also, let F (x, y, z) = (y + z, x+ z, x+ y). Calculate

∫
L
F .

(66) Surface integral: let F (x, y, z) = (x, y, z) and let the surface S be given by
r(u, v) = (3 cos v, 3 cosu sin v, sinu), u ∈ [0, π], v ∈ [0, 2π]. Calculate

∫
FdS.

(67) Let F (x, y, z) = (xy, 0, 2x + z) and let S be given by r(u, v) = (u +
2v,−v, u2 + 3v), 0 ≤ u ≤ 3, −2 ≤ v ≤ 0. Calculate

∫
FdS.
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(68) Cylindrical coordinates: let f(x, y, z) = x + y + z, and V = {(x, y, z) :
x2 + y2 ≤ 1, z ≥ 0, z ≤ 4 + x+ 2y}. Calculate

∫
V
f .

(69) Spherical coordinates: let f(x, y, z) = 2x + y + 1 and let V = {(x, y, z) :
(x− 1)2 + y2 + z2 ≤ 4}. Calculate

∫
V
f .

(70) Arc-length: calculate the arc-length of the following curve:
r(t) = (t,

√
4t− t2, 2 ln(1− t

4 ), 0 ≤ t ≤ 1.

(71) Calculate the arc-length of the parabola y = x2 where x ranges from 0 to
1.

(72) Normal vector and tangent plane: calculate the normal vector and tan-
gent plane of the given surface at the given point. The surface is r(u, v) =
(uv, u2 + 3v2, uv2 − 1) and the point is (u, v) = (1, 2).

(73) Calculate the surface area of the following surface:
r(u, v) = (cosu− v sinu, sinu+ v cosu, u+ v), 0 ≤ u ≤ π, 0 ≤ v ≤ 1.

(74) Calculate the surface area of the following surface:
S = {(x, y, z) : x2 + y2 ≤ 1, z = xy}.

(75) Integration along a curve: let F (x, y, z) = (xy, yz, 1) and let a curve be
given by r(t) = (t2, 2t+ 1, t3), where 0 ≤ t ≤ 3, Calculate

∫
G
F (r)dr.

(76) Integration along a curve: let F (x, y, z) = (x, y, z) and let G be the unit
circle (with anti-clockwise orientation) in the z = 0 plane. Calculate

∫
G
F .

(77) Integration along a surface: let F (x, y, z) = ( 1
xz ,

1
yz , 0), and a surface S be

given by r(u, v) = (cos3 u cos v, cos3 u sin v, sin3 u), where π/4 ≤ u ≤ π/2,
0 ≤ v ≤ π/2. Calculate

∫
FdS.

(78) Divergence theorem: let F (x, y, z) = (2x+ ey cos z, y2+sin(2x) arctan z, 2z),
and let S be the surface of the half-sphere determined by x2 + y2 + z2 = 1,
z ≥ 0 (with the normal vector of the surface pointing outside). Use the
divergence theorem to determine

∫
FdS.

(79) Scalar potential. Let F (x, y, z) = (2xy− yz, x2+3y2z−xz, y3−xy). Prove
that F has a scalar potential v(x, y, z) and calculate v.

(80) Divergence and curl: let F (x, y, z) = (x2 + y3, 12xy − 3x, xyz2). Calculate
the divergence and rotation (curl) of F at the point (x, y, z) = (1, 3, 5).



(81) Stokes theorem. Let H(x, y, z) = (xz2,−yz2, 3(4y− 1− y2). By solving the
previous exercise you can easily determine a vector potential F of H. With
the help of this vector potential calculate the surface integral

∫
H
dS, where

the surface S is determined by r(u, v) = (u cos v, u sin v, 1 + π
4 − arctanu),

where 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π.

(82) What is the point-wise limit of the function sequence fn(x) = 1−(ln x)n

1+(ln x)n

where 1 ≤ x? Is the convergence uniform?

(83) Let fn(x) =
1

x2+n1/n , where 0 ≤ x ≤ 1. Calculate limn→∞
∫ 1

0
fn(x)dx.

(84) Use the Weierstrass criterion to prove that
∑∞

n=1
1
ne

−nx2

converges uni-
formly on the set H = [1,+∞).

(85) Use the Cauchy criterion to prove that
∑∞

n=1
1
ne

−nx2

does not converge
uniformly on the set H = (0,+∞).

(86) Determine the radius of convergence and calculate the sum of the following
power series:

f(x) =
∑∞

n=1
x2n−1

2n−1 ,

g(x) =
∑∞

n=0
(n+1)xn

3n+1 ,

h(x) =
∑∞

n=0
(x−3)n+1

n+1

(87) Let f(x) = 1 if −π ≤ x ≤ 0 and f(x) = x if 0 < x < π, and extend f
2π-periodically to R. Calculate the Fourier coefficients of f .

(88) Let f : R → R be 2π-periodic, continuously differentiable function. Prove
that the Fourier coefficients of f and f ′ satisfy the following equalities:
a0(f

′) = 0, an(f ′) = nbn(f) and bn(f
′) = −nan(f).

(89) Use the formula eix = cosx+ i sinx to calculate the following Fourier series
in closed form:

∑∞
n=1 q

n cosnx for |q| < 1.

(90) First calculate the sum for the series
∑∞

n=2
xn

n(n−1) . Then use the formula
eix = cosx+i sinx and to evaluate the Fourier series

∑∞
n=2

cosnx
n(n−1) in closed

form.


