(1) Prove that $\|\mathbf{x}-\mathbf{y}\| \geq|\|\mathbf{x}\|-\|\mathbf{y}\||$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$.
(2) Let $K>0$ be an arbitrary fixed positive number. Prove that $\mathbf{x}_{n} \rightarrow \mathbf{a}$ if and only if for every $\varepsilon>0$ there exists N such that for every $n \geq N$ we have $\left\|\mathbf{x}_{n}-\mathbf{a}\right\|<K \varepsilon$.
(3) Prove that for any $A \subset \mathbb{R}^{p}$ we have $\operatorname{int}(A) \cup \partial(A) \cup \operatorname{ext}(A)=\mathbb{R}^{p}$, and the unions are disjoint.
(4) Consider $\mathbb{Q} \subset \mathbb{R}$. Find $\operatorname{int}(Q), \partial(Q), \operatorname{ext}(\mathbb{Q})$.
(5) Prove that $\operatorname{int}(A)$ is open for any set $A \subset \mathbb{R}^{p}$.
(6) Prove that ∂A is closed for any $A \subset \mathbb{R}^{p}$.
(7) Let C denote the Cantor set (defined by always removing the middle third of the remaining intervals, as in class). Prove that $\operatorname{int}(C)=\emptyset$.
(8) Prove that if $A \neq \emptyset, \mathbb{R}^{p}$ then A cannot be open and closed at the same time.
(9) Let $A_{2}=\left\{(x, y) \in \mathbb{R}^{2}: x=1 / n(n=1,2, \ldots), y \in(0,1)\right\}$. Draw a picture of A_{2} and find $\operatorname{int}\left(A_{2}\right)$ and $\partial\left(A_{2}\right)$.
(10) Prove that if $\mathbf{x}_{n} \rightarrow \mathbf{a} \in \mathbb{R}^{p}$ then $\left\langle\mathbf{x}_{n}, \mathbf{b}\right\rangle \rightarrow\langle\mathbf{a}, \mathbf{b}\rangle$.
(11) Find the following limits, if they exist:

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(2,3)} \frac{x-2}{y-3} \\
& \lim _{(x, y) \rightarrow(0,0)} \frac{\sqrt[3]{x^{2} y^{5}}}{x^{2}+y^{2}} \\
& \lim _{(x, y) \rightarrow(0,0)} \frac{\sin x-\sin y}{x-y} \\
& \lim _{(x, y) \rightarrow(0,0)}(1+x)^{y} \\
& \lim _{(x, y) \rightarrow(1,1)} \frac{x y-1}{x-1}
\end{aligned}
$$

Practise exercises 2.
(12) Let $A=\left\{(x, y) \in \mathbb{R}^{2}: 0<x \leq 2,0<y<x^{2}\right\}$ and $B=\left\{(x, y) \in \mathbb{R}^{2}: 0<\right.$ $\left.x<1, y=\sin \frac{1}{x}\right\}$. Determine int $A, \operatorname{int} B, \partial A, \partial B$.
(13) Prove that $G=\left\{(x, y) \in \mathbb{R}^{2}: 0<y, x^{2}+y^{2}<1\right\}$ is open, and $F=$ $\left\{(x, y, z) \in \mathbb{R}^{3}: 0 \leq x, 0 \leq y, z \leq e^{x+y}\right\}$ is closed.
(14) Find the following limits, if they exist:

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(0,0)} \frac{\sin (x y)}{\sqrt{x^{2}+y^{2}}} \\
& \lim _{(x, y) \rightarrow(0,0)} \frac{x-2 y}{3 x+y} \\
& \lim _{(x, y) \rightarrow(1,0)} \frac{\ln \left(x+e^{y}\right)}{x^{3}+y^{3}}
\end{aligned}
$$

(15) Prove that if $\|\mathbf{x}\|=\|\mathbf{y}\|=1$ and $\mathbf{x} \perp \mathbf{y}$ (i.e. $\langle\mathbf{x}, \mathbf{y}\rangle=0$) then $\|\mathbf{x}-\mathbf{y}\|=\sqrt{2}$.
(16) Prove that $(\mathbf{x}-\mathbf{y}) \perp(\mathbf{x}+\mathbf{y})$ if and only if $\|\mathbf{x}\|=\|\mathbf{y}\|$.
(17) Prove that if $\mathbf{x}_{n} \rightarrow \mathbf{a}$ and $\mathbf{y}_{n} \rightarrow \mathbf{b}$ then $\left\langle\mathbf{x}_{n}, \mathbf{y}_{n}\right\rangle \rightarrow\langle\mathbf{a}, \mathbf{b}\rangle$.
(18) Calculate the partial derivatives of the following functions:

$$
\begin{aligned}
& f(x, y)=\sin x y+x y^{2}-\ln (x+y) \\
& f(x, y)=e^{-1 /\left(x^{2}+y^{2}\right)} \\
& f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}} \\
& f(x, y, z)=\arctan \left(x^{2}+y^{4}+z^{6}+1\right)
\end{aligned}
$$

(19) Let $f(x, y, z)=x^{3}+y^{4}+x^{2} y e^{2 z}$. Calculate all partial derivatives of f up to order 2 (i.e. all expressions like $\frac{\partial f^{2}}{\partial x \partial y}, \frac{\partial f^{2}}{\partial x \partial z}$, etc).
(20) Consider the surface given by $z=\frac{16}{x y}$. Give the equation of the tangent plane at the point $(x, y, z)=(1,2,8)$.
(21) Let $f(x, y)=x^{2}-x y+3 y^{2},\left(x_{0}, y_{0}\right)=(1,2), \mathbf{u}=(-3,4)$. Give the directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of \mathbf{u}. (Normalize \mathbf{u} first!)

Practise exercises 3 .

(22) The equation $z=x^{2} y+x y^{2}+x+3 y-1$ defines a landscape, and at the point $(4,1,26)$ of this landscape there is a spring. In which direction will the water flow from the spring?
(23) Give the second order Taylor polynomial of the following functions at the given points:

$$
\begin{aligned}
& f(x, y)=\frac{x}{y} \text { at }(1,2) \\
& f(x, y, z)=x^{3}+y^{3}+z^{3} \text { at }(1,2,3) \\
& f(x, y)=\sin (x+2 y) \text { at }(\pi / 4, \pi / 6)
\end{aligned}
$$

(24) Find the local maxima and local minima of the following functions:

$$
\begin{aligned}
& f(x, y)=x^{2}+x y+y^{2}-3 x-3 y \\
& f(x, y)=x^{3} y^{2}(2-x-y) \\
& f(x, y)=x^{3}+y^{3}-9 x y \\
& f(x, y)=x^{4}+y^{4}-2 x^{2}+4 x y-2 y^{2}
\end{aligned}
$$

(25) Find the maximal region in the plane where the function $f(x, y)=x^{3}+$ $y^{3}-9 x y$ is convex.
(26) Find the derivative (i.e. the Jacobian matrix) of the following functions:

$$
\begin{aligned}
& f(x, y)=\left(x^{2} y, x+y, y e^{x}\right) \\
& f(x, y)=(\sin (x-3 y), \ln (x+y)) \\
& f(x, y, z)=\left(x+y^{2}+z^{3}, z^{4} \sin \left(y e^{x}\right)\right)
\end{aligned}
$$

(27) Let $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be differentiable, and let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{p}$. Let $F(t)=f(\mathbf{a}+t(\mathbf{b}-\mathbf{a})$ for $t \in[0,1]$. Prove that $F^{\prime}(t)=\left\langle f^{\prime}(\mathbf{a}+t(\mathbf{b}-\mathbf{a}), \mathbf{b}-\mathbf{a}\rangle\right.$ for every $t \in$ $[0,1]$. Prove also that this implies that there exist a $\mathbf{c} \in[\mathbf{a}, \mathbf{b}]$ such that $f(\mathbf{b})-f(\mathbf{a})=\left\langle f^{\prime}(\mathbf{c}), \mathbf{b}-\mathbf{a}\right\rangle$. (This is the Mean Value Theorem.)

Practise exercises 4.

(28) Chain Rule: Let $f(t)=\left(t^{2}-t, \frac{1}{1+t^{2}}, e^{t}\right), g(x, y, z)=x^{2} y-z$, and $t_{0}=1$, $\underline{a}=(1,2,3)$. Determine $(f \circ g)^{\prime}(\underline{a})$ and $(g \circ f)^{\prime}\left(t_{0}\right)$ by applying the chain rule.
(29) Inverse functions: let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \varphi(u, v)=\left(u^{3}+u v+v^{3}, u^{2}-v^{2}\right)$. Plug in $(u, v)=(1,1)$ to obtain $\varphi(1,1)=(3,0)$ Show that in a small neighbourhood of $(3,0)$ the inverse function φ^{-1} exists and determine the derivative $\left(\left(\varphi^{-1}\right)^{\prime}((3,0)\right.$.
(30) Lagrange multipliers: determine the local maxima and minima of the following functions under the following constraints:

$$
\begin{aligned}
& f\left((x, y, z)=x-y+3 z, x^{2}+y^{2} / 2+z^{2} / 3=1\right. \\
& f(x, y, z)=x^{2}+y^{2}+z^{2}, x+2 y+z=1,2 x-y-3 z=4 \\
& f(x, y, z, t)=x^{2}+2 y^{2}+z^{2}+t^{2}, x+3 y-z+t=2,2 x-y+z+2 t=4 .
\end{aligned}
$$

(31) Implicit differentiation: consider the equation
$x^{2} y+3 x^{3} z^{2}-x y z+\ln (2 x+y-z)-23=0$. Show that the point $(1,2,3)$ satisfies the equation. Determine the derivatives $\partial z / \partial y, \partial z / \partial x$ and $\partial y / \partial x$ at this point.

Practise exercises 5.

(32) Chain rule: let $r(\mathbf{x})=r(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$. Differentiate $r^{5}(x, y, z)$ in two ways: first write out $r^{5}(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}$ and calculate its partial derivatives one by one. Second, use the chain rule for the functions $f(t)=t^{5 / 2}$ and $g(x, y, z)=x^{2}+y^{2}+z^{2}$. (Of course, you should get the same result.)
(33) Reminder: the product rule for derivatives of scalar functions $f, g: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is given by $(f \cdot g)^{\prime}=g f^{\prime}+f g^{\prime}$. Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$ be a fixed vectors, and consider the inner product with $\mathbf{u}, f(\mathbf{x})=\langle\mathbf{u}, \mathbf{x}\rangle$. First show that $f^{\prime}(\mathbf{x})=\mathbf{u}$ for all $\mathbf{x} \in \mathbb{R}^{3}$. Also, let $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by $h(\mathbf{x})=\langle\mathbf{u}, \mathbf{x}\rangle\langle\mathbf{v}, \mathbf{x}\rangle$. Show that $h^{\prime}(\mathbf{x})=\langle\mathbf{u}, \mathbf{x}\rangle \mathbf{v}+\langle\mathbf{v}, \mathbf{x}\rangle \mathbf{u}$.
(34) Let $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x+x^{3}+\cos x$. Prove that $f^{-1}: \mathbb{R} \rightarrow \mathbb{R}$ exists on the whole real line, f^{-1} is differentiable, and $\left(f^{-1}\right)^{\prime}(1)=1$.
(35) Lagrange multipliers. Determine the local maxima and minima of the following function with the given constraints: $f(x, y, z)=x^{2}+y^{2}-x-z$, $x+y+z=0,2 x^{2}-y+z=0$.
(36) Implicit differentiation. Consider the equations

$$
\begin{aligned}
& x_{1}^{3} y_{2}+x_{1} x_{3}+3 x_{1} x_{2} y_{1}^{2}+x_{3} y_{1} y_{2}^{2}=3 \\
& x_{1}^{2} x_{2} y_{1}-x_{3} y_{1}^{2} y_{2}+7 x_{2} y_{2}^{5}=-5
\end{aligned}
$$

Show that the point $(0,2,1,3,-1)$ satisfies these equations. Show that in a small neighbourhood of the point $(0,2,1)$ we can express the variables y_{1}, y_{2} as a function $\left(y_{1}, y_{2}\right)=\varphi\left(x_{1}, x_{2}, x_{3}\right)$ and determine the derivative matrix $\varphi^{\prime}(0,2,1)$.
(37) Repeat the calculation we did in class to calculate the volume of the k dimensional unit ball: $\gamma_{2 k}=\frac{\pi^{k}}{k!}$ and $\gamma_{2 k+1}=\frac{\pi^{k} 2^{2 k+1} k!}{(2 k+1)!}$.
(38) Assume $H \subset \mathbb{R}^{p-1}$ is a convex set. Consider the cone C determined by a point $\left(z_{1}, \ldots, z_{p}\right) \in \mathbb{R}^{p}$ (where $z_{n}>0$) and H embedded in the coordinatehyperplane $x_{n}=0$. Show that this cone is also convex. As all convex sets are Jordan measurable, this shows that C is Jordan measurable. Next, by taking horizontal slices, show that the measure of C is $t^{p}(C)=\frac{1}{p} t^{p-1}(H) z_{p}$.
(39) Draw a picture and calculate the area of the region $T=\left\{(x, y) \in R^{2}\right.$: $\left.x^{2}+y^{2} \leq 1, x^{2} \leq y\right\}$.
(40) Let T be the trapezoid in \mathbb{R}^{2} given by the points $(0,0),(3,0),(2,1),(1,1)$, and let $f(x, y)=3 x-y^{2}$. Calculate $\int_{T} f$.
(41) Polar coordinates. Let $T=\left\{(x, y) \in \mathbb{R}^{2}: 9 x^{2}+\frac{y^{2}}{4} \leq 1, x \geq 0\right\}$, and $f(x, y)=1+\sqrt{9 x^{2}+\frac{y^{2}}{4}}$. Calculate $\int_{T} f$

Practise exercises 6: practice for midterm exam I.
(42) Prove that if $\mathbf{x} \perp \mathbf{y}$, then for all $\alpha \in \mathbb{R}$ we have $\|\mathbf{x}+\alpha \mathbf{y}\| \geq\|\mathbf{x}\|$.
(43) Let $A=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+4 y^{2}<9, x+y \geq 1\right\}$. Draw a picture of A and determine $\operatorname{int}(A)$ and $\partial(A)$.
(44) Find the following limits if they exist:

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(0,0)} \frac{y^{3}-3 x^{2} y}{x^{2}+x y+y^{2}} \\
& \lim _{(x, y) \rightarrow(0,0)} \frac{4 x^{2}-2 x y+3 y^{2}}{x^{2}-x y+2 y^{2}}
\end{aligned}
$$

(45) Consider the surface given by the equation $z=4 x^{2} y+x y^{3}+\ln (2 x-y)$. Show that the point $(x, y, z)=(1,1,5)$ is on the surface. Find the equation of the tangent plane at this point. Also, find the directional derivative at this point in the direction $\mathbf{u}=(-5,12)$.
(46) Give the second order Taylor polynomial of the function x^{y} at the point $(2,3)$ and give an estimate of $2.01^{2.98}$ accordingly.
(47) Find the local minima and maxima of the following functions:

$$
\begin{aligned}
& f(x, y)=x^{3}+y^{3}-3 x y \\
& f(x, y)=4 x^{2}+2 x y-5 y^{2}+2
\end{aligned}
$$

(48) Find the maxima and minima of the following function under the given constraints:

$$
f(x, y, z)=x^{2}+y^{2}-x-z, 2 x+y+z=0,2 x^{2}-y+z=0
$$

(49) Chain rule: let $f(u, v)=\sqrt{u^{2}+v^{2}}$ and $z(x, y)=f\left(x e^{y}, x^{2}-3 y\right)$. Determine $\partial z / \partial x$ and $\partial z / \partial d y$.
(50) Implicit differentiation: consider the equation $z \sin (x-y)+3 x^{2} y z+\ln (x+$ $2 y-z)=6$. Show that the point $(1,1,2)$ satisfies this equation, and determine the value of $\partial z / \partial x$ and $\partial z / \partial d y$ at this point.
(51) Inverse functions: let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \varphi(u, v)=\left(2 u^{3} v+u v+u v^{2}, u \ln (3 u-\right.$ $\left.v)+3 v^{2}\right)$. Plug in $(u, v)=(1,2)$ to obtain $\varphi(1,2)=(10,12)$ Show that in a small neighbourhood of $(10,12)$ the inverse function φ^{-1} exists and determine the derivative $\left(\left(\varphi^{-1}\right)^{\prime}((10,12)\right.$.
(52) Draw a picture and calculate the area of the region $T=\left\{(x, y) \in R^{2}\right.$: $\left.x^{2}+y^{2} \leq 1, y \geq 0, x \leq y, x^{2} \leq y\right\}$.
(53) Let T be the triangle given given by the points $(0,0),(2,0),(1,1)$, and let $f(x, y)=3 x^{2}-y+x y$. Calculate $\int_{T} f(x, y) d x d y$.
(54) Polar coordinates. Let $T=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+\frac{y^{2}}{4} \leq 1, y \geq 0\right\}$, and $f(x, y)=$ $x+3 y$. Calculate $\int_{T} f$.

Practise exercises 7.

(55) Cylindrical coordinates: let $f(x, y, y)=z^{2}$ and $V=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+\right.$ $\left.y^{2} \geq 1, x^{2}+y^{2}+z^{2} \leq 4\right\}$. Calculate $\int_{V} f$.
(56) Cylindrical coordinates: let $f(x, y, z)=2 y e^{x^{2}+z^{2}}$ and $V=\left\{(x, y, z) \in \mathbb{R}^{3}\right.$: $\left.x^{2}+z^{2} \leq 1,0 \leq y \leq 1\right\}$.
(57) Spherical coordinates: determine the center of gravity of the half-ball $V=$ $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leq 1, z \geq 0\right\}$.
(58) Calculate the arc-length of the curve $r(t)=\left(t+1, \frac{t^{2}}{2}, \frac{2 \sqrt{2 t^{3}}}{3}\right), t \in[-2,0]$.
(59) Calculate the arc-length of the curve $r(t)=(\cos t-t \sin t, \sin t-t \cos t, t)$, $t \in[0,1]$.
(60) Normal vector and tangent plane at a point of a surface: let $r(u, v)=$ $\left(u^{2}-2 v^{2}, u v-v^{3}, u^{4}-2 v\right)$ describe a surface. Calculate the normal vector to the surface at the point $(u, v)=(-1,1)$, and give the equation of the tangent plane.
(61) Let $r(u, v)=\left(u+v, u^{2}+v^{2}, u^{3}+v^{3}\right)$. Calculate the normal vector at the point $(u, v)=(1,-1)$ and give the equation of the tangent plane.
(62) Calculate the surface area of the following surface: $r(u, v)=\left(u^{2}, 2 u \cos v, 2 u \sin v\right.$, $u \in[0,1], v \in[0, \pi / 2]$.
(63) Calculate the surface area of the following surface: $r(u, v)=(u \cos v, u \sin v, v)$, $u \in[-1,1], v \in[0,2 \pi]$. Try to visualize the surface.
(64) Integration along a curve: a curve G is given by $r(t)=\left(t, t^{2}, t^{3}\right), 0 \leq t \leq$ 2 , and a vector field $F(x, y, z)=\left(y^{2}-x^{2}, 2 y z,-x^{2}\right)$ is given. Calculate $\int_{G} F(r) d r$.
(65) Let $A=(1,-2,3), B=(2,1,4)$, and consider the line segment L joining A and B. Also, let $F(x, y, z)=(y+z, x+z, x+y)$. Calculate $\int_{L} F$.
(66) Surface integral: let $F(x, y, z)=(x, y, z)$ and let the surface S be given by $r(u, v)=(3 \cos v, 3 \cos u \sin v, \sin u), u \in[0, \pi], v \in[0,2 \pi]$. Calculate $\int F d S$.
(67) Let $F(x, y, z)=(x y, 0,2 x+z)$ and let S be given by $r(u, v)=(u+$ $\left.2 v,-v, u^{2}+3 v\right), 0 \leq u \leq 3,-2 \leq v \leq 0$. Calculate $\int F d S$.

Practise exercises 6: practice for midterm exam II.
(68) Cylindrical coordinates: let $f(x, y, z)=x+y+z$, and $V=\{(x, y, z)$: $\left.x^{2}+y^{2} \leq 1, z \geq 0, z \leq 4+x+2 y\right\}$. Calculate $\int_{V} f$.
(69) Spherical coordinates: let $f(x, y, z)=2 x+y+1$ and let $V=\{(x, y, z)$: $\left.(x-1)^{2}+y^{2}+z^{2} \leq 4\right\}$. Calculate $\int_{V} f$.
(70) Arc-length: calculate the arc-length of the following curve:

$$
r(t)=\left(t, \sqrt{4 t-t^{2}}, 2 \ln \left(1-\frac{t}{4}\right), 0 \leq t \leq 1 .\right.
$$

(71) Calculate the arc-length of the parabola $y=x^{2}$ where x ranges from 0 to 1.
(72) Normal vector and tangent plane: calculate the normal vector and tangent plane of the given surface at the given point. The surface is $r(u, v)=$ $\left(u v, u^{2}+3 v^{2}, u v^{2}-1\right)$ and the point is $(u, v)=(1,2)$.
(73) Calculate the surface area of the following surface:

$$
r(u, v)=(\cos u-v \sin u, \sin u+v \cos u, u+v), 0 \leq u \leq \pi, 0 \leq v \leq 1 .
$$

(74) Calculate the surface area of the following surface:

$$
S=\left\{(x, y, z): x^{2}+y^{2} \leq 1, z=x y\right\}
$$

(75) Integration along a curve: let $F(x, y, z)=(x y, y z, 1)$ and let a curve be given by $r(t)=\left(t^{2}, 2 t+1, t^{3}\right)$, where $0 \leq t \leq 3$, Calculate $\int_{G} F(r) d r$.
(76) Integration along a curve: let $F(x, y, z)=(x, y, z)$ and let G be the unit circle (with anti-clockwise orientation) in the $z=0$ plane. Calculate $\int_{G} F$.
(77) Integration along a surface: let $F(x, y, z)=\left(\frac{1}{x z}, \frac{1}{y z}, 0\right)$, and a surface S be given by $r(u, v)=\left(\cos ^{3} u \cos v, \cos ^{3} u \sin v, \sin ^{3} u\right)$, where $\pi / 4 \leq u \leq \pi / 2$, $0 \leq v \leq \pi / 2$. Calculate $\int F d S$.
(78) Divergence theorem: let $F(x, y, z)=\left(2 x+e^{y \cos z}, y^{2}+\sin (2 x) \arctan z, 2 z\right)$, and let S be the surface of the half-sphere determined by $x^{2}+y^{2}+z^{2}=1$, $z \geq 0$ (with the normal vector of the surface pointing outside). Use the divergence theorem to determine $\int F d S$.
(79) Scalar potential. Let $F(x, y, z)=\left(2 x y-y z, x^{2}+3 y^{2} z-x z, y^{3}-x y\right)$. Prove that F has a scalar potential $v(x, y, z)$ and calculate v.
(80) Divergence and curl: let $F(x, y, z)=\left(x^{2}+y^{3}, 12 x y-3 x, x y z^{2}\right)$. Calculate the divergence and rotation (curl) of F at the point $(x, y, z)=(1,3,5)$.
(81) Stokes theorem. Let $H(x, y, z)=\left(x z^{2},-y z^{2}, 3\left(4 y-1-y^{2}\right)\right.$. By solving the previous exercise you can easily determine a vector potential F of H. With the help of this vector potential calculate the surface integral $\int_{H} d S$, where the surface S is determined by $r(u, v)=\left(u \cos v, u \sin v, 1+\frac{\pi}{4}-\arctan u\right)$, where $0 \leq u \leq 1,0 \leq v \leq 2 \pi$.
(82) What is the point-wise limit of the function sequence $f_{n}(x)=\frac{1-(\ln x)^{n}}{1+(\ln x)^{n}}$ where $1 \leq x$? Is the convergence uniform?
(83) Let $f_{n}(x)=\frac{1}{x^{2}+n^{1 / n}}$, where $0 \leq x \leq 1$. Calculate $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x$.
(84) Use the Weierstrass criterion to prove that $\sum_{n=1}^{\infty} \frac{1}{n} e^{-n x^{2}}$ converges uniformly on the set $H=[1,+\infty)$.
(85) Use the Cauchy criterion to prove that $\sum_{n=1}^{\infty} \frac{1}{n} e^{-n x^{2}}$ does not converge uniformly on the set $H=(0,+\infty)$.
(86) Determine the radius of convergence and calculate the sum of the following power series:

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{\infty} \frac{x^{2 n-1}}{2 n-1} \\
& g(x)=\sum_{n=0}^{\infty} \frac{(n+1) x^{n}}{3^{n+1}} \\
& h(x)=\sum_{n=0}^{\infty} \frac{(x-3)^{n+1}}{n+1}
\end{aligned}
$$

(87) Let $f(x)=1$ if $-\pi \leq x \leq 0$ and $f(x)=x$ if $0<x<\pi$, and extend f 2π-periodically to \mathbb{R}. Calculate the Fourier coefficients of f.
(88) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be 2π-periodic, continuously differentiable function. Prove that the Fourier coefficients of f and f^{\prime} satisfy the following equalities: $a_{0}\left(f^{\prime}\right)=0, a_{n}\left(f^{\prime}\right)=n b_{n}(f)$ and $b_{n}\left(f^{\prime}\right)=-n a_{n}(f)$.
(89) Use the formula $e^{i x}=\cos x+i \sin x$ to calculate the following Fourier series in closed form: $\sum_{n=1}^{\infty} q^{n} \cos n x$ for $|q|<1$.
(90) First calculate the sum for the series $\sum_{n=2}^{\infty} \frac{x^{n}}{n(n-1)}$. Then use the formula $e^{i x}=\cos x+i \sin x$ and to evaluate the Fourier series $\sum_{n=2}^{\infty} \frac{\cos n x}{n(n-1)}$ in closed form.

