FUN Exercise sheet 1.

- (1) On \mathbb{R} , does either of the functions $d(x,y) = (x-y)^2$ or $d(x,y) = \sqrt{|x-y|}$ define a metric?
- (2) Prove that $(\mathbb{K}^n, \|\cdot\|_2)$ is a normed space, where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , and $\|\cdot\|_2$ denotes the Euclidean norm, $\|\mathbf{x}\| = \sqrt{\sum_{j=1}^n |x_j|^2}$.
- (3) Prove that the space of continuous functions C[a, b] is a normed space with the norm $\|\mathbf{x}\| = \max_{t \in [a, b]} |\mathbf{x}(t)|$.
- (4) Give an example of a metric space in which there exists a small ball of radius r_1 which contains (and not equal to) a bigger ball with radius $r_2 > r_1$.
- (5) Prove that the situation of the previous exercise cannot happen in a normed space (over \mathbb{R} or \mathbb{C}).
- (6) Prove that $B(x_0, r) = \{x \in X : d(x, x_0) < r\}$ is open, and $\overline{B}(x_0, r) = \{x \in X : d(x, x_0) \le r\}$ is closed.
- (7) (HW1) Prove that Int(M) is open for any subset $M \subset X$ of any metric space (X, d).
- (8) Prove that in any metric space, every convergent sequence is Cauchy, and every Cauchy sequence is bounded.
- (9) Two distance functions d_1 and d_2 on the same set X are called equivalent if there exist positive constants a, b > 0 such that $ad_1(x, y) \le d_2(x, y) \le bd_1(x, y)$. Prove that a sequence is convergent in (X, d_1) if and only if it is convergent in (X, d_2) .
- (10) (HW2) Prove that C[a, b] is a normed space with the integral norm $\|\mathbf{x}\| = \int_{t=a}^{b} |x(t)| dt.$
- (11) Let (X_1, d_1) and (X_2, d_2) be metric spaces. Let $X = X_1 \times X_2$ and $d((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2)$. Prove that (X, d) is a metric space.
- (12) Prove that l^p is separable for 1 .
- (13) (HW3) Find a sequence $(a_n) \in l^p$ for all $1 but <math>(a_n) \notin l^1$. Also, find a sequence $a_n \to 0$ but $(a_n) \notin l^p$ for any $1 \le p < \infty$.
- (14) Prove that in a discrete metric space every subset is open and closed.