FUN Exercise sheet 10.
(112) (HW1) Let $T: H \rightarrow H$ be bounded self-adjoint, and let $m=$ $\inf _{\|x\|=1}\langle T x, x\rangle$. Prove that for any $\lambda \in \sigma(T)$ we have $\lambda \geq m$.
(113) Let A, B, T be bounded self-adjoint operators, such that $T \geq 0$ and T commutes with A and B. Show that $A \leq B$ implies $A T \leq B T$.
(114) Show that for any $T \in B(H, H)$ the operator $T^{*} T$ is positive.
(115) (HW2) Let $T \geq 0$ be a positive operator. Prove that for all x, y we have $|\langle T x, y\rangle| \leq\langle T x, x\rangle^{1 / 2}\langle T y, y\rangle^{1 / 2}$
(116) Prove that if $T \geq 0$ and $\langle T x, x\rangle=0$ then $T x=0$.
(117) Let S be unitary, P be a projection. Show that $S^{-1} P S$ is a projection.
(118) (HW3) Find the operator norm of the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

(119) Let $S, T \geq 0$ be positive self-adjoint operators such that $S T=T S$. Prove that $T S \geq 0$. (You are allowed to use the existence of the square root operator.)
(120) Let S be unitary, P be a projection. Show that $S^{-1} P S$ is a projection.

