FUN Exercise sheet 10.

- (112) (HW1) Let $T : H \to H$ be bounded self-adjoint, and let $m = \inf_{\|x\|=1} \langle Tx, x \rangle$. Prove that for any $\lambda \in \sigma(T)$ we have $\lambda \geq m$.
- (113) Let A, B, T be bounded self-adjoint operators, such that $T \ge 0$ and T commutes with A and B. Show that $A \le B$ implies $AT \le BT$.
- (114) Show that for any $T \in B(H, H)$ the operator T^*T is positive.
- (115) (HW2) Let $T \ge 0$ be a positive operator. Prove that for all x, y we have $|\langle Tx, y \rangle| \le \langle Tx, x \rangle^{1/2} \langle Ty, y \rangle^{1/2}$
- (116) Prove that if $T \ge 0$ and $\langle Tx, x \rangle = 0$ then Tx = 0.
- (117) Let S be unitary, P be a projection. Show that $S^{-1}PS$ is a projection.
- (118) (HW3) Find the operator norm of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

- (119) Let $S, T \ge 0$ be positive self-adjoint operators such that ST = TS. Prove that $TS \ge 0$. (You are allowed to use the existence of the square root operator.)
- (120) Let S be unitary, P be a projection. Show that $S^{-1}PS$ is a projection.