FUN Exercise sheet 2. – date of submission 2018.02.27.

- (15) Prove that for $0 the formula <math>||x||_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}}$ does not define a norm in the space $\left\{x \in \mathbb{C}^{\mathbb{N}} \mid \sum_{n=1}^{\infty} |x_n|^p < \infty\right\}$.
- (16) Let $\mathbf{x}(t) = t^2$. Visualize the open ball $B(\mathbf{x}, 1/2)$ in $(C[-1, 1], \|\cdot\|_{\infty})$.
- (17) Prove that $(l^{\infty}, \|\cdot\|_{\infty})$ is complete.
- (18) (HW1) Prove that $(C[a, b], \|\cdot\|_{\infty})$ is complete.
- (19) (HW2) Let $M \subset l^{\infty}$ denote the set of sequences which contain only finitely many non-zero terms. Show that M is not complete (with the metric inherited from l^{∞}).
- (20) Prove that $|||y|| ||x||| \le ||y x||$.
- (21) What do the unit balls look like in 2-dimensions for the l^p norm, as p ranges from 1 to ∞ ?
- (22) Prove that the closed unit ball $\overline{B}(0,1)$ is convex in any normed space.
- (23) (HW3) Prove that the closure of a convex set is convex in any normed space.
- (24) Show that the vector space operations $(x, y) \mapsto x + y$ and $x \mapsto \alpha x$ are continuous in any normed space.
- (25) Prove that in a Banach space, an absolutely convergent series is convergent.
- (26) Show an example of a normed space and a series which is absolutely convergent but not convergent.
- (27) Prove that a non-trivial subset of a normed space cannot be open and closed at the same time.