FUN Exercise sheet 3. - date of submission 2018.03.01.
(28) Let X be a normed space, and $Y \subset X$ a closed subspace. Prove that the quotient space X / Y becomes a normed space with the norm $\|[x]\|=\inf _{y \in Y}\|x+y\|$.
(29) Prove that $\operatorname{Ran}(T)$ and $\operatorname{Ker}(T)$ are vector spaces for any linear operator T, and if $\operatorname{dim}(\operatorname{Dom}(T))=n<\infty$, then $\operatorname{dim}(\operatorname{Ran}(T)) \leq n$.
(30) (HW1) Let $1 \leq p<r \leq+\infty$, and consider the spaces $L^{p}(\mathbb{R})$ and $L^{r}(\mathbb{R})$. Does either of them contain the other?
(31) Let X be the space of real-valued functions on \mathbb{R} whose derivatives of all orders exist everywhere on \mathbb{R}. Let $T: X \rightarrow X$ be defined by $x(t) \mapsto x^{\prime}(t)$. Show that T is linear and surjective but T^{-1} does not exist.
(32) Let X be the space of polynomials on $[0,1]$ with the $\|\cdot\|_{\max }$ norm. Show that differentiation, $x(t) \mapsto x^{\prime}(t)$ is a linear operator on X, but it is not bounded.
(33) (HW2) Let $f \in C[0,1]$ be given, and let $M_{f}:\left(C[0,1],\|\cdot\|_{\infty}\right) \rightarrow\left(C[0,1],\|\cdot\|_{\infty}\right)$ be the multiplication operator by f, i.e., $\forall g \in C[0,1],\left(M_{f} g\right)(x):=f(x) g(x)$. Prove that M_{f} is a linear operator and determine its norm.
(34) Let $X=\left(C[0,1],\|\cdot\|_{\max }\right)$, and let $T: X \rightarrow X$ be defined by $T x(t)=\int_{0}^{t} x(\tau) d \tau$. Show that T is bounded linear, and determine its norm $\|T\|$.
(35) For any linear operators $T: X \rightarrow X, T_{1}: Y \rightarrow Z$ and $T_{2}: X \rightarrow Y$ we have $\left\|T_{1} T_{2}\right\| \leq\left\|T_{1}\right\|\left\|T_{2}\right\|$, and $\left\|T^{n}\right\| \leq\|T\|^{n}$.
(36) Show that a linear operator $T: X \rightarrow Y$ is bounded iff it maps bounded sets to bounded sets.
(37) Show that $T: l^{\infty} \rightarrow l^{\infty}$ given by $\left(x_{1}, \ldots x_{j}, \ldots\right) \mapsto\left(x_{1} / 1, \ldots, x_{j} / j, \ldots\right)$ is bounded linear.
(38) Show that the range of a bounded linear operator $T: X \rightarrow Y$ need not be closed in Y.
(39) Show that the inverse of a bounded linear operator need not be bounded.
(40) (HW3) Let $T: X \rightarrow Y$ be a surjective bounded linear operator. Assume that there exist a $b>0$ such that $\|T x\| \geq b\|x\|$ for all $x \in X$. Prove that T^{-1} exists and is bounded.
(41) Let X be the space of bounded real-valued functions on \mathbb{R} with the sup-norm. Define $T: X \rightarrow X$ by $x(t) \mapsto x(t-1)$. Prove that T is bounded linear and determine its norm.

