FUN Exercise sheet 3. – date of submission 2018.03.01.

- (28) Let X be a normed space, and $Y \subset X$ a closed subspace. Prove that the quotient space X/Y becomes a normed space with the norm $||[x]|| = \inf_{y \in Y} ||x + y||$.
- (29) Prove that $\operatorname{Ran}(T)$ and $\operatorname{Ker}(T)$ are vector spaces for any linear operator T, and if $\dim(\operatorname{Dom}(T)) = n < \infty$, then $\dim(\operatorname{Ran}(T)) \le n$.
- (30) (HW1) Let $1 \leq p < r \leq +\infty$, and consider the spaces $L^p(\mathbb{R})$ and $L^r(\mathbb{R})$. Does either of them contain the other?
- (31) Let X be the space of real-valued functions on \mathbb{R} whose derivatives of all orders exist everywhere on \mathbb{R} . Let $T: X \to X$ be defined by $x(t) \mapsto x'(t)$. Show that T is linear and surjective but T^{-1} does not exist.
- (32) Let X be the space of polynomials on [0, 1] with the $\|\cdot\|_{\max}$ norm. Show that differentiation, $x(t) \mapsto x'(t)$ is a linear operator on X, but it is not bounded.
- (33) (HW2) Let $f \in C[0,1]$ be given, and let $M_f : (C[0,1], \|\cdot\|_{\infty}) \to (C[0,1], \|\cdot\|_{\infty})$ be the multiplication operator by f, i.e., $\forall g \in C[0,1], (M_fg)(x) := f(x)g(x)$. Prove that M_f is a linear operator and determine its norm.
- (34) Let $X = (C[0,1], \|\cdot\|_{\max})$, and let $T: X \to X$ be defined by $Tx(t) = \int_0^t x(\tau) d\tau$. Show that T is bounded linear, and determine its norm $\|T\|$.
- (35) For any linear operators $T: X \to X$, $T_1: Y \to Z$ and $T_2: X \to Y$ we have $||T_1T_2|| \le ||T_1|| ||T_2||$, and $||T^n|| \le ||T||^n$.
- (36) Show that a linear operator $T: X \to Y$ is bounded iff it maps bounded sets to bounded sets.
- (37) Show that $T : l^{\infty} \to l^{\infty}$ given by $(x_1, \ldots, x_j, \ldots) \mapsto (x_1/1, \ldots, x_j/j, \ldots)$ is bounded linear.
- (38) Show that the range of a bounded linear operator $T: X \to Y$ need not be closed in Y.
- (39) Show that the inverse of a bounded linear operator need not be bounded.
- (40) (HW3) Let $T : X \to Y$ be a surjective bounded linear operator. Assume that there exist a b > 0 such that $||Tx|| \ge b||x||$ for all $x \in X$. Prove that T^{-1} exists and is bounded.
- (41) Let X be the space of bounded real-valued functions on \mathbb{R} with the sup-norm. Define $T: X \to X$ by $x(t) \mapsto x(t-1)$. Prove that T is bounded linear and determine its norm.