FUN Exercise sheet 4. – date of submission 2018.03.08.

- (42) (HW1) Find the norm of the linear functional f defined on C[-1,1] by $f(\mathbf{x}) = \int_{-1}^{0} \mathbf{x}(t)dt \int_{0}^{1} \mathbf{x}(t)dt$.
- (43) Let $C^1[0,1]$ denote the space of continuously differentiable functions on [0,1]. Introduce the norm $\|\mathbf{x}\| = \max_{t \in [0,1]} |\mathbf{x}(t)| + \max_{t \in [0,1]} |\mathbf{x}'(t)|$. Show that it is indeed a norm. Show that the functional $f(\mathbf{x}) = \mathbf{x}'(\frac{1}{2})$ is linear and bounded, and determine its norm.
- (44) Give an example of two norms on the same vector space, $(X, \|\cdot\|_1)$ and $(X, \|\cdot\|_2)$ such that the identity mapping $I: X \to X$ is not continuous!
- (45) Given a closed, convex symmetric body A in \mathbb{R}^3 , prove that there exists a norm $\|\cdot\|$ on \mathbb{R}^3 such that $A = \overline{B}(0,1)$.
- (46) If \underline{f} is a bounded linear functional on a complex normed space, then is \overline{f} also bounded and linear? (The bar is complex conjugation.)
- (47) Let f be a linear functional on a normed space X. Prove that f is bounded iff Kerf is a closed subspace. Prove that if Kerf is not closed then it is dense in X.
- (48) (HW2) A linear functional f on X = C[0,1] is called positive if $f(x) \ge 0$ for all nonnegative functions x(t). Prove that $f \in X'$.
- (49) Prove that if X is a compact metric space, and $M \subset X$ is closed then M is compact.
- (50) Let X, Y be metric spaces, X compact, and $f: X \to Y$ be a continuous bijection. Prove that f^{-1} is also continuous.
- (51) Let dim $X = n < \infty$ and Y be any normed space. Let $T: X \to Y$ be a linear operator. Show that T is automatically bounded.
- (52) (HW3) Let dim $X = n < \infty$. Show that $X' = X^*$ and dim X' = n.
- (53) Give an example of a bounded linear operator $T: X \to X$ such that $\overline{T(B(0,1))}$ is compact but RanT is not finite dimensional.
- (54) Let c_0 denote the vector space of real sequences converging to zero, with the sup norm. Show that the dual space of c_0 is l^1 .
- (55) Prove that c_0 is not reflexive.
- (56) Define a linear functional f on c_0 by $(x_1, x_2, \dots, x_n, \dots) \mapsto \sum_{n=1}^{\infty} \frac{x_n}{n^2}$. What is the norm of f?

1