FUN Exercise sheet 5. - date of submission 2018.03.20.
(59) Prove the parallelogram law in Hilbert spaces: $\|x+y\|^{2}+\|x-y\|^{2}=$ $2\left(\|x\|^{2}+\|y\|^{2}\right)$.
(60) Give an example of a normed space where the norm cannot be induced by an inner product.
(61) Prove the polarization identities in Hilbert spaces: over \mathbb{R} we have: $\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)$
over \mathbb{C} we have: $\operatorname{Re}\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)$, and $\operatorname{Im}\langle x, y\rangle=$ $\frac{1}{4}\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right)$.
(62) Prove the continuity of the inner product: if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ then $\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle$.
(63) Prove that if $\left\|x_{n}\right\| \rightarrow\|x\|$ and $\left\langle x_{n}, x\right\rangle \rightarrow\langle x, x\rangle$ then $x_{n} \rightarrow x$.
(64) (HW1) Show that in a Hilbert space x is orthogonal to y if and only if $\|x+\alpha y\|=\|x-\alpha y\|$ for all $\alpha \in \mathbb{K}$.
(65) We proved that for every closed subspace Y in a Hilbert space H there exists a projection operator $P_{Y}: H \rightarrow H$ which assigns to every vector $x \in H$ the vector $y \in Y$ which is closest to x. Prove that P_{Y} is a bounded linear operator.
(66) Let $Y \subset l^{2}$ be the subspace $Y=\left\{\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right) \in l^{2}: x_{2 n}=\right.$ 0 for every $n \in \mathbb{N}\}$. Show that Y is a closed subspace and find Y^{\perp}.
(67) (HW2) Let $M \subset H$ be an arbitrary non-empty subset of a Hilbert space H. Prove that M^{\perp} is a closed subspace.
(68) Prove that an orthonormal set is linearly independent.
(69) (HW3) Let $\left(e_{k}\right)$ be an orthonormal basis in H, and let x, y be arbitrary vectors. Prove that

$$
\langle x, y\rangle=\sum_{k=1}^{\infty}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}
$$

(70) Let $H=L^{2}(-1,1)$ and let $f_{1}(t)=1, f_{2}(t)=t, f_{3}(t)=t^{2}+a t+b$. Choose the parameters a, b so that f_{3} be orthogonal to f_{1}, f_{2}.
(71) Let $H=L^{2}(-\pi, \pi)$, and let $f(t)=t$. Calculate the real Fourier series of f. Hence determine the sum $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$.

