- FUN Exercise sheet 5. date of submission 2018.03.20.
- (59) Prove the parallelogram law in Hilbert spaces: $||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2).$
- (60) Give an example of a normed space where the norm cannot be induced by an inner product.
- (61) Prove the polarization identities in Hilbert spaces: over \mathbb{R} we have: $\langle x, y \rangle = \frac{1}{4}(||x + y||^2 - ||x - y||^2)$

over \mathbb{C} we have: $\operatorname{Re}\langle x, y \rangle = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2)$, and $\operatorname{Im}\langle x, y \rangle = \frac{1}{4}(\|x+iy\|^2 - \|x-iy\|^2)$.

- (62) Prove the continuity of the inner product: if $x_n \to x$ and $y_n \to y$ then $\langle x_n, y_n \rangle \to \langle x, y \rangle$.
- (63) Prove that if $||x_n|| \to ||x||$ and $\langle x_n, x \rangle \to \langle x, x \rangle$ then $x_n \to x$.
- (64) (HW1) Show that in a Hilbert space x is orthogonal to y if and only if $||x + \alpha y|| = ||x \alpha y||$ for all $\alpha \in \mathbb{K}$.
- (65) We proved that for every closed subspace Y in a Hilbert space H there exists a projection operator $P_Y : H \to H$ which assigns to every vector $x \in H$ the vector $y \in Y$ which is closest to x. Prove that P_Y is a bounded linear operator.
- (66) Let $Y \subset l^2$ be the subspace $Y = \{\mathbf{x} = (x_1, x_2, \dots) \in l^2 : x_{2n} = 0 \text{ for every } n \in \mathbb{N}\}$. Show that Y is a closed subspace and find Y^{\perp} .
- (67) (HW2) Let $M \subset H$ be an arbitrary non-empty subset of a Hilbert space H. Prove that M^{\perp} is a closed subspace.
- (68) Prove that an orthonormal set is linearly independent.
- (69) (HW3) Let (e_k) be an orthonormal basis in H, and let x, y be arbitrary vectors. Prove that

$$\langle x, y \rangle = \sum_{k=1}^{\infty} \langle x, e_k \rangle \overline{\langle y, e_k \rangle}$$

- (70) Let $H = L^2(-1,1)$ and let $f_1(t) = 1$, $f_2(t) = t$, $f_3(t) = t^2 + at + b$. Choose the parameters a, b so that f_3 be orthogonal to f_1, f_2 .
- (71) Let $H = L^2(-\pi, \pi)$, and let f(t) = t. Calculate the real Fourier series of f. Hence determine the sum $\sum_{k=1}^{\infty} \frac{1}{k^2}$.