FUN Exercise sheet 6. - date of submission 2018.04.10.
(72) Prove the properties of the adjoint operator:
(a) $\left\langle T^{*} y, x\right\rangle=\langle y, T x\rangle$
(b) $(S+T)^{*}=S^{*}+T^{*}$
(c) $(\alpha T)^{*}=\bar{\alpha} T^{*}$
(d) $\left(T^{*}\right)^{*}=T$
(e) $\left\|T^{*} T\right\|=\left\|T T^{*}\right\|=\|T\|^{2}$
(f) $T^{*} T=0$ iff $T=0$
(g) $(S T)^{*}=T^{*} S^{*}$.
(73) Prove that if $T_{n} \rightarrow T$ then $T_{n}^{*} \rightarrow T^{*}$.
(74) Prove that if $T: H \rightarrow H$ is bijective and bounded, then $\left(T^{-1}\right)^{*}=$ $\left(T^{*}\right)^{-1}$.
(75) (HW1) Let $T: l^{2} \rightarrow l^{2}$ be the right shift operator, i.e. $T\left(x_{1}, x_{2}, \ldots,\right)=$ $\left(0, x_{1}, x_{2}, \ldots\right)$. Find $T^{*}$. Show that $T^{*} T=I$ but $T$ is not unitary.
(76) Show that for any bounded linear operator $T: H \rightarrow H$ the operators $T_{1}=\frac{1}{2}\left(T+T^{*}\right)$ and $T_{2}=\frac{1}{2 i}\left(T-T^{*}\right)$ are both self-adjoint, and $T=T_{1}+i T_{2}$.
(77) (HW2) Let $T: H \rightarrow H$ be a non-zero bounded self-adjoint operator. Prove that $T^{n} \neq 0$ for any $n$.
(78) Prove that if a closed subspace $M$ is invariant under a bounded linear operator $T$ (i.e. $T x \in M$ for all $x \in M$ ) then $M^{\perp}$ is invariant under $T^{*}$.
(79) Prove that a bounded linear operator $T$ is normal if and only if $\|T x\|=\left\|T^{*} x\right\|$ for every $x \in H$.
(80) (HW3) Prove that $\operatorname{Ker} T=\operatorname{Ker} T^{*} T$ and $\overline{\operatorname{RanT} T^{*}}=\overline{\operatorname{RanT}^{*}}$.

