FUN Exercise sheet 6. – date of submission 2018.04.10.

- (72) Prove the properties of the adjoint operator:
 - (a) $\langle T^*y, x \rangle = \langle y, Tx \rangle$ (b) $(S+T)^* = S^* + T^*$ (c) $(\alpha T)^* = \overline{\alpha}T^*$ (d) $(T^*)^* = T$ (e) $||T^*T|| = ||TT^*|| = ||T||^2$ (f) $T^*T = 0$ iff T = 0(g) $(ST)^* = T^*S^*$.
- (73) Prove that if $T_n \to T$ then $T_n^* \to T^*$.
- (74) Prove that if $T: H \to H$ is bijective and bounded, then $(T^{-1})^* = (T^*)^{-1}$.
- (75) (HW1) Let $T: l^2 \to l^2$ be the right shift operator, i.e. $T(x_1, x_2, \ldots,) = (0, x_1, x_2, \ldots)$. Find T^* . Show that $T^*T = I$ but T is not unitary.
- (76) Show that for any bounded linear operator $T: H \to H$ the operators $T_1 = \frac{1}{2}(T + T^*)$ and $T_2 = \frac{1}{2i}(T T^*)$ are both self-adjoint, and $T = T_1 + iT_2$.
- (77) (HW2) Let $T: H \to H$ be a non-zero bounded self-adjoint operator. Prove that $T^n \neq 0$ for any n.
- (78) Prove that if a closed subspace M is invariant under a bounded linear operator T (i.e. $Tx \in M$ for all $x \in M$) then M^{\perp} is invariant under T^* .
- (79) Prove that a bounded linear operator T is normal if and only if $||Tx|| = ||T^*x||$ for every $x \in H$.
- (80) (HW3) Prove that $KerT = KerT^*T$ and $\overline{RanT^*T} = \overline{RanT^*}$.