FUN Exercise sheet 7. – date of submission 2018.04.19.

- (81) (HW1) Let $\mathbf{y} = (y_1, \ldots, y_n, \ldots)$ be a sequence of complex numbers such that $\sum_{j=1}^{\infty} y_j x_j$ converges for every $\mathbf{x} = (x_1, \ldots, x_n, \ldots) \in c_0$ (recall that c_0 is the space of sequences converging to 0). Prove that $\sum_{n=1}^{\infty} |y_n| < \infty$.
- (82) Let x_n be a sequence of vectors in a Banach space, and assume that for all $f \in X'$ the sequence of numbers $f(x_n)$ is bounded. Show that $||x_n||$ is bounded.
- (83) Let $q_n(t) = \frac{\sin(n+\frac{1}{2})t}{\sin\frac{1}{2}t}$, and define linear functionals on $C[0, 2\pi]$ by $f_n(\mathbf{x}) = \int_0^{2\pi} \mathbf{x}(t)q_n(t)dt$. Prove that f_n is bounded and $||f_n|| = \int_0^{2\pi} |q_n(t)|dt$.
- (84) Prove that $\int_0^{2\pi} |q_n(t)| dt \to \infty$ as $n \to \infty$.
- (85) Let X, Y be Banach spaces. Prove that $X \times Y$ is also a Banach space with the usual norm ||(x, y)|| = ||x|| + ||y||.
- (86) Show that an open mapping need not map closed sets to closed sets.
- (87) (HW2) Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on the space X such that $(X, \|\cdot\|_1)$ and $(X, \|\cdot\|_2)$ are both complete. Assume that for any sequence $(x_n) \subset X$ the fact $\|x_n\|_1 \to 0$ always implies $\|x_n\|_2 \to 0$. Prove that the two norms are equivalent.
- (88) (HW3) Let $T : X \to Y$ be an injective bounded linear operator, where X, Y are Banach spaces and DomT = X. Prove that T^{-1} : $RanT \to X$ is bounded if and only if RanT is closed in Y.