FUN Exercise sheet 8. – date of submission 2018.04.26.

- (89) Assume that T is an injective closed operator. Show that T^{-1} is also closed.
- (90) (HW1) Let $DomT \subset X$ and $T : DomT \to Y$ be a closed linear operator, and let $C \subset X$ be a compact subset. Prove that T(C) is closed in Y.
- (91) Prove that in any normed space X and any vector $x \in X$ we have $||x|| = \sup_{f \in X'} \frac{|f(x)|}{||f||}.$
- (92) Prove that if f(x) = f(y) for every $f \in X'$ then x = y.
- (93) (HW2) Prove that if $T : DomT \to Y$ is a closed operator (where $DomT \subset X$) and $S \in B(X, Y)$ then T + S is also a closed operator with Dom(T + S) = DomT.
- (94) Let $x \in X$ and $g_x \in X''$ be defined by $g_x(f) = f(x)$. Prove that $||g_x|| = ||x||$.
- (95) Let $T = T^* \in B(H)$ be a self-adjoint operator. Prove that if $\langle Tx, x \rangle = 0$ for all x, then T = 0 (even if H is a real Hilbert space).
- (96) (HW3) Let H be a Hilbert space, and let $T : H \to H$ be a linear operator such that DomT = H, and $\langle Tx, y \rangle = \langle x, Ty \rangle$. Prove that T is automatically bounded (and thus self-adjoint).
- (97) Let $T \in B(X, Y)$ and $x_n \xrightarrow{w} x \in X$. Prove that $Tx_n \xrightarrow{w} Tx$.
- (98) Prove that $x_n \xrightarrow{w} x$ implies $\liminf ||x_n|| \ge ||x||$.