FUN Exercise sheet 9. – date of submission 2018.05.08.

- (99) (HW1) Let $X = (C[0,1], \|\cdot\|_{\infty})$ and $v \in X$ be a fixed function. Let T be the multiplication operator by v, i.e. Tx(t) = v(t)x(t). Find the spectrum of T.
- (100) Let P be an orthogonal projection operator onto a closed subspace Y in a Hilbert space. Find the spectrum of P.
- (101) (HW2) Let $T \in B(X, X)$. Prove that $||R_{\lambda}(T)|| \to 0$ as $\lambda \to \infty$.
- (102) Let $S, T \in B(X, X)$ and $\lambda \in \rho(S) \cap \rho(T)$. Prove that $R_{\lambda}(S) R_{\lambda}(T) = R_{\lambda}(S)(T-S)R_{\lambda}(T)$.
- (103) Prove that for any $T \in B(X, X)$ we have $r_{\sigma}(\alpha T) = |\alpha|r_{\sigma}(T)$, and $r_{\sigma}(T^n) = (r_{\sigma}(T))^n$.
- (104) Show an example of a bounded linear operator $T: H \to H$ which is not self-adjoint, but has real spectrum.
- (105) Let T be a multiplication operator on l^2 defined by $(x_1, x_2, ...) \mapsto (\lambda_1 x_1, \lambda_2 x_2, ...)$ for some bounded sequence (λ_n) . What is the spectrum of T?
- (106) Let f and g be two nonzero vectors in a Hilbert space, and let Q be the operator defined by $Q(x) = \langle x, f \rangle g$. Find the spectrum of Q.
- (107) (HW3) Let U be a unitary operator in a Hilbert space. Show that if $\lambda \in \sigma(U)$ then $|\lambda| = 1$.
- (108) Let T be unitary and self-adjoint. Prove that $\sigma(T) \subset \{-1, +1\}$.
- (109) For $A \in B(X)$ the number $\lambda \in \mathbb{C}$ is an approximate eigenvalue of A if there is a sequence $\{v_n\}_{n\in\mathbb{N}} \subset X$ of unit vectors for which $\lim_{n\to\infty} ||Av_n - \lambda v_n|| = 0$. Prove that if λ is an approximate eigenvalue of A then $\lambda \in \sigma(A)$.