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CHAPTER X

Introduction to Wavelets

Abstract. This chapter introduces the relatively recent subject of wavelets, which is an outgrowth
of Fourier analysis in mathematics and signal processing in engineering. Except in one case,
construction of examples of wavelets tends to be difficult. Much of the chapter is devoted to
construction of some of the better known examples and lists of their most important properties.
Section 1 defines wavelets and discusses three features of traditional Fourier analysis: the

Uncertainty Principle, Gibbs phenomenon, and the Shannon Sampling Theorem. It ends with a
brief essay on the need for wavelets in various applications.
Section 2 establishes that the Haar system is an orthonormal basis of L2(R). The Haar wavelet

predates the general theory of wavelets by many decades but provides a prototype for some of the
development. The section ends with some discussion of convergence of one-sided Haar expansions
for function spaces besides L2(R).
Section 3 begins the general theory ofwavelets, introducing the notion ofmultiresolution analysis

to abstract the construction in Section 2 of the Haar wavelet. The ingredients of a multiresolution
analysis are a scaling function, traditionally called ϕ, and an increasing sequence of closed subspaces
Vj of L2(R) with certain properties. The wavelet that is constructed is traditionally called √ .
Section 4 introduces the Shannon wavelet, whose construction is immediate from the theory of

multiresolution analyses. The new ingredient here, beyond the ideas used for the Haar wavelet, is
the careful use of the generating function of the scaling function to obtain a formula for the wavelet.
Section 5 supplements the theory of Section 3 by showing how to build a multiresolution analysis

out of a candidate for the scaling function.
Section 6 introduces the Meyer wavelets, each of which is smooth and has Fourier transform of a

prescribed order of differentiability. The full theory of Sections 3 and 5 is used in their construction.
Section 7 introduces splines, examines one example, and sees the need for more theory. It

develops one further aspect of the general theory, showing how to replace a “Riesz system” with an
orthonormal set. It therefore allows one to relax the conditions needed in Section 5 for a function to
be a scaling function. In addition, it uses elementary complex analysis to prove a series expansion
for π2/ sin2 πz that is needed in Section 8.
Section 8 continues the discussion of the role of splines in the theory of wavelets, introducing

the Battle–Lemarié wavelets. As with the Meyer wavelets each is smooth and has Fourier transform
of a prescribed order of differentiability.
Section 9 develops the Daubechies wavelets. These have compact support, but except for the first

one, neither they nor their Fourier transforms have known formulas in closed form. The construction
begins by pinpointing necessary conditions on the generating function.
Section 10 deals with smoothness questions. It contains three results. The first gives an estimate

for the decay of the Fourier transform of the Daubechies scaling function of each order. The second
deduces a certain amount of differentiability of a scaling function from the estimate in the first
result. The third shows in the converse direction that a Daubechies wavelet can never be of class
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1. Introduction 435

C∞. The section concludes with a table summarizing properties of the specific wavelets that have
been constructed in Sections 2–9.
Section 11 gives a quick introduction to applications. It discusses the discrete wavelet transform

and its use in storage and compression of data, it identifies some applications of wavelets in one and
two dimensions, and it makes brief remarks about some of the applications.

1. Introduction

For current purposes a wavelet is a function √ in L2(R) such that the functions

√j,k(x) = 2 j/2√(2 j x − k)

form an orthonormal basis of L2(R) as j and k range through Z. Such wavelets
are called “orthogonal” and “one-dimensional” by some authors. We postpone
consideration of modifications of this definition to Section 11 at the end of this
chapter.
Corresponding to a wavelet √ is the wavelet expansion

f (x) =
P

j,k∈Z

° R
R f (y)√j,k(y) dy

¢
√j,k(x),

the series being understood as convergent in L2(R), independently of the order
of the terms. Wavelet expansions allow one to isolate certain hidden features
of functions, much as Fourier expansions do, the particular features depending
on properties of √ . Examples of wavelets and their properties will be discussed
beginning in Section 2.
To have a practical guide for the theory, it may be helpful to regard a given

L2 function as a “signal,” a function of one real variable t that represents time.
The values of the function represent a voltage, positive or negative, or perhaps
a mechanical analog of such a voltage. Let us digress for the time being to
consider the role of traditional Fourier analysis in understanding such a signal.
If we consider the function on all of R, the Fourier transform has frequency as
its variable. Alternatively we can think of masking the function, looking at only
those values of t in an interval. If we take that interval to have length 2π , then
we can form the Fourier series of the restricted function, and the variable in the
result will be the subscript on the Fourier coefficients, telling what multiple of a
fundamental frequency is under consideration. Or if we allow ourselves intervals
of a more general length T , then we get the kind of Fourier series appropriate to
functions of period T .
A two-dimensional analog of a signal is a representation of a two-dimensional

picture. If the picture is in black and white, the value of the function at a point
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can be the intensity of light at that point. If the picture is in color, the value of
the function can be a three-dimensional vector representation of the red, green,
and blue values at that point, or by a change of variables, the luminance, the blue
chrominance, and the red chrominance values at that point.

Let us begin by mentioning three relevant features of traditional Fourier anal-
ysis in this setting. The Fourier transform on L2(R) is the continuous extension
F from L1(R) ∩ L2(R) to L2(R) of the linear function

f 7→ bf given by bf (ω) =
Z

R
f (t)e−2π i tω dt.

Then F is a continuous linear function from L2(R) onto L2(R), and it satisfies
kF f k2 = k f k2 for all f ∈ L2(R). Normally we use F to refer to all versions of
the Fourier transform, completely avoiding using the notationb.
The first feature of traditional Fourier analysis is the Uncertainty Principle,

which says in effect that the amount of detail detected in the time domain limits
the amount of detail detectable in the frequency domain. Since our interest is
only in illustrating the principle, it will not be necessary for us to seek maximum
generality. Accordingly we formulate this result as follows. Fix a member f
other than 0 in the Schwartz space S(R). Then t f (t) and ωF f (ω) are in S(R),
and we can define “mean values” t0 and ω0 of t and ω by1

t0 = k f k−2
2

Z

R
t | f (t)|2 dt and ω0 = k f k−2

2

Z

R
ω |F f (ω)|2 dω,

as well as variances in t and ω by

σ 2f,t = k f k−2
2

Z

R
(t − t0)2| f (t)|2 dt, σ 2f,ω = k f k−2

2

Z

R
(ω − ω0)

2|F f (ω)|2 dω.

Proposition 10.1 (Uncertainty Principle). If f is a nonzero member of S(R),
then

σ 2f,tσ
2
f,ω ∏

1
16π2

.

REMARKS. The quantity σ f,t is to be regarded as a measure of the time duration
of the signal f (t), and σ f,ω is to be regarded as a measure of the frequency
dispersion or bandwidth of the signal. The inequality in the proposition is not
the only limitation on the time duration of f (t) and the dispersion of F f (ω); for
example, if f has compact support, then F f extends to be analytic in the whole
complex plane, and the zeros ofF f therefore cannot have a limit point anywhere
on the real axis unless f = 0.

1These are themean values, in the sense of Chapter IX, of the random variables t andω relative to
the probability distributions k f k−2

2 | f (t)|2 dt and k f k−2
2 |F f (ω)|2 dw, respectively, and similarly

for the variances lower down.
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PROOF. We treat first the special case that t0 = ω0 = 0. Let f 0 be the derivative
of f . Since F f 0(ω) = 2π iωF f (ω), we have

k f k42 σ 2f,tσ
2
f,ω =

R
R |t f (t)|2 dt

R
R |ωF f (ω)|2 dω

= (2π)−2
R

R |t f (t)|2 dt
R

R |F f 0(ω)|2 dω

= (2π)−2
R

R |t f (t)|2 dt
R

R | f 0(t)|2 dt

∏ (2π)−2
Ø
Ø R

R
°
t f (t) f 0(t)

¢
dt

Ø
Ø2

= (2π)−2
Ø
Ø R

R
1
2 t

°
f (t) f 0(t) + f 0(t) f (t)

¢
dt

Ø
Ø2

= (2π)−2
Ø
Ø R

R
1
2 t

d
dt

°
f (t) f (t)

¢
dt

Ø
Ø2,

the inequality holding by the Schwarz inequality. In the integral on the right
side, we integrate by parts, differentiating 1

2 t and integrating
d
dt

°
f (t) f (t)

¢
. The

integrated term is 0 because f is a Schwartz function, and the right side simplifies
to

= 1
4 (2π)−2

Ø
Ø R

R −| f (t)|2 dt
Ø
Ø2 = 1

4 (2π)−2k f k42.
Thus

σ 2f,tσ
2
f,ω ∏ 1

16π2 ,

and the proof is complete under the assumption that t0 = ω0 = 0.
For the general case, we consider the function

g(t) = e−2π iω0t f (t + t0),

which has kgk2 = k f k2 and Fg(ω) = e2π i(ω+ω0)(t0)F f (ω + ω0). For g, the
mean value of t is

µg,t = k f k−2
2

R
R t |g(t)|

2 dt

= k f k−2
2

R
R t | f (t + t0)|2 dt

= k f k−2
2

R
R(t − t0)| f (t)|2 dt = t0 − t0 = 0,

and the mean value of ω is
µg,ω = k f k−2

2
R

R ω |Fg(ω)|2 dω

= k f k−2
2

R
R ω |F f (ω + ω0)|2 dω

= k f k−2
2

R
R(ω − ω0)|F f (ω)|2 dω = ω0 − ω0 = 0.

The special case therefore applies to g. The variance in t for g is

σ 2g,t = kgk−2
2

R
R(t − 0)2|g(t)|2 dt = k f k−2

2
R

R t
2| f (t + t0)|2 dt

= k f k−2
2

R
R(t − t0)2| f (t)|2 dt = σ 2f,t ,

and similarly the variance σ 2g,ω in ω for g equals σ 2f,ω. Hence the conclusion in
the special case of g gives the desired inequality for f . §
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The second feature of traditional Fourier analysis is Gibbs phenomenon.
Informally this is the statement that the partial sums of the Fourier series of a
nice real-valued function with a jump discontinuity overshoot the expected limit,
above and below, by about 9%. The more precise statement is in Proposition
10.2.
(a) (b)

(c) (d)

FIGURE 10.1. Gibbs phenomenon for the partial sums of the Fourier series
sN ( f ; x) when f is continued from 1

2 (π − x) with 0 < x < 2π
so as to have period 2π . (a) Graph of s30( f ; x). (b) Detail in graph
of s30( f ; x), C being ≈ 1.179. (c) Same detail in graph of s120( f ; x).

(d) Same detail in graph of s480( f ; x).

Proposition 10.2 (Gibbs phenomenon). Let f be a real-valued periodic
function of period 2π . Suppose that f is of bounded variation and has an
isolated jump discontinuity when t = t0; specifically suppose that the jump
J = limt↓t0 f (t) − limt↑t0 f (t) is > 0. If sN ( f ; t) is the partial sum of the
Fourier series of f at t , then

lim
N→∞

sN
°
f ; t0 + π

N
¢
− lim

N→∞
sN ( f ; t0 − π

N ) = C J, the limits existing,

where C = 2
π

R π

0 (sin t)/t dt ≈ 1.179.
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REMARKS. Thus the overshoot above and below is at least by half of .179 times
the size of the jump. The overshoot is illustrated in Figure 10.1, which shows a
graph of the 30th partial sum, together with enlargements of a certain portion of
the graphs of of the 30th, 120th, and 480th partial sums.

PROOF. Let g(t) be the periodic extension of the function that equals 12 (π − t)
for 0 < t < 2π . This is periodic of period 2π , is of bounded variation, and is
continuous except at the multiples of 2π , where it jumps by π . Thus the function
h with h(t) = f (t) − π−1 Jg(t − t0) is of bounded variation and is continuous
is an interval about t = t0. By Theorem 6.55 of Basic, the Fourier series of h
converges uniformly to h in an interval about t0. Consequently it is enough to
consider the function g and the point t0; in this case the jump is J = π .

From Section I.10 of Basic, the Fourier series of g is
∞P

n=1

sin nt
n

. If sN (g; t)

denotes the N th partial sum of this series, then

sN (g;π/N ) =
NX

n=1

sin(nπ/N )

n
,

which is a Riemann sum for the Riemann integral of the continuous function
(sin t)/t from 0 to π . The partition is equally spaced with mesh π/N , and the
function is evaluated at the right-hand endpoint of each interval of the partition.
By Theorem 1.35 of Basic,

lim
N→∞

sN (g;π/N ) =
R π

0
sin t
t dt = π

2C,

with C as in the statement of the proposition. Since the periodic function g(x) is
odd, we similarly obtain

lim
N→∞

sN (g;−π/N ) = −π
2C.

Therefore
lim
N→∞

sN (g;π/N ) − lim
N→∞

sN (g;−π/N ) = πC,

as asserted. §

The third feature of traditional Fourier analysis concerns “sampling.” As a
practical matter, signals in engineering cannot be expected to be known exactly.
Realistic information about the signal can be obtained only at certain instants of
time, possibly instants that are very close to one another.2 To what extent does

2Actually what seems to be the value at an instant of time may really be a kind of average over
a very short interval, but we shall ignore this distinction.
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the sampled version of the signal determine the signal exactly? The Shannon
SamplingTheorem gives an answer. It assumes that the signal is “band-limited,”
i.e., its Fourier transform vanishes outside some interval. This is a reasonable
assumption in practice, since each piece of equipment for studying signals has its
own limitations in coping with high frequencies.

Proposition 10.3 (Shannon Sampling Theorem). Suppose that f is a member
of L2(R) whose Fourier transformF f vanishes outside the interval [− 1

2ƒ, 12ƒ].
Then f can be taken to be smooth and satisfies

f (t) =
∞X

k=−∞

f
≥ k
ƒ

¥ sin(π(ƒt − k))
π(ƒt − k)

,

the series being convergent in L2(R) and also uniformly convergent in t .
PROOF. Until the very end we assume that ƒ = 1. Since F f is in L2(R)

and has compact support, it is in L1(R), and we can recover f from it almost
everywhere by means of the formula

f (t) =
R

R e
2π iωt(F f )(ω) dω =

R 1/2
−1/2 e

2π iωt(F f )(ω) dω. (∗)
From this formula it follows that f in the variable t is the restriction to R of an
entire function; in particular, f is smooth, and (∗) holds for every t . Since F f
is supported on [− 1

2 ,
1
2 ], we can treat it as an L

2 periodic function on [− 1
2 ,

1
2 ] of

period 1, and we can expand it in Fourier series as F f (ω) =
P∞

k=−∞ cke2π ikω,
the series convergent in L2([− 1

2 ,
1
2 ]). Here ck =

R 1/2
−1/2(F f )(ω)e−2π ikω dw =

f (−k), the second equality holding by (∗). Thus the Fourier series expansion of
(F f )(ω) is

F f (ω) =
∞P

k=−∞
cke2π ikω =

∞P

k=−∞
f (−k)e2π ikω =

∞P

k=−∞
f (k)e−2π ikω. (∗∗)

Substituting (∗∗) into (∗) gives

f (t) =
R 1/2
−1/2 e

2π iωt(F f )(ω) dω =
R 1/2
−1/2

∞P

k=−∞
f (k)e2π i(t−k)ω dω. (†)

If we allow ourselves to interchange sum and integral on the right side and if we
assume that t is not an integer, we see that (†) is

=
∞P

k=−∞
f (k)

R 1/2
−1/2 e

2π i(t−k)ω dω

=
∞P

k=−∞
f (k)

heπ i(t−k) − e−π i(t−k)

2π i(t − k)

i

=
∞P

k=−∞
f (k)

sinπ(t − k)
π(t − k)

,
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as required.
Under the assumption that ƒ = 1, we are left with justifying the interchange

of integral and sum on the right side of (†) and with addressing the restriction
t /∈ Z. Let IE(ω) be the indicator function of [− 1

2 ,
1
2 ], and define ck as above.

Put

fN (t) = F−1°IE(ω)
NP

k=−N
cke2π ikω

¢
(t) = F−1°IE(ω)

NP

k=−N
f (−k)e2π ikω

¢
(t).

Since IE(ω)
NP

k=−N
cke2π ikω tends to IE(ω)(F f )(ω) in L2 and is supported in the

fixed bounded set E , it converges also in L1, and it follows that its inverse Fourier
transform fN (t) converges uniformly to f (t), as well as in L2(R). The above
interchange of limits works for fN because the sum is a finite sum, and thus we
obtain

fN (t) =
NX

k=−N
f (k)

sinπ(t − k)
π(t − k)

for every N . Use of continuity shows that we do not need to assume t /∈ Z.
Letting N tend to infinity, we obtain the desired identity forƒ = 1 with uniform
convergence and convergence in L2(R).
For general ƒ, suppose that f has F f (ω) = 0 for |ω| > 1

2ƒ. Put g(t) =
ƒ−1 f (ƒ−1t), so that (Fg)(ω) = (F f )(ƒω). Then (Fg)(ω) = 0 for |ω| > 1

2 ,
and the case proved above applies to g. Then we obtain

g(t) =
X

k
g(k)

sinπ(t − k)
π(t − k)

.

Substitution gives

ƒ−1 f (ƒ−1t) = ƒ−1
X

k
f (ƒ−1k)

sinπ(t − k)
π(t − k)

.

Multiplying both sides by ƒ and replacing t by ƒt completes the proof. §

We turn now towavelets. The subject of wavelets has grown out ofmany areas,
theoretical and applied, and some of the background is quite deep. For example,
the dilations by powers of 2 that enter the definition are motivated to an extent
by Littlewood–Paley theory, a part of Euclidean Fourier analysis beyond what is
discussed in Chapter III of this book. Our approach will be to take the resulting
theory as a subject on its own, often without presenting the deep motivation for
particular definitions.
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Many of the applications of wavelets are to problems of analysis and/or
compression of data, possibly with noise reduction. A traditional example of
compression, from the days when telephone calls were transmitted over copper
wires, is how the voice signals of telephone calls were handled. The telephone
company was not content with sending just one signal over a wire. It wanted
to send many signals simultaneously. To do so, it filtered each conversation to
eliminate frequencies other than those between 300 and 2700 cycles per second
and then multiplied the signal by a high-frequency carrier wave to obtain a signal
in a high-frequency band of width 2400 cycles per second. Allowing different
bands for different conversations allowed it to transmitmany conversations at once
over the same wires. Some information was lost during this step of compression,
including all frequencies outside the band 300 to 2700 cycles per second.
In the setting we are studying, the data can be in analog form, as was the case

in the example just given, but let us think of the given data as digital. In the
one-dimensional case we then have a digitized signal, perhaps of speech or music
or some other kind of sound. In the two-dimensional case, we have an image,
perhaps the photographic image produced by a digital camera or an image of a
fingerprint. We want to know what is happening in the signal and to process the
signal accordingly, perhaps enhancing some parts of it and damping other parts.
If traditional Fourier analysis is to be used, then any compressionwill likely be

achieved by discarding high-frequency information. For example, the JPEG file
of a digital photograph3 is obtained by treating the image as built from squares
of size 8 pixels by 8 pixels, doing a discrete Fourier analysis on each piece, and
discarding some information. For most photographs this method of compression
is perfectly adequate, but interactions occur at the boundary between adjacent
8-by-8 squares. At high compression ratios these interactions can produce a
visible effect known as “blocking,” and the result can sometimes be disconcerting.
On an image like that of a fingerprint, JPEG is distinctly inadequate.
In any of these situations the theory of wavelets is available to handle the

analysis and/or processing in a different way. Different wavelets have different
advantages, and one may want one kind of wavelet for one situation and another
kind for another situation. One study of speech4 for designing hearing aids
classified short intervals of speech into four possible kinds—“voiced, plosive,
fricative, and silent segments”—and it proceeded from there. One of its tools
was the Daubechies wavelet of order N = 3.
Over the next nine sections we shall construct directly certain wavelets and

3“JPEG” stands for Joint Photographic Experts Group. The committee has a website, namely
https://jpeg.org.

4B. T. Tan, R. Lang, Heiko Schroder, A. Spray, and P. Dermody, “Applying wavelet analysis to
speech segmentation and classification,” Proc. SPIE (International Society for Optical Engineering)
2242 (1994), Orlando, FL, 750–761.



2. Haar Wavelet 443

families of wavelets, extracting properties of each. We construct the first histor-
ical example of a wavelet in Section 2 and develop a fairly general method of
constructing wavelets in Section 3. Subsequently we shall make refinements to
the construction. Applying the method and its refinements, we obtain several im-
portant explicit families of wavelets in Sections 4–9. All along, we shall observe
certain properties of these families; these properties influence the usefulness of
the various families for certain kinds of applications. Section 10 completes the
derivation of the properties, and a table listing the names of the families and
summarizing the properties appears as Figure 10.18.
In Section 11 we shall take a look at the wavelet transform. Analyzing the

nature of the transform and of its calculation gives an inkling of how to take
advantage of wavelets in analyzing signals. At the end of the section, we
make some remarks about one-dimensional applications and also about two-
dimensional wavelets and their use in improving the JPEG algorithm and the
compression of fingerprint records. The applications to images involve a new
wrinkle in that the sight of asymmetries appears to be more noticeable that one
might at first expect. As a result it is desirable for wavelets involved in image
processing to be symmetric in a certain sense. This symmetry is impossible for
compactly supported orthogonal wavelets, and some relaxation of the definition
is warranted.
In the end, analysis using wavelets is one tool in signal processing; Fourier

analysis is another. There are also others. One should not think of wavelet
analysis as a substitute for these other methods, however. As Y. Meyer put it in
his groundbreakingbook5 listed in the SelectedReferences, “Butwavelet analysis
cannot entirely replace Fourier analysis, indeed, the latter is used in constructing
the orthonormal bases of wavelets needed for analysis with wavelet series.”

2. Haar Wavelet

The Haar system is the system of functions in L2(R) defined by

√j,k(x) = 2 j/2√(2 j x − k) for j and k in Z,

where √ is the function in L2(R) defined by

√(x) =






1 if 0 ≤ x < 1
2 ,

−1 if 1
2 ≤ x < 1,

0 otherwise.
In this section we shall prove the following result and consider some of its
ramifications.

5Y. Meyer,Wavelets and Operators, p. 1.”



444 X. Introduction to Wavelets

Theorem 10.4. The Haar system is an orthonormal basis of L2(R).

Therefore the above function√ is awavelet forwhat is called theHaar system,
and one refers to √ as theHaar wavelet. Any integer translate √0,k of √ = √0,0
would serve equallywell for this purpose. The proofwill make use of an auxiliary
function ϕ in L2(R) called the scaling function for the system. The Haar scaling
function ϕ is the indicator function of the interval [0, 1), namely

ϕ(x) =

Ω 1 if 0 ≤ x < 1,
0 otherwise.

In notation analogous to that for √ , we introduce the system of functions

ϕj,k(x) = 2 j/2ϕ(2 j x − k) for j and k in Z.

Graphs of ϕ and √ appear in Figures 10.2a and 10.2b.
The details of the proof of Theorem 10.4 are of some importance for other

systems as well as the Haar system, and we shall therefore give the proof in steps
and extract some further information from it after it is complete.

(a) (b)

(c) (d)

FIGURE 10.2. Graphs of Haar scaling function and wavelet.
(a) ϕ(x). (b) √(x). (c) ϕ(x) = ϕ(2x) + ϕ(2x − 1).

(d) √(x) = ϕ(2x) − ϕ(2x − 1).
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PROOF OF THEOREM 10.4.
Step 1. We prove that {√j,k} is an orthonormal system.
The functions being real, we can drop all references to complex conjugation.

Using the change of variables 2 j x − k = y, which has x = 2− j (y + k) and
dx = 2− j dy, we examine the integral

R
R √j,k(x)√m,n(x) =

R
R 2

( j+m)/2√(2 j x − k)√(2mx − n) dx,

=
R

R 2
(− j+m)/2√(y)√(2m− j (y + k) − n) dy.

If j = m, this reduces to

=
R

R √(y)√(y + k − n) dy;

for k = n, the integrand is √(y)2 = ϕ(y), and the integral is 1, while for k 6= n,
the two factors of the integrand are nonzero on disjoint sets and the integral is 0.
If j 6= m, we may assume by symmetry that r = m− j is> 0. Then it is enough
to show that R

R √(y)√(2r y + t) dy

is 0 for r > 0 when t is any integer. Under the change of variables 2r y + t = u,
dy = 2−r du, this integral becomes

=
R 1/2
0 √(2r y + t) dy −

R 1
1/2 √(2r y + t) dy

= 2−r R 2r−1+t
t √(u) du − 2−r R 2r+t

2r−1+t √(u) du.

Each of the integrals on the right side is an integral of√ over an interval of integer
length, and any such integral is 0. This completes the proof of orthonormality.
Step 2. If V0 is the closed subspace of members of L2(R) that are constant

almost everywhere on each interval [k, k + 1) with k in Z, then the functions
x 7→ ϕ(x − k) form an orthonormal basis of V0.
In fact, the function x 7→ ϕ(x − k) is 1 on [k, k + 1) and is 0 otherwise.

Its square integral is therefore 1, and the inner product of any two distinct such
functions is 0. Thus the set of functions x 7→ ϕ(x − k) is orthonormal. Since
the vector space of finite linear combinations of the functions x 7→ ϕ(x + k) is
dense in V0, it follows that the set of functions x 7→ ϕ(x − k) is an orthonormal
basis of V0.
Step 3. We construct some closed subspacesVj of L2(R) for j ∏ 1, we observe

for each j that the functions ϕj,k , as k varies, form an orthonormal basis of Vj ,
and we note some properties of Vj .
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We let Vj be the set of functions in L2(R) that are constant almost everywhere
on each interval [2− j k, 2− j (k + 1)). Then it is plain that for all j ∏ 0,

Vj ⊆ Vj+1 (∗)

and
f (x) is in Vj if and only if f (2x) is in Vj+1. (∗∗)

Arguing as in Step 2, we see for each j ∏ 0 that the set of functions

x 7→ ϕj,k(x) is an orthonormal basis of Vj . (†)

Step 4. We prove that
S∞

j=0 Vj is dense in L2(R).
In fact, suppose f ∈ L2(R) is to be approximated, and let ≤ > 0 be given.

Corollary 6.4 of Basic shows that Ccom(R) is dense in L2(R). Thus we can
choose g ∈ Ccom(R) with k f − gk2 < ≤. Let E be the support of g. Since
g is uniformly continuous on the compact set E and hence on all of R, we can
find a negative power of 2, say 2−l , small enough so that |x − y| < 2−l implies
|g(x)− g(y)| < ≤/|E |1/2, where |E | is the measure of E . Define a function h(x)
to equal g(n2−l) for n2−l ≤ x < (n + 1)2−l . Then h is in Vl , and h satisfies an
estimate

|g(x) − h(x)| = |g(x) − g(n2−l)| < ≤/|E |1/2 for x ∈ [n2−l, (n + 1)2−l)

and hence for all x . Then

kg − hk22 ≤ |E |(≤/|E |1/2)2 ≤ ≤2,

and hence kg − hk2 ≤ ≤. Therefore k f − hk2 < 2≤, and
S∞

j=0 Vj is dense in
L2(R).
Step 5. We construct some closed subspaces Wj of L2(R) for j ∏ 0, and we

examine the properties of Wj .
Let us define Wj for j ∏ 0 to be the orthogonal complement of Vj in Vj+1.

For j ∏ 0, let us check that

f (x) is in Wj if and only if f (2x) is in Wj+1. (††)

In fact, if f (x) is inWj , then it is in Vj+1. So f (2x) is in Vj+2. If g(x) is in Vj+1,
then g( 12 x) is in Vj by (∗∗), and it has

R
R f (2x)g(x) dx = 2

R
R f (x)g( 12 x) dx =

0. Hence f (2x) is in the orthogonal complement of Vj+1 in Vj+2, which isWj+1.
In the reverse direction if f (2x) is in Wj+1, then f (2x) is in Vj+2, and (∗∗)

shows that f (x) is in Vj+1. Every g(x) in Vj+1 has 0 =
R

R f (2x)g(x) dx =
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1
2
R

R f (x)g( 12 x) dx . The function g(
1
2 x) is the most general element of Vj by

(∗∗), and thus f (x) is in Wj . This proves (††).
Let us write ⊥ for orthogonal direct sum. For n ∏ 0, we then have

Vn = Vn−1 ⊥ Wn−1 = Vn−2 ⊥ (Wn−2 ⊥ Wn−1)

= Vn−3 ⊥ (Wn−3 ⊥ Wn−2 ⊥ Wn−1)

= · · · = V0 ⊥ (W0 ⊥ W1 ⊥ · · · ⊥ Wn−1). (‡)

Step 6. We observe that ϕ is in V0, that √ is in V1, that the functions ϕ and √
satisfy the equations

ϕ(x) = ϕ(2x) + ϕ(2x − 1)
√(x) = ϕ(2x) − ϕ(2x − 1),and

and that √ is in W0. These equations are reflected in the graphs appearing in
Figures 10.2c and 10.2d.
The facts that ϕ is in V0 and √ is in V1 are clear from the definitions. Now

ϕ(2x) =

Ω 1 if 0 ≤ x < 1
2 ,

0 otherwise,

and

ϕ(2x − 1) =

Ω 1 if 1
2 ≤ x < 1,

0 otherwise.

Their sum is 1 for 0 ≤ x < 1 and thus equals ϕ(x), while their difference is 1 for
0 ≤ x < 1

2 and is −1 for 12 ≤ x < 1 and thus equals √(x). For inner products
we have

(ϕ0,k,√) =
R

R ϕ(x − k)√(x) dx =
R k+1
k √(x) dx,

and this is 0 for all k; for k = 0, it is 0 because √ has integral 0, and for k 6= 0,
it is 0 because the set where √ is not 0 does not meet [k, k + 1). Thus √ is
orthogonal to every member of the orthonormal basis of V0 given in Step 2. Since
√ is known to be in V1, √ is in W0.

Step 7. We show that the functions x 7→ √(x − k) form an orthonormal basis
of W0.
Being nonzero on disjoint sets, they are orthonormal. Let f be any member of

W0. SinceW0 is contained in V1 and since the functions ϕ1,k form an orthonormal
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basis of V1, f is of the form

f (x) =
P

k
ckϕ1,k(x) =

P

k even
ckϕ1,k(x) +

P

k odd
ckϕ1,k(x)

=
p
2

P

l
c2lϕ(2x − 2l) +

p
2

P

l
c2l+1ϕ(2x − 2l − 1)

=
p
2
2

P

l
(c2l + c2l+1)

°
ϕ(2x − 2l) + ϕ(2x − 2l − 1)

¢

+
p
2
2

P

l
(c2l − c2l+1)

°
ϕ(2x − 2l) − ϕ(2x − 2l − 1)

¢

=
p
2
2

P

l
(c2l + c2l+1)ϕ(x − l) +

p
2
2

P

l
(c2l − c2l+1)√(x − l),

the last equality holding by Step 6. Since f is orthogonal to V0, taking the inner
product of both sides with any particular ϕ(x − l) shows that the coefficient of
ϕ(x − l) is 0. That being true for all l, f is exhibited as in the closed linear span
of the functions √(x − l).
Step 8. We show that for each j ∏ 0, the functions √j,k , as k varies, form an

orthonormal basis of Wj .
In fact, this is immediate from (††) and Step 7.
Step 9. The functionsϕ0,k for k ∈ Z and the functions√j,k for j ∏ 0 and k ∈ Z

together form an orthonormal basis of L2(R). Here the ϕ0,k form an orthonormal
basis of V0, and the other functions form an orthonormal basis of the orthogonal
complement of V0 in L2(R).
The functions ϕ0,k for k ∈ Z and the functions √j,k for 0 ≤ j ≤ n − 1 and

k ∈ Z together form an orthonormal basis of Vj , by (‡), Step 2, and Step 8.
Taking the union on j of the nested spaces Vj and applying Step 4, we find that
the functions ϕ0,k for k ∈ Z and the functions √j,k for j ∏ 0 and k ∈ Z together
form an orthonormal basis of L2(R).
Step 10. We extend the definitions of the spaces Vj and Wj to j < 0, and we

observe that (∗), (∗∗), (†), (††) extend to be valid for all j , and (‡) has a natural
extension to handle the extended definitions.
The space Vj is the set of functions in L2(R) that are constant almost every-

where on each interval [2− j k, 2− j (k + 1)), and the space Wj is the orthogonal
complement of Vj in Vj+1. Then it is immediate that (∗), (∗∗), (†), (††) extend
to be valid for all j . The extended form of (‡) is

Vn = Vm ⊥ (Wm ⊥ Wm+1 ⊥ · · · ⊥ Wn−1) for m ≤ n, (‡‡)

and this too is immediate.
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Step 11. The functions ϕm,k for k ∈ Z and the functions √j,k for j ∏ m and
k ∈ Z together form an orthonormal basis of L2(R).
This is immediate from Step 9, the extended Step 8, and (‡‡).
Step 12. We prove that

Tn
j=−∞ Vj = 0 for every integer n.

In fact, let f be a member of
Tn

j=−∞ Vj . Being in each Vj , f is constant
almost everywhere on each interval [2− j k, 2− j (k + 1)) for j ≤ n and k ∈ Z,
say equal to cj,k . If Ek, j denotes the exceptional subset of [2− j k, 2− j (k + 1)) of
measure 0 where f (x) 6= cj,k and if E =

S
j,k Ek, j , then E is a set of measure

0 and has the following property. For any x /∈ E , f is constantly equal to cj,k
on all intervals [2− j k, 2− j (k + 1)) containing x . Fix x0 /∈ E . We can choose
an increasing sequence of intervals [2− j k, 2− j (k + 1)) containing x0 and having
union R. The constants cj,k for the members of this sequence must match the
value f (x0), and it follows that f is constantly equal to f (x0) almost everywhere.
Since the only constant function in L2(R) is 0, we conclude that

Tn
j=−∞ Vj = 0.

Step 13. The functions√j,k for j ∈ Z and k ∈ Z together form an orthonormal
basis of L2(R).
From (‡‡) and Step 12 it follows that V0 is the orthogonal direct sum of

the spaces W−1,W−2,W−3, . . . . From Step 9 it then follows that L2(R) is the
orthogonal direct sum of the spaces Wj for j ∈ Z. By Step 8 the functions √j,k
for j ∈ Z and k ∈ Z together form an orthonormal basis of L2(R). §

As was mentioned in Section 1, corresponding to any wavelet√ is the wavelet
expansion

f (x) =
P

j,k∈Z

° R
R f (y)√j,k(y) dy

¢
√j,k(x),

the series being understood as convergent in L2(R). This remark applies in
particular to the Haar wavelet √(x), and the resulting series is called the two-
sided Haar series expansion of the function f . In a Haar series the complex
conjugate sign can be dropped because √ is real-valued, but we shall include it
anyway.
When writing down an expansion in Haar series, however, there is some

advantage in taking into account aspects of the proof of Theorem 10.4. The
proof was organized around a certain increasing sequence of closed subspaces Vj
whose union is dense in L2(R). Let us see how these spaces include finer and
finer detail about f . The way in which the functions ϕj,k and √j,k are defined
involves evaluating ϕ or √ at 2 j x − k. It is helpful of this operation as one of
magnification, affecting the resolution of what we can see. Namely it is helpful
to think of the operation of passing from x to 2 j x as one of magnifying a graph
by 2 j or of introducing better resolution so that details at the level of 2− j become
visible.
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Let us be more specific. Step 9 observed that the functions ϕ0,k for k ∈ Z and
the functions √j,k for j ∏ 0 and k ∈ Z together form an orthonormal basis of
L2(R). The corresponding expansion is

f (x) =
P

k∈Z

° R
R f (y)ϕ0,k(y) dy

¢
ϕ0,k(x) +

∞P

j=0

P

k∈Z

° R
R f (y)√j,k(y) dy

¢
√j,k(x)

and is called a one-sidedHaar series expansion of the function f . The first term
represents the orthogonal projection of f on V0, and the second term represents
the orthogonal projection on the orthogonal complement of V0.
This one-sidedexpansion is better than the two-sided expansion at emphasizing

that the large positive values of j correspond to what is happening as one passes
to the limit.
Step 11 of the proof gives another way of thinking about this process. It says

that for any m (think of m as∏ 0), the functions ϕm,k and the functions √j,k with
j ∏ m together form an orthonormal basis of L2(R). Comparing the resulting ex-
pansion of f with the display above, we see that

P

k∈Z

° R
R f (y)ϕm,k(y) dy

¢
ϕm,k(x)

represents a partial sum of the one-sided Haar series expansion. It is in fact
the orthogonal projection of f on the subspace Vm . Thus we can think of the
orthogonal projection on V0 as giving a zeroth approximation to f . Then we
add the terms

P

k∈Z

° R
R f (y)√0,k(y) dy

¢
√0,k(x) and obtain the first approxima-

tion to f , namely the orthogonal projection on V1. We continue by adding the
terms

P

k∈Z

° R
R f (y)√1,k(y) dy

¢
√1,k(x) and obtain the second approximation to

f , namely the orthogonal projection on V2. With each step we improve the res-
olution, obtaining a better approximation to f . The limit of the approximations,
taken in the L2 sense, is f .
The process thus consists in looking at f with an infinite system of finer and

finer resolutions. It is for this reason that the term “multiresolution analysis” will
be used for this construction starting in the next section.
Notice that what is happening here is quite different from the situation with

Fourier series. With Fourier series a new term in a series represents taking into
account a new frequency, an enlargement of the frequency domain. Withwavelets
a new term represents taking into account a higher resolution, thus giving better
knowledge of what is happening in the time domain.

Some readers may be helped by a piece of intuition used by people in signal
analysis. They think of the scaling functionϕ as being akin to a low-pass filter and
the mother wavelet √ as being akin to a high-pass filter. It is helpful to think of
these filters asworking onfineness of detail, however, rather than frequencies. For
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example, in the construction in Theorem 10.4, ϕ and its integer translates together
yielded the orthogonal projection on the fundamental space V0, while √ and its
integer translates yielded the orthogonal projection on the detail space consisting
of the orthogonal complement of V0 in V1. As Barbara Hubbard explains in
her book,6 it was this piece of intuition that finally brought mathematicians and
engineers together on the subject of wavelets in 1986.

We conclude this section with a brief discussion of spaces of functions other
than L2 on the real line. We shall return to L2 from the beginning of the next
section. This discussion will enable us to make some comparisons of Haar series
and Fourier series. The results with Haar series that we mention are just the
beginning. Considerable research has gone into the study of Haar series and
other wavelet expansions in connection with spaces other than L2, but we shall
not be delving into it beyond the few remarks that we include here.
To begin with, for any complex-valued function f on R satisfying suitable

conditions, we define

(Pm f )(x) =
P

k∈Z

° R
R f (y)ϕm,k(y) dy

¢
ϕm,k(x).

If we are working with L2 functions, the operator Pm is the orthogonal projection
of L2(R) on Vm . But our interest now will be in other spaces of functions.
The function ϕm,k(x) is nonzero if and only if k ≤ 2mx < k+1. Consequently

for fixed m and x , there is exactly one value of k for which ϕm,k(x) is nonzero.
Thus the sum defining (Pm f )(x) has only one term. Also the function ϕm,k(y)
has compact support, and thus the integral

R
R f (y)ϕm,k(y) dy is well defined as

soon as f is a measurable function on R that is locally integrable, i.e., integrable
on each compact set. Consequently the expression defining (Pm f )(x) is well
defined whenever the function f on R is locally integrable. Its value is just
2m

R
k≤2m y<k+1 f (y) dy, where k is the unique integer such that k ≤ 2mx < k+1.

It is a simple matter to use Step 5 and its dilates in Theorem 10.4 to see that

(Pm+1 f )(x) − (Pm f )(x) =
P

k∈Z

° R
R f (y)√m,k(y) dy

¢
√m,k(x).

Therefore convergence results about Pm f asm tends to+∞ are in effect conver-
gence results about the one-sided Haar series expansion of f . We summarize as
follows.

6The World According to Wavelets, listed in the Selected References.
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Proposition 10.5. If f is a locally integrable complex-valued function on R
and if k is the unique integer such that k ≤ 2mx < k + 1, then the partial sum
(Pm f )(x) of the one-sided Haar series expansion is well defined and is given by

|Im,k |−1
R
Im,k

f (y) dy,

where Im,k = {y ∈ R | k ≤ 2m y < k + 1} and |Im,k | is its measure, namely 2−m .

The expression for (Pm f )(x) in Lemma 10.5 is the one that arises in the
theory of differentiation of integrals, which is discussed in Section VI.6 of Basic.
Application of the results of that section immediately yields the following
corollary.

Corollary 10.6. If f is a locally integrable complex-valued function on R,
then the one-sided Haar series of f converges to f almost everywhere.

If f is continuous, the situation is much simpler, since we no longer need the
results of Section VI.6 of Basic.

Corollary 10.7. If f is a continuous complex-valued function on R, then the
one-sidedHaar series of f converges to f pointwise. The convergence is uniform
on any set on which f is uniformly continuous.
REMARK. Observe that this behavior is much better than what happens for

Fourier series: the Fourier series of a continuous function can diverge at a point.
PROOF. For x ∈ Im,k , we have

Ø
Ø|Im,k |−1

R
Im,k

f (y) dy − f (x)
Ø
Ø = |Im,k |−1

Ø
Ø R

Im,k

°
f (y) − f (x)

¢
dy

Ø
Ø

≤ |Im,k |−1
R
Im,k

Ø
Ø f (y) − f (x)

Ø
Ø dy. (∗)

Let ≤ > 0 be given, and choose the corresponding δ of uniform continuity on E .
Ifm is large enough so that 2−m < δ, then |y− x | ≤ δ whenever x and y are both
in Im,k , and hence | f (y) − f (x)| ≤ ≤. Consequently (∗) is ≤ ≤. §

Next we show that one-sided Haar series do not exhibit Gibbs phenomenon in
the way that Proposition 9.2 says that Fourier series do.

Lemma 10.8. If f is a bounded locally integrable function of R and if x in R,
then |(Pm f )(x)| ≤ k f ksup.
PROOF. Choose k so that k ≤ 2mx < k + 1. Then

|(Pm f )(x)| = 2m
Ø
Ø R

k≤2m y≤k+1 f (y) dy
Ø
Ø ≤ 2mk f ksup

R
k≤2m y≤k+1 dy = k f ksup.

§
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Proposition10.9. Suppose that f is a real-valued functiononR that is continu-
ous everywhere except at the one point x0, where f has a jumpdiscontinuity. Then
the one-side Haar series of f does not exhibit Gibbs phenomenon. Specifically
if lim

x↑x0
f (x) < lim

x↓x0
f (x), then along every sequence {xn} decreasing to x0 and

sequence mn tending to +∞, the inequality

lim sup
n→∞

(Pmn f )(xn) ≤ lim
x↓x0

f (x)

holds.

PROOF. Let J = lim
x↓x0

f (x) − lim
x↑x0

f (x) be the size of the jump discontinuity
of f at x0. The value of f at x0 itself does not affect the Haar series of f , and
we may therefore redefine f (x0) to equal lim

x↑x0
f (x).

Let g(x) be the function that equals 0 for x ≤ x0, equals x0 + 1 − x for
x0 < x ≤ x0 + 1, and equals 0 for x ∏ x0 + 1. This is continuous except at x0,
where it has a jump discontinuity of 1. By Lemma 10.8,

|(Pmg)(xn)| ≤ kgksup = 1 for every m and n. (∗)

Write f = ( f − Jg) + Jg. The function f − Jg is continuous everywhere,
and (Pm( f − Jg))(x) tends to ( f − Jg)(x) uniformly for x in a neighborhood
of x0, by Corollary 10.7. Proposition 1.16 of Basic therefore shows that

lim
n→∞

(Pmn ( f − Jg))(xn) = ( f − Jg)(x0) = lim
x↓x0

( f − Jg)(x). (∗∗)

The proposition follows by adding the equality (∗∗) and J times the inequality
(∗). §

Thus there are senses in which one-sided Haar series are much better behaved
than Fourier series. But there are other senses in which Fourier series are the
better behaved. One of these is that the existence of derivatives of a function
in the subject of Fourier series forces the Fourier coefficients to have at least a
certain rate of decrease. The relevant estimate comes from using integration by
parts in the formula for the nth Fourier coefficient. Any attempt to imitate this
argument for Haar series is doomed because the functions ϕ and √ are not even
continuous. Consequently a Haar series cannot be expected to have a very small
remainder term if terms are discarded from the series. This feature is a drawback
of Haar series and is a reason to search for other wavelets for which the series
expansions of smooth functions are rapidly convergent.
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3. Multiresolution Analysis

In this section we isolate the essential features of the construction of the Haar
system in Section 2 and arrive at a construction of wavelets that applies in many
situations. Amultiresolutionanalysisconsistsof an increasingsystem {Vj }∞n=−∞

of closed vector subspaces of L2(R) and a function ϕ in L2(R) such that
(i)

S
j Vj is dense in L2(R),

(ii)
T

j Vj = 0,
(iii) for each j ∈ Z, x 7→ f (x) is in Vj if and only if x 7→ f (2x) is in Vj+1,

and
(iv) the system of functions {x 7→ ϕ(x − k)}k∈Z is an orthonormal basis

of V0.
The reason for the cumbersome term “multiresolution analysis” was explained in
Section 2 after the definition of one-sided Haar series expansion. The function ϕ
is called the scaling function of the multiresolution analysis.
For each integer j , we define functions ϕj,k in L2(R) for k ∈ Z by

ϕj,k(x) = 2 j/2ϕ(2 j x − k).

That is all that is needed. The function √ has not been mentioned!
The main result of the section will be that the existence √ is built into the

definition of multiresolution analysis, and there is little choice for √ . Before
stating such a result as a theorem, let us go through the steps of the proof of
Theorem 10.4 to see how much has been captured by this definition in the case
of the Haar system.
Indeed, for the Haar system we defined the scaling function ϕ at the outset,

and we defined closed subspaces Vj of L2(R) in Steps 2, 3, and 10 of the proof of
Theorem 10.4. Step 4 established (i) above, Step 12 established (ii), (∗∗) within
Steps 3 and 10 established (iii), and Step 2 established (iv). Therefore the Haar
system is a multiresolution analysis.
The proof of Theorem 10.4 established some additional properties of the Haar

multiresolution analysis. Line (†) of Step 3 observed the functions ϕj,k form an
orthonormal basis of Vj for j ∏ 0, and (†) in Step 10 said that the same thing is
true for j < 0. Finally Step 6 established the all-important equation

ϕ(x) = ϕ(2x) + ϕ(2x − 1)

in the Haar case. All the other intermediate conclusions in the proof of Theorem
10.4 related to √ .
To construct√ , we make use of the analog of the above equation for a general

multiresolution analysis. For the general case ϕ is in V0, which is contained in V1,
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and the functions ϕ1,k form an orthonormal basis of V1. Expansion of ϕ in this
orthonormal basis leads us to a series ϕ =

P∞
k=−∞ akϕ1,k convergent in L2(R).

In this expansion the coefficients are inner products ak = (ϕ,ϕ1,k) satisfyingP
|ak |2 = kϕk22 = 1. Substituting the definition of ϕ1,k allows us to rewrite this

expansion as

ϕ(x) =
∞P

k=−∞
ak

p
2ϕ(2x − k).

We call this result the scaling equation7 of the multiresolution analysis. We
study the scaling equation through its Fourier transform.
Associated to the scaling equation is a useful L2 periodic function m0 of

period 1 that behaves like a generating function. Namely the Riesz–Fischer
Theorem (Theorem 6.51 of Basic) shows that there exists a periodic L2 function
m0 of period 1 such that m0 is given on [0, 1] by a Fourier series8 as

m0(y) = 1p
2

∞P

k=−∞
ake−2π iky .

This function has
km0k2L2([0,1]) = 1

2

∞P

k=−∞
|ak |2 = 1

2 .

The Fourier transform of the scaling equation is

(Fϕ)(y) =
∞P

k=−∞

1p
2
ake−π iky(Fϕ)( 12 y).

By inspection the generating functionm0 allows us to write the Fourier transform
of the scaling equation in the tidy form

(Fϕ)(y) = m0(y/2)(Fϕ)(y/2)

If there is a wavelet√ corresponding to the multiresolution analysis consisting
of {Vj }∞j=−∞ and ϕ, then it lies in the orthogonal complementW0 of V0 in V1, and
the functions x 7→ √(x − k) form an orthonormal basis of W0. The main result
of this section is that all members ofW0 have a certain elegant form, and it shows
which functions of that form can be taken as the desired wavelet √ . Often we
shall use a particular choice of this function as the desired wavelet, as we remark
after the statement of the theorem.

7Some authors treat the factors of
p
2 in a different way, incorporating them into the coefficients.

Some authors call this the dilation equation; other authors do not give it a name.
8Strictly speaking, this is the Fourier series of m0(−y) rather than m0(y), but we follow the

convention used in the book by Daubechies and echoed in the book by Pinsky. Regardless of how
authors handle the factors of

p
2, the factors have disappeared by the time that one computes the

values of m0(y).



456 X. Introduction to Wavelets

Theorem 10.10. Let {Vj }∞j=−∞ and ϕ constitute a multiresolution analysis,
and let m0 be the generating function of the scaling equation. Then

(a) the most general member f of the orthogonal complement W0 of V0 in
V1 has Fourier transform of the form

(F f )(y) = eπ iy∫(y)m0( 12 y + 1
2 )(Fϕ)( 12 y),

where ∫ is a periodic function of period 1 and with k∫k2L2([0,1]) = k f k22,
and

(b) a member f ofW0 as in (a) will serve as a wavelet for the multiresolution
analysis if and only if |∫(y)| = 1 almost everywhere.

The proof will be preceded by some discussion and three lemmas. Once we
have settled on a particular choice of wavelet √ from Theorem 10.10, we can
write down a wavelet equation analogous to the scaling equation. The reason is
that√ is in V1 and the functions ϕ1,k form an orthonormal basis of V1. Expansion
of√ in this orthonormal basis leads us to a series√ =

P∞
k=−∞ bkϕ1,k convergent

in L2(R). In this expansion the coefficients are inner products bk = (√,ϕ1,k)
satisfying

P
|bk |2 = k√k22 = 1. Substituting the definition of ϕ1,k allows us to

rewrite this wavelet equation as

√(x) =
∞P

k=−∞
bk

p
2ϕ(2x − k).

Wearguewith this equation just aswedidwith the scalingequation. Associated
to thewavelet equation is a useful L2 periodic functionm1 of period 1 that behaves
like a generating function. Namely there exists a periodic L2 functionm1 of period
1 such that m1 is given on [0, 1] by a Fourier series as

m1(y) = 1p
2

∞P

k=−∞
bke−2π iky .

This function has
km1k2L2([0,1]) = 1

2

∞P

k=−∞
|bk |2 = 1

2 .

The Fourier transform of the wavelet equation is

(F√)(y) =
∞P

k=−∞

1p
2
bke−π iky(Fϕ)( 12 y),

and the generating function m1 allows us to write the Fourier transform of the
wavelet equation in the tidy form

(F√)(y) = m1(y/2)(Fϕ)(y/2).
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EXAMPLE. In the case of the Haar system, Step 6 of the proof of Theorem 10.4
shows that the scaling equation and the wavelet equation are

ϕ(x) = ϕ(2x) + ϕ(2x − 1)
√(x) = ϕ(2x) − ϕ(2x − 1).

In other words, a0 = 1/
p
2 and a1 = 1/

p
2, while b0 = 1/

p
2 and b1 = −1/

p
2.

The functions m0 and m1 are given by

m0(y) = 1
2 (1+ e−2π iy)

m1(y) = 1
2 (1− e−2π iy),

and we have
m1(y) = e2π iy(−e−4π iy)m0(y + 1

2 ).

Let us return to the specificchoiceof awavelet in thegeneral case. According to
Theorem 10.10, we are to specify an L2 function ∫(y) of period 1 with |∫(y)| = 1
almost everywhere, and then the formula form1 in terms ofm0 (after replacement
of y/2 by y) will be

m1(y) = e2π iy∫(y)m0(y + 1
2 ).

The seemingly natural choice is to take ∫(y) = 1, and we shall make that choice
for a while in the proof of Theorem 10.10b, obtaining

m1(y) = e2π iym0(y + 1
2 ).

That choice leads in the general case to the formula

bk = (−1)k+1 a−k−1

for the coefficients of the wavelet equation.
The example of the Haar system shows that other choices for ∫ will sometimes

be appropriate; for it the choice ∫(y) = −e−4π iy was what produced the Haar
wavelet from the Haar scaling function. The choice ∫(y) = −e−4π iy leads to the
formulas

m1(y) = −e−2π iym0(y + 1
2 )

and
bk = (−1)k a−k+1.
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As a general matter, taking ∫(y) to be the product of a power of e2π iy and a
constant of absolute value one has the effect of moving the wavelet left or right
so that it looks better. This will be especially convenient later for the Daubechies
wavelets, which are of compact support. Problem 3 at the end of the chapter
shows that the only valid choices of ∫(y) in the case of compact support are the
products of a power of e2π iy and a constant of absolute value one.
Now we come to the three lemmas. The first and the third will be used in

the course of proving Theorem 10.10. The second lemma will not be used until
Section 7, but the techniques for its proof take some of the mystery out of the
proof of Theorem 10.10.

Lemma 10.11. If h(x) is a function in L2(R), then the set of functions
{h(x − k)}∞k=−∞ is orthonormal if and only if

∞P

l=−∞
|(Fh)(y + l)|2 = 1

almost everywhere.

PROOF. By the Plancherel Theorem (Section VIII.3 of Basic) we have

δ0k
?
=

R
R h(x)h(x − k) dx

=
R

R(Fh)(y)e−2π iky(Fh)(y) dy

=
R

R e
2π iky|(Fh)(y)|2 dy

=
∞P

l=−∞

R l+1
l e2π iky|(Fh)(y)|2 dy

=
∞P

l=−∞

R 1
0 e

2π ik(y0+l)|(Fh)(y0 + l)|2 dy0

=
∞P

l=−∞

R 1
0 e

2π iky0
|(Fh)(y0 + l)|2 dy0. (∗)

If we were to insert absolute value signs in the integrand of (∗), we would
obtain the result

R
R |(Fh)(y0)|2 dy0 =

R
R |h(x)|2 dx by the Plancherel formula

(Theorem 8.6 of Basic), and this is finite. Therefore Fubini’s Theorem allows us
to interchange sum and integral in (∗). Doing the interchange and changing y0

back to y, results in the equation

δ0k
?
=

R 1
0 e

2π iky°
∞P

l=−∞
|(Fh)(y + l)|2

¢
dy. (∗∗)
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This says that the system is orthonormal if and only if the function in L1([0, 1])

given by the almost everywhere convergent series
∞P

l=−∞
|(Fh)(y + l)|2 has the

same Fourier coefficients as the constant function 1. By the uniqueness theorem
for Fourier series (Corollary 6.50 of Basic), we obtain the result that the system
is orthonormal if and only if

∞P

l=−∞
|(Fh)(y + l)|2 = 1 almost everywhere. §

Lemma 10.12. Suppose ϕ(x) is a function in L2(R) such that the set of
functions {ϕ0,k}

∞
k=−∞ = {x 7→ ϕ(x − k)}∞k=−∞ is orthonormal, and let V be the

closure of the linear span of this set of functions. Let `2 be the set of square
integrable doubly infinite sequences {ck}∞k=−∞, and write δ· k for the member
of `2 that is 1 at k and is 0 otherwise. Parseval’s Theorem produces unitary9
mappings α : `2 → V and β : L2([0, 1]) → `2 such that α(δ· k) = ϕ0,k and
β(e−2π iky) = δ· k . Regard members of L2([0, 1]) as extended periodically to all
of R with period 1. Then for every f ∈ V ,

(a) the product of (β−1α−1)( f ) and Fϕ equals F f , and
(b) k(β−1α−1)( f )kL2([0,1]) = k(β−1α−1)( f ) · (Fϕ)kL2(R)

.

PROOF. In the statement of the lemma, the unitary property of α follows from
the assumption that {ϕ0,k} is an orthonormal basis of V and from the abstract
Parseval Theorem for Hilbert spaces. The unitary property of β follows from the
Parseval Theorem for Fourier series and the Riesz–Fischer Theorem.
In (a) themappingβ−1α−1 acts on V byβ−1α−1°P

k ckϕ0,k
¢

=
P

k cke−2π iky ,
the convergence of the sum on the left being in V ⊆ L2(R) and the convergence
of the sum on the right being in L2([0, 1]). Since Fϕ0,k = e−2π iky(Fϕ)(y) =
β−1α−1(ϕ0,k)(Fϕ)(y), we immediately obtain F f = (β−1α−1)( f ) · Fϕ for all
members f of the vector-space linear span of {ϕ0,k}. Also if fn → f in L2(R),
we know that (β−1α−1)( fn) → (β−1α−1)( f ) in L2([0, 1]). This proves (a).
For the norm equality of (b), let us abbreviate (β−1α−1 f )(y) as µ(y). Then

R
R |µ(y)(Fϕ)(y)|2 dy =

∞P

k=−∞

R k+1
k |µ(y)|2|(Fϕ)(y)|2 dy

=
∞P

k=−∞

R 1
0 |µ(y − k)|2|(Fϕ)(y − k)|2 dy

=
∞P

k=−∞

R 1
0 |µ(y)|2|(Fϕ)(y − k)|2 dy by periodicity

9“Unitary” means linear, norm-preserving, and onto.
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=
R 1
0 |µ(y)|2

∞P

k=−∞
|(Fϕ)(y − k)|2 dy

=
R 1
0 |µ(y)|2 dy by Lemma 10.11.

§

Lemma 10.13. If a multiresolution analysis is given with scaling function ϕ,
then the generating function m0 of the scaling equation satisfies the identity

|m0(y)|2 + |m0(y + 1
2 )|

2 = 1 almost everywhere.

REMARKS. This lemma gives a sense in which the generating functionsm0(y)
and m1(y) are complementary. The method of proof will be used several times
in what follows.

PROOF. We apply Lemma 10.11 with h = ϕ. Substituting for (Fϕ)(y + l) its
value from the Fourier transform of the scaling equation rewrites this equality as

∞P

l=−∞
|m0( 12 y + 1

2 l)|
2|(Fϕ)( 12 y + 1

2 l)|
2 = 1 a.e.

Replacing y/2 by y in this relation shows that almost everywhere

∞P

l=−∞
|m0(y + 1

2 l)|
2|(Fϕ)(y + 1

2 l)|
2 = 1.

We separate the even-numbered terms on the left from the odd-numbered terms
and use that m0 is periodic of period 1 to see that

1 =
P

l even
|m0(y + 1

2 l)|
2|(Fϕ)(y + 1

2 l)|
2 +

P

l odd
|m0(y + 1

2 l)|
2|(Fϕ)(y + 1

2 l)|
2

= |m0(y)|2
P

l even
|(Fϕ)(y + 1

2 l)|
2 + |m0(y + 1

2 )|
2 P

l odd
|(Fϕ)(y + 1

2 l)|
2

= |m0(y)|2
∞P

l=−∞
|(Fϕ)(y + l)|2 + |m0(y + 1

2 )|
2

∞P

l=−∞
|(Fϕ)(y + l + 1

2 )|
2

= |m0(y)|2 + |m0(y + 1
2 )|

2 almost everywhere,

the last step holding by two applications of Lemma 10.11. §
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PROOF OF THEOREM 10.10a. Let f be an arbitrary member of the orthogonal
complement W0 of V0 in V1. Since the functions ϕ1,k form an orthonormal
basis of V1, we can expand f in this orthonormal basis and obtain a series f =P∞

k=−∞ fkϕ1,k convergent in L2(R). In this expansion the coefficients are inner
products fk = ( f,ϕ1,k) satisfying

P
k | fk |2 = k f k22. Substituting the definition

of ϕ1,k allows us to rewrite this expansion as

f (x) =
∞P

k=−∞
fk

p
2ϕ(2x − k).

Arguing as with ϕ and the scaling equation, we obtain

(F f )(y) =
∞P

k=−∞

1p
2
fke−π iky(Fϕ)( 12 y) = mf (y/2)(Fϕ)(y/2), (∗)

where mf is the function of period 1 given on [0, 1] by its Fourier series as

mf (y) = 1p
2

∞P

k=−∞
fke−2π iky .

This function satisfies

kmf k2L2([0,1]) = 1
2

∞P

k=−∞
| fk |2 = 1

2k f k
2
2. (∗∗)

The condition that f is orthogonal to V0 means that f is orthogonal to all ϕ0,k .
By the Plancherel Theorem (Theorem 8.6 of Basic) this is the condition that

0 =
Z

R
(F f )(y)e−2π iky(Fϕ)(y) dy for k ∈ Z.

Arguing as with (∗) and (∗∗) in the proof of Lemma 10.11, we can rewrite this
condition as

0 =
R 1
0 e

2π iky°
∞P

l=−∞
(F f )(y + l)(Fϕ)(y + l)

¢
dy.

In other words, the function in L1([0, 1]) given almost everywhere by the abso-

lutely convergent series
∞P

l=−∞
(F f )(y+ l)(Fϕ)(y + l) has all Fourier coefficients

0. From the uniqueness theorem for Fourier series (Corollary 6.50 of Basic), we
obtain the almost-everywhere equality

∞X

l=−∞

(F f )(y + l)(Fϕ)(y + l) = 0.
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Substituting for (F f )(y+ l) and (Fϕ)(y+ l) the values from (∗) and the Fourier
transform of the scaling equation allows us to rewrite this equality as

∞P

l=−∞
mf (

1
2 y + 1

2 l)m0(
1
2 y + 1

2 l) (Fϕ)( 12 y + 1
2 l)(Fϕ)( 12 y + 1

2 l) = 0.

Replacement of y/2 by y in this relation shows that almost everywhere
∞P

l=−∞
mf (y + 1

2 l)m0(y + 1
2 l) |(Fϕ)(y + 1

2 l)|
2 = 0.

Just as in the proof of Lemma 10.13, we separate the even-numbered terms in the
sum from the odd-numbered terms and use thatm0 andmf are periodic of period
1 to see that

mf (y)m0(y) + mf (y + 1
2 )m0(y + 1

2 ) = 0 (†)
almost everywhere.
For almost every y, at least one ofm0(y) andm0(y+ 1

2 ) is nonzero, according
to Lemma 10.13. If y has the property that bothm0(y) andm0(y+ 1

2 ) are nonzero,
then we can set

∏(y) =
mf (y)

m0(y + 1
2 )

and ∏(y + 1
2 ) =

mf (y + 1
2 )

m0(y)
, (††)

and we see from (†) that

∏(y) + ∏(y + 1
2 ) = 0. (‡)

If m0(y) = 0 and m0(y + 1
2 ) 6= 0, then we define ∏(y) by the first equation in

(††) and ∏(y+ 1
2 ) by (‡), while ifm0(y) 6= 0 andm0(y+ 1

2 ) = 0, then we define
∏(y + 1

2 ) by the second equation in (††) and ∏(y) by (‡). The result is that we
have a definition almost everywhere of a periodic function ∏ of period 1 such that
(‡) holds almost everywhere and such that

mf (y) = ∏(y)m0(y + 1
2 ) (‡‡)

almost everywhere. This equation shows that

kmf k2L2[0,1] =
R 1
0 |∏(y)|2|m0(y + 1

2 )|
2 dy

=
R 1/2
0 |∏(y)|2|m0(y + 1

2 )|
2 dy +

R 1
1/2 |∏(y)|2|m0(y + 1

2 )|
2 dy

=
R 1/2
0 |∏(y)|2|m0(y + 1

2 )|
2 dy +

R 1/2
0 |∏(y)|2|m0(y)|2 dy by (‡)

=
R 1/2
0 |∏(y)|2 dy by Lemma 10.13.

(§)
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From (‡) it follows that ∫(2y) = e−2π iy∏(y) with ∫(y) periodic of period 1.
We substitute from (‡‡) into (∗) and obtain

(F f )(y) = mf (
1
2 y)(Fϕ)( 12 y) = ∏( 12 y)m0(

1
2 y + 1

2 )(Fϕ)( 12 y).

Thus
(F f )(y) = eπ iy∫(y)m0( 12 y + 1

2 )(Fϕ)( 12 y),

as required.
Finally we have

R 1
0 |∫(y)|2 dy = 2

R 1/2
0 |∫(2y)|2 dy = 2

R 1/2
0 |∏(y)|2 dy = 2kmf k2L2[0,1] = k f k22

(§§)
by definition of ∫ and use of (§) and (∗∗). §

PROOF OF THEOREM 10.10b. Taking ∫ = 1, we define √ in L2(R) by

(F√)(y) = eπ iym0( 12 y + 1
2 )(Fϕ)( 12 y).

We prove that {√(y − k)}∞k=−∞ is an orthonormal basis of W0. To see that it is
orthonormal, we use Lemma 10.11, breaking the sum for √ into even-numbered
and odd-numbered terms and applying Lemma 10.11 for ϕ in each of the terms.
We have
P

l
|F√(y + l)|2 =

P

l
|m0( 12 y + 1

2 l + 1
2 )|

2|Fϕ( 12 y + 1
2 l)|

2

= |m0( 12 y + 1
2 )|

2P

l
|Fϕ( 12 y + l)|2

+ |m0( 12 y)|
2P

l
|Fϕ( 12 y + 1

2 + l)|2

= |m0( 12 y + 1
2 )|

2 + |m0( 12 y)|
2 a.e. by Lemma 10.11 for ϕ

= 1 a.e. by Lemma 10.13,

and thus Lemma 10.11 indeed allows us to conclude that {√(y − k)}∞k=−∞ is an
orthonormal set.
To show completeness when ∫ = 1, we are to show that any f in W0 has an

expansion in L2(R) as f =
P

k fk√0,k . This is the question whether equality
holds in Bessel’s inequality k f k22 ∏

P
k | fk |2, the coefficient fk being given by

fk =
R

R f (x)√(x − k) dx .
We know from (a) that any f inW0 is of the form (F f )(y) = ∫(y)(F√)(y) for

a periodic function ∫ of period 1 with k∫k2L2[0,1] = k f k22. By Parseval’s equality
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for L2[0, 1], we can write ∫(x) =
P

k
cke−2π ikx with

P

k
|ck |2 = k∫k2L2[0,1], and

(§§) has shown that k∫k2L2[0,1] = k f k22. Thus completeness will follow if we
show that fk = ck for all k.
The verification that fk = ck is rather similar to the argument in Lemma 10.11.

On the one hand, direct computation gives

fk =
R

R f (x)√(x − k) dx

=
R

R(F f )(y)(F√0,k)(y)

=
R

R(F f )(y)e−2π iky(F√)(y)

=
R

R ∫(y)e2π iky|(F√)(y)|2 dy

=
∞P

l=−∞

R l+1
l ∫(y)e2π iky|(F√)(y)|2 dy

=
∞P

l=−∞

R 1
0 ∫(y)e2π iky|(F√)(y + l)|2 dy,

and on the other hand, Lemma 10.11 gives

ck =
R 1
0 ∫(y)e2π iky dy

=
R 1
0

∞P

l=−∞
∫(y)e2π iky|(F√)(y + l)|2 dy.

Thus the equality fk
?
= ck comes down to an interchange of the limit and the sum.

If we were instead to consider the expression

R 1
0

∞P

l=−∞
|∫(y)||(F√)(y + l)|2 dy,

the result would be
R 1
0 |∫(y)| dy ≤ k∫k2L2([0,1]) = k f k22, which is finite. Therefore

Fubini’s Theorem shows the interchange to be justified, and we indeed have
fk = ck for all k. This proves completeness in W0 of the orthonormal system
{√0,k}∞k=−∞.
Now suppose that ∫(y) is any function in L2([0, 1]) periodic of period 1 such

that |∫(y)| = 1 almost everywhere. Let f be the function inW0 that corresponds
to ∫, i.e., has (F f )(y) = ∫(y)(F√)(y). Applying both directions of Lemma
10.11 to the identity

∞P

l=−∞
|F f (y + l)|2 = |∫(y)|2

∞P

l=−∞
|F√(y + l)|2 =

∞P

l=−∞
|F√(y + l)|2
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we see that {x 7→ f (x − k)}∞k=−∞ is an orthonormal set in W0. Suppose that g
is given in W0 and that g arises from a periodic function µ(y) of period 1 by the
formula (Fg)(y) = µ(y)(F√)(y). Then

(Fg)(y) = (µ(y)∫(y)−1)∫(y)(F√)(y) = (µ(y)∫(y)−1)(F f )(y),

and the function µ(y)∫(y)−1 is in L2([0, 1]). The same argument that shows the
equality fk = ck above shows that g is in the closed linear span of the functions
{x 7→ f (x − k)}∞k=−∞, and therefore F−1(∫(F√)) is a wavelet, as was asserted.
Finally if ∫(y) is any periodic function of period 1 such that the function h

with (Fh)(y) = ∫(y)(F√)(y) is a wavelet, then application of both halves of
Lemma 10.11 shows that

1 =
∞P

l=−∞
|Fh(y + l)|2 = |∫(y)|2

∞P

l=−∞
|F√(y + l)|2 = |∫(y)|2

almost everywhere, and |∫(y)| = 1 almost everywhere. §

4. Shannon Wavelet

We saw in Section 2 how the Haar wavelet could be defined and analyzed im-
mediately from its definition. The advantage of the Haar system, not seen with
Fourier series, is that classes of functions defined by their size are handled well
by the Haar system. On the other hand, the functions √j,k of the Haar system
are discontinuous, and wavelet expansions therefore cannot take advantage of
smoothness of the function being expanded.
Thus otherwavelets are neededwith properties better suited for other purposes.

The trouble is that the definitions of other wavelets are not so transparent. In
this section we introduce the first of several useful examples of wavelets that
are constructed directly from a multiresolution analysis with the aid of Theorem
10.10. Withmost suchexamples somesupplementaryargument is neededbecause
the hypotheses of Theorem 10.10 do not directly fit with the example.
The example in this section, called the Shannon system, is exceptional in that

verification of the hypotheses is fairly straightforward. It has

ϕ(x) =
sin(πx)

πx
for x ∈ R

as scaling function and Vj = { f ∈ L2(R)
Ø
Ø (F f )(y) = 0 for |y| > 2 j−1} as

the j th closed subspace. As usual, ϕ is to lie in V0. The function ϕ arose in
the Shannon Sampling Theorem (Proposition 10.3) when ƒ = 1. The proof of
that result showed that (Fϕ)(y) equals the indicator function I[− 1

2 ,
1
2 ]
(y) almost

everywhere on R. Thus indeed ϕ lies in V0.
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Theorem10.14. TheShannonsystem, consistingof the set of closed subspaces
{Vj }∞j=−∞ and the function ϕ, is a multiresolution analysis. The corresponding
wavelet may be taken to be

√(x) = −
2
°
sin(2πx) − cos(πx)

¢

π(2x − 1)
for x ∈ R.

Its Fourier transform almost everywhere equals

(F√)(y) = e−π iy(I[−1,− 1
2 ]
(y) + I[ 12 ,1](y)) for y ∈ R.

REMARK. Graphs of ϕ and√ appear in Figure 10.3. A new ingredientwith this
example, not seen with the Haar system, is that the scaling equation has infinitely
many nonzero coefficients. We get at these coefficients through the associated
generating function m0 defined by (Fϕ)(2y) = m0(y)(Fϕ)(y), working with
m0 as a whole rather than with the individual coefficients. The function m0 is
periodic of period 1.

(a)

(b)

FIGURE 10.3. Graphs of Shannon scaling function and wavelet.
(a) Scaling function. (b) Wavelet.
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PROOF. The closed subspaces Vj are nested, and their union is the set of
functions in L2(R) whose Fourier transforms have compact support. This space
is dense in L2(R) by the Plancherel Theorem. The intersection of the spaces Vj
is the subspace of functions in L2(R) whose Fourier transforms are supported at
0, and that subspace is 0. Finally we have (Fϕ0,k)(y) = e−2π iky I[− 1

2 ,
1
2 ]
(y). Since

the functions e−2π iky form an orthonormal basis of L2([0, 1]), the functionsFϕ0,k
form an orthonormal basis of F(V0), and the functions ϕ0,k , by the Plancherel
Theorem, form an orthonormal basis of V0. Thus the Shannon system is a
multiresolution analysis.
To get at √ , we start from the formula (Fϕ)(2y) = m0(y)(Fϕ)(y), and we

find for |y| ≤ 1
2 that

m0(y) =
(Fϕ)(2y)
Fϕ(y)

=
I[− 1

2 ,
1
2 ]
(2y)

I[− 1
2 ,
1
2 ]
(y)

= I[− 1
4 ,
1
4 ]
(y).

For |y| > 1
2 , the function is to be extended periodically with period 1. Then we

have
(F√)(2y) = m1(y)(Fϕ)(y).

The formula for m1(y) involves m0(y + 1
2 ), which is given by

m0(y + 1
2 ) =






1 for − 3
4 ≤ y ≤ − 1

4 ,

0 for − 1
4 ≤ y ≤ 1

4 ,

1 for 1
4 ≤ y ≤ 3

4 ,

0 for 3
4 ≤ y ≤ 5

4 .

For |y| ≤ 3
4 , this equals I[− 3

4 ,−
1
4 ]
(y) + I[ 14 , 34 ](y), and thus

m0(y + 1
2 ) = I[− 1

2 ,−
1
4 ]
(y) + I[ 14 , 12 ](y) for |y| ≤ 1

2 .

Theorem 10.10a says that we can take √ to be f in the formula

(F f )(y) = eπ iy∫(y)m0( 12 y + 1
2 )(Fϕ)( 12 y)

if we use ∫(y) = e−2π iy . (We could as well use any other integer power of e2π iy
as ∫(y), and the effect will be to translate√ by an integer. Our choice is arranged
to make the graph in Figure 10.3b look pleasing.) In this case

(F√)(2y) = e−2π iym0(y + 1
2 )(Fϕ)(y).

Since (Fϕ)(y) = I[− 1
2 ,
1
2 ]
(y) for all y ∈ R, we obtain
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(F√)(2y) = e−2π iy°I[− 1
2 ,−

1
4 ]
(y) + I[ 14 , 12 ](y)

¢

and thus (F√)(y) = e−π iy°I[−1,− 1
2 ]
(y) + I[ 12 ,1](y)

¢
,

as required. Forming the inverse Fourier transform of this function by direct
computation yields

√(x) =
2
°
sin(2π(x − 1

2 )) − sin(π(x − 1
2 ))

¢

π(2x − 1)
= −

2
°
sin(2πx) − cos(πx)

¢

π(2x − 1)
. §

The wavelet √ produced by Theorem 10.14 is called the Shannon wavelet.
Since the Shannon wavelet is smooth, we have gotten around one defect of the
Haar wavelet. But we have introduced other defects: the functions ϕ and √
in the Shannon system fail to be in L1(R), and their Fourier transforms are
discontinuous.
The examples in later sectionswill havemore favorable smoothness properties,

but each will have other drawbacks.

5. Construction of a Wavelet from a Scaling Function

We now aim for the Meyer wavelets, whose Fourier transforms have compact
support and a specified degree of smoothness. Correspondingly the wavelets
themselves are all of class C∞ and have a specified degree of decrease at infinity.
As is true with many examples, the spaces Vj in the relevant multiresolution
analysis are hard to pin down without referring to the candidate for the scaling
function ϕ. By contrast, in the Haar system the members of the spaces Vj were
L2 functions that were constant on certain kinds of intervals, and in the Shannon
system themembers of the spaces Vj were L2 functionswhose Fourier transforms
vanished on certain sets.
However, when we are allowed to refer to ϕ, property (iv) of a multiresolution

analysis shows that V0 is always the closed subspace forwhich {x 7→ ϕ(x−k)}k∈Z
is an orthonormal basis, and the other spaces Vj can be defined in terms of V0 by
the dilation property (iii). Thus the question arises how to tell whether a function
ϕ in L2(R) for which {x 7→ ϕ(x − k)}k∈Z is an orthonormal set is the scaling
function of a multiresolution analysis. The sequence {Vj } will be increasing as
soon as V0 ⊆ V1, i.e., as soon as ϕ satisfies a scaling equation. Evidently what is
needed is to have reasonable sufficient conditions for the first two properties of a
multiresolution analysis to be satisfied, namely

(i)
S

j Vj is dense in L2(R),
(ii)

T
j Vj = 0.

We give such conditions in this section.
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Proposition 10.15. Suppose that ϕ is a member of L2(R) such that
{x 7→ ϕ(x − k)}∞k=−∞

is an orthonormal set. Let V0 be the closed linear span of this orthonormal set,
and define dilated spaces Vj by Vj = { f ∈ L2(R) | x 7→ f (2− j x) is in V0}.
Then

T∞
j=−∞ Vj = 0.

REMARK. In other words, property (ii) is automatic; no additional hypothesis
on ϕ is needed. By contrast in Proposition 10.17 we shall impose an additional
hypothesis on ϕ to ensure that property (i) holds.
PROOF. Defineϕj,k(x) = 2 j/2ϕ(2 j x−k). The set {ϕj,k}∞k=−∞ is anorthonormal

basis of Vj , and thus any f in Vj satisfies Parseval’s equality,

k f k22 =
∞P

j=−∞
|( f,ϕj,k)|2.

Let f be in
T∞

j=−∞ Vj . We are to prove that f = 0. Let ≤ > 0 be given, and
choose g ∈ Ccom(R) with k f − gk2 ≤ ε. Let M be large enough so that the
interval [−M,M] contains the support of g, and suppose that j < 0 is large
enough so that 2−| j |M < 1

2 . If Pj denotes the orthogonal projection of L
2(R) on

Vj , then
k f − Pj gk2 = kPj ( f − g)k2 ≤ k f − gk2 ≤ ε,

and hence
k f k2 ≤ ε + kPj gk2. (∗)

Also we have

kPj gk22 =
∞P

k=−∞
|(g,ϕj,k)|2

≤ 2−| j |
∞P

k=−∞

≥ R
x∈R |g(x)||ϕ(2−| j |x − k)| dx

¥2

= 2−| j |
∞P

k=−∞

≥ R
|x |≤M |g(x)||ϕ(2−| j |x − k)| dx

¥2

≤ 2−| j |kgk2sup
∞P

k=−∞

≥ R
|x |≤M |ϕ(2−| j |x − k)| dx

¥2

≤ 2−| j |kgk2sup 2M
∞P

k=−∞

R
|x |≤M |ϕ(2−| j |x − k)|2 dx

by the Schwarz inequality

= kgk2sup 2M
∞P

k=−∞

R
|x 0|≤2−| j |M |ϕ(x 0 − k)|2 dx 0

= kgk2sup 2M
∞P

k=−∞

R
|x+k|≤2−| j |M |ϕ(x)|2 dx .
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Since 2−| j |M < 1
2 , the sets of integration on the right side are disjoint, and we

can write the right side as

= kgk2sup 2M
R
Ej |ϕ(x)|2 dx,

where Ej is the set of reals at a distance of ≤ 2−| j |M from Z. As | j | tends to
infinity, these sets decrease to Z, which has measure 0. In view of Corollary
5.3 of Basic, the complete additivity of the finite measure |ϕ(x)|2 dx implies that
this expression tends to 0. By (∗), k f k2 ≤ ε. Since ε is arbitrary, f is the zero
element of L2(R). §

Lemma 10.16. Suppose that ϕ is a member of L2(R) such that

{x 7→ ϕ(x − k)}∞k=−∞

is an orthonormal set. Let V0 be the closed linear span of this orthonormal set,
and define dilated spaces Vj by Vj = { f ∈ L2(R) | x 7→ f (2− j x) is in V0}. For
j > 0, let Pj be the orthogonal projection of L2(R) on Vj . If f is a member of
L2(R) whose Fourier transform F f is bounded and is supported in the interval
[−M,M], then

kPj f k22 =
Z M

−M
|(F f )(y)|2 |(Fϕ)(2− j y)|2 dy

when j is large enough so that 2 j−1 > M .

PROOF. With ϕj,k(x) = 2 j/2ϕ(2 j x − k), we have

kPj f k22 =
P

k∈Z
|( f,ϕj,k)|2

=
P

k∈Z

Ø
Ø R M

−M(F f )(y)(Fϕj,k)(y) dy
Ø
Ø2 by the Plancherel Theorem

=
P

k∈Z

Ø
Ø R M

−M(F f )(y)e−2π ik2− j y2− j/2(Fϕ)(2− j y) dy
Ø
Ø2

=
P

k∈Z
2− j

Ø
Ø R 2 j−1

−2 j−1(F f )(y)e−2π ik2− j y(Fϕ)(2− j y) dy
Ø
Ø2, (∗)

the last equality holding since 2 j−1 > M . The integral in the kth term on the right
is the kth Fourier coefficient of an L2 function on [−2 j−1, 2 j−1], specifically of

(F f )(y) (Fϕ)(2− j y),
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and Parseval’s Theorem shows that the sum over k ∈ Z of the absolute values
squared of these coefficients equals the norm squared of the function in the space
L2([−2 j−1, 2 j−1], dx). Thus (∗) equals

R 2 j−1
−2 j−1 |(F f )(y) (Fϕ)(2− j y)|2 dy. §

Proposition 10.17. Suppose that ϕ is a member of L2(R) such that

{x 7→ ϕ(x − k)}∞k=−∞

is an orthonormal set. Let V0 be the closed linear span of this orthonormal set,
and define dilated spaces Vj by Vj = { f ∈ L2(R) | x 7→ f (2− j x) is in V0}.
Under the additional hypothesis that Fϕ is a bounded function that is continuous
and nonzero at y = 0, the vector subspace

P∞
j=−∞ Vj generated by all the Vj is

dense in L2(R).

REMARK. We shall use this result only when V0 ⊆ V1, in which case {Vj } is
an increasing sequence and

P∞
j=−∞ Vj =

S∞
j=−∞ Vj .

PROOF. Let Pj be the orthogonal projection on Vj . Arguing by contradiction,
suppose that f is a nonzero element in the orthogonal complement of

S∞
j=−∞ Vj .

Certainly Pj f = 0 for all j . Let ≤ > 0 be given, and assume that ≤ is small
enough so that

≤(1+ |(Fϕ)(0)|) < |(Fϕ)(0)|k f k2. (∗)

This is possible since (Fϕ)(0) and k f k2 are nonzero. Choose a function g in
L2(R) such that Fg has compact support and k f − gk2 ≤ ≤. Then kPj gk2 =
kPj (g − f )k2 ≤ kg − f k2 ≤ ≤.
Say that the support of Fg is contained in the interval [−M,M]. Referring to

Lemma 10.16, we then have

≤2 ∏ kPj gk22 =
R M
−M |(Fg)(y)|2 |Fϕ(2− j y)|2 dy. (∗∗)

Since Fϕ is bounded and Fg is square integrable and Fϕ is continuous at 0, the
Dominated Convergence Theorem applies and shows that the right side of (∗∗)
tends to R M

−M |(Fg)(y)||(Fϕ)(0)|2 dy

as j tends to +∞. Thus we obtain

≤2 ∏ |(Fϕ)(0)|2kFgk22 = |(Fϕ)(0)|2kgk22 ∏ |(Fϕ)(0)|2(k f k2 − ≤)2,

an inequality that contradicts (∗). §



472 X. Introduction to Wavelets

6. Meyer Wavelets

Nowwe can proceed with the construction of the Meyer wavelets. The definition
of theMeyermultiresolution analysis involves the choice of a continuous function
∫ on R that is of class Cm or perhaps C∞ and that is 0 for y ≤ 0 and is 1 for
y ∏ 1. It is assumed that ∫ satisfies

∫(y) + ∫(1− y) = 1 for y ∈ R.

This function will be incorporated into the definition of the Fourier transform of
the scaling function ϕ.
There are no further assumptions. However, the interest in theMeyer wavelets

is normally in the effect of the order of continuous differentiability on what
happens, and at least when the order of continuous differentiability is finite, the
convention is to choose the function ∫ of class Cm as computationally simple as
possible so that it meets the above conditions.10 With this understanding for each
finitem ∏ 0, there is a unique such ∫ whose polynomial part has lowest degree.11
That degree turns out to be 2m + 1, and the polynomial is

xm+1
mX

k=0

µ
m + k
k

∂
(1− x)k .

The convention is to take ∫ to be that polynomial on [0, 1], extended by 0 for
x ≤ 0 and extended by 1 for x ∏ 1. We shall call the resulting multiresolution
analysis the “Meyer multiresolution analysis” of indexm. Figure 10.4 shows that
graph of ∫(x) for m = 3. The table in Figure 10.5 lists the polynomial explicitly
for a few cases.

FIGURE 10.4. Graph of Meyer polynomial function when m = 3.

10Specifically the conditions are that ∫ is 0 for y ≤ 0, is 1 for y ∏ 1, is a polynomial function
between 0 and 1, satisfies ∫(y) + ∫(1− y) = 1, and is in the class Cm on R.

11See Problems 13–17 at the end of the chapter.
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m Polynomial ∫(x) for 0 ≤ x ≤ 1
0 x
1 x2(3− 2x)
2 x3(10− 15x + 6x2)
3 x4(35− 84x + 70x2 − 20x3)
4 x5(126− 420x + 540x2 − 315x3 + 70x4)
5 x6(462− 1980x + 3465x2 − 3080x3 + 1386x4 − 252x5)
6 x7(1716− 9009x + 20020x2 − 24024x3 + 16380x4 − 6006x5 + 924x6)

FIGURE 10.5. Table of values of the polynomial part of ∫(x)
used in defining the Meyer wavelet of index m.

With ∫ in hand, we define the Meyer scaling function ϕ through its Fourier
transform Fϕ by

(Fϕ)(y) =






1 for |y| ≤ 1
3 ,

cos
°

π
2 ∫(3|y| − 1)

¢
for 13 ≤ |y| ≤ 2

3 ,

0 for 23 ≤ |y|.

A plot of Fϕ for the case with m = 3 in the above table appears in Figure 10.6.

FIGURE 10.6. Graph of Fϕ for the Meyer wavelet when m = 3.
It will be seen in Theorem 10.18 below that {x 7→ ϕ(x − k)}∞k=−∞ is an

orthonormal set, hence that ϕ is a candidate for a scaling function. Then we let
V0 be the closed linear span of this orthonormal set and define dilated spaces Vj
as usual by Vj = { f ∈ L2(R) | x 7→ f (2− j x) is in V0}. The spaces Vj will be
seen to be nested. TheMeyer system corresponding to ∫ consists of ϕ and the
nested sequence of spaces {Vj }∞j=−∞.

Theorem 10.18. Let ∫ : R → [0, 1] be a continuous function such that
(i) ∫(t) = 0 for t ≤ 0,
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(ii) ∫(t) = 1 for t ∏ 1,
(iii) ∫(t) + ∫(1− t) = 1 for all t ∈ R.

Then the Meyer system corresponding to ∫ is a multiresolution analysis. The
corresponding wavelet √ may be taken to have Fourier transform given by

(F√)(y) = eπ iy°(Fϕ)(y + 1) + (Fϕ)(y − 1)
¢
(Fϕ)( 12 y).

REMARKS. It is instructive to see how e−π iy(F√) relates to Fϕ. For this
purpose, compare the graph of Fϕ in Figure 10.6 with that of e−π iy(F√) in
Figure 10.7 below. Figure 10.8 after the proof shows graphs of ϕ and √ .

FIGURE 10.7. Graph of e−π iyF√ for the Meyer wavelet when m = 3.

PROOF. To see that ϕ and the spaces Vj form a multiresolution analysis, let us
first compute P

l |(Fϕ)(y + l)|2. (∗)
Expression (∗) is manifestly periodic of period 1, and we may assume that
0 ≤ y ≤ 1. For 0 ≤ y ≤ 1

3 , the only nonzero term is for l = 0, and it is
1. For 23 ≤ y ≤ 1, the only nonzero term is for l = −1, and it is 1. For
1
3 ≤ y ≤ 2

3 , the only terms that contribute are for l = 0 and l = −1, and the sum
of the contributions is

cos2(π
2 ∫(3y − 1)) + cos2(π

2 ∫(2− 3y)). (∗∗)

The arguments of ∫ in (∗∗) have sum 1, and therefore the sum of their values is 1,
since we are assuming that ∫(t) + ∫(1− t) = 1 for all real t . Thus (∗∗) is of the
form cos2 π

2 u+ cos2 π
2 (1− u) = cos2 u+ sin2 u = 1. In other words, (∗) equals

1 for all y. By Lemma 10.11, {x 7→ ϕ(x − k)}∞k=−∞ is an orthonormal set.
As at the beginning of Section 5, we define V0 to be the closed linear span of

{x 7→ ϕ(x − k)}k∈Z, and we put Vj = { f | x 7→ f (2− j x) is in V0}. We need to
show that V0 ⊆ V1, i.e., that ϕ satisfies a scaling equation. We define a periodic
function µ0 of period 1 by

µ0(y) =
∞P

l=−∞
(Fϕ)(2y + 2l). (†)
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In a neighborhood of any fixed y, this is a finite sum because Fϕ has compact
support. Thus µ0(y) is meaningful, and on [0, 1], the function µ0 is square
integrable. Let check that µ0(y) satisfies

µ0(y/2)(Fϕ)(y/2) = (Fϕ)(y) for all y ∈ R. (††)

To prove (††), we observe for each l 6= 0 that the contribution to (††) given by
(Fϕ)(y+2l)(Fϕ)(y/2) is 0. In fact, for it to be nonzero requires that |y+2l| < 2

3
(and hence |y| > 4

3 ), as well as |y/2| < 2
3 , and there are no values of y where

these conditions are met. Thus proving (††) comes down to proving the equality

(Fϕ)(y) = (Fϕ)(y)(Fϕ)(y/2) for all y ∈ R. (‡)

There are two cases. One case is that |y| ∏ 2
3 , and then (Fϕ)(y) = 0 and both

sides are equal. The other case is that |y| ≤ 2
3 , and then |y/2| ≤ 1

3 , so that
(Fϕ)(y/2) = 1; in this case each side of (‡) equals (Fϕ)(y), and the two sides
are equal. Thus (‡) holds in both cases, and in particular, (††) is proved.
Sinceµ is periodic of period 1, we can writeµ0(y) = 1p

2

P
k cke−2π iky . If we

substitute this expression into (††) and apply F−1 to (††), we see that ϕ satisfies
the scaling equation ϕ(x) =

P
k ck

p
2ϕ(2x − k). That is, we can conclude from

(†) and (††) together that V0 ⊆ V1 and that the generating function for ϕ is given
by12

m0(y) =
∞P

l=−∞
(Fϕ)(2y + 2l).

Thus we are in a position to apply Propositions 10.15 and 10.17 to see that
we have a multiresolution analysis. Proposition 10.15 says that condition (ii)
is always satisfied when the Vj ’s are defined as above from the candidate for a
scaling function. Proposition 10.17 says that condition (i) is satisfied if Fϕ is
bounded, is continuous at 0, and has (Fϕ)(0) 6= 0; all of these hypotheses can
be seen by inspection of the definition of (Fϕ)(y) before the statement of the
theorem, and thus indeed we have a multiresolution analysis.
Theorem 10.10 applies, and we are left with computing √ . The theorem tells

us what functions we can take as √ . One of them is given by

(F√)(y) = eπ iym0( 12 y + 1
2 )(Fϕ)( 12 y).

Since Fϕ is real-valued, we can drop the complex conjugation and obtain

(F√)(y) = eπ iy
∞P

l=−∞
(Fϕ)(y + 2l + 1)(Fϕ)( 12 y).

12Evenwith an interpretation of L2 convergence in the formula definingµ0, wemake no assertion
that this kind of formula yields m0 beyond the context of Meyer wavelets.
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For the l th term to be nonzero, we must have |y/2| < 2
3 and |y + 2l + 1| < 2

3 ,
and thus l = 0 or l = −1. Thus

(F√)(y) = eπ iy°(Fϕ)(y + 1) + (Fϕ)(y − 1)
¢
(Fϕ)( 12 y). §

(a)

(b)

FIGURE 10.8. Graphs of Meyer scaling function and wavelet when m = 3.
(a) Scaling function. (b) Wavelet.

7. Splines

A “spline” for our purposes is a piecewise-polynomial function on an interval
[a, b] with certain smoothness conditions at the edges of the pieces. Specifically
let

a = x0 < x1 < · · · < xm = b

be a partition of [a, b]. If n < m, a spline of degree n relative to this partition13
is a function σ (x) such that

(i) for each i , the restriction of σ (x) to the interval [xi−1, xi ] is a real-valued
polynomial pi of degree at most n,

(ii) σ (x) is of class Cn−1 on [a, b].
13The situation in which some points of the partition are repeated will not be of interest to us and

will not be addressed.
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The points xi of the partition are called the knots of the spline.14
We shall be interested only in splines with equally spaced knots, for example

at the integer points in the interval [a, b], and we shall be especially interested in
splines that can be extended to members of Cn−1(R) that are zero on (−∞, a]
and [b,+∞). These we call the splines of compact support (with knots in Z).
The case of degree 0 is something we have seen before. In the case of degree

0, the splines of compact support with knots in Z are the functions on R that are
constant on every interval between consecutive integers and that vanish outside a
compact subset ofR. These are the finite linear combinations of integer translates
of the Haar scaling function,15 which we shall call 0∞ in this section and the next.
The closure of this vector subspace of L2(R) is the subspace V0 from which the
Haar multiresolution analysis is built.
We wish to generalize the Haar construction to splines of higher degree. For

n > 0, the spline function σ (x) has to be continuous at the knots, and so do its
derivatives up through order n− 1. Being a polynomial on each interior interval,
σ (x) has right and left limits at each knot, and the same thing is true of each
derivative. The difference between these limits can be nonzero only for the nth
derivative, all derivatives higher than n giving 0, and

lim
x↓xi

p(n)
i+1(x) − lim

x↑xi
p(n)
i (x) = ci

is the jump of the nth derivative. Then it follows that

pi+1(x) − pi (x) −
ci
n!

(x − xi )n

has all derivatives 0 in a neighborhood of xi and must be the zero polynomial:

pi+1(x) = pi (x) +
ci
n!

(x − xi )n.

This formula gives us a handle on the dimension of the vector space of splines of
degree n on [a, b]. Again the knots are understood to be at the integer points.
For now, let us restrict attention to the case of degree 1. We introduce a spline

1∞ of degree 1 by the definition

1∞ (x) =






x for 0 ≤ x ≤ 1,
2− x for 1 ≤ x ≤ 2,
0 otherwise.

14Under our assumption that their are no repetitions among the points of the spline, the knots are
all “simple.”

15The values of the function at integer points are not relevant as long as we are studying L2(R).
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See Figure 10.9. The integer translates of 1∞ , given by 1∞0,k(x) = 1∞ (x − k),
will also be of interest. Each of them is a spline of compact support. Comparison
of their supports shows that they are linearly independent.

FIGURE 10.9. Graph of the B-spline 1∞.

The functions 1∞0,k are called B-splines of degree 1, the “B” being short for
basis. The following result justifies this terminology.

Proposition 10.19. The B-splines of degree 1 form a vector-space basis of the
vector space of all splines of degree 1 of compact support with knots in Z.
PROOF. We need to prove spanning. Suppose that the spline is supported in

[M, N ] with M < N . We shall subtract a multiple of a B-spline to reduce the
support. Thus suppose the support of a spline s(x) is contained in [M, N ]. Let us
say that the derivative s0(x) has a jump by c at x = M , c possibly being 0. In this
case the boxed jump formula shows that s(x) = c(x − M) for M ≤ x ≤ M + 1.
Consequently s(x) − c 1∞0,M(x) is a spline of degree 1 supported in [M + 1, N ].
The support has been reduced, and in finitely many steps we end up with the
difference of s(x) and a linear combination of B-splines exhibited as supported
in the interval [N − 1, N ]. A spline of degree 1 that vanishes at each end has
to be the 0 spline, and thus the difference of s(x) and a linear combination of
B-splines is 0. In other words, s(x) equals a linear combination of B-splines. §

Let V0 be the closure in L2(R) of the vector spaces of all splines of degree 1
of compact support with knots in Z. It begins to look as if V0 and 1∞ might yield
a multiresolution analysis generalizing the Haar multiresolution analysis—until
we stop to realize that the B-splines 1∞0,k are not orthogonal to one another. In
fact, two of them are orthogonal if and only if their supports have no nontrivial
interval in common. Nevertheless we plunge ahead by writing down a scaling
equation and by computing the Fourier transform of 1∞ .
The scaling equation for 1∞ is

1∞ (x) = 1
2
1∞ (2x) + 1∞ (2x − 1) + 1

2
1∞ (2x − 2);
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we can check this equality directly when x is an integer multiple of 12 , and then
the equality follows everywhere.
The computation of the Fourier transform of 1∞ can be carried out directly, us-

ing integration by parts suitably, but we prefer the following alternative argument,
which deduces it as Corollary 10.22 from the Fourier transform of the indicator
function I[0,1] and an identity concerning convolutions.

Proposition 10.20. The Fourier transform of 0∞ = I[0,1] is given by

(F 0∞ )(y) =
e−2π iy − 1

−2π iy
= e−π iy

≥sinπy
πy

¥
.

PROOF. The quantity in question equals
R 1
0 e

−2π i xy dx . §

Proposition10.21. The B-spline 1∞ is the convolutionof the indicator function
0∞ = I[0,1] with itself:

1∞ (x) =
Z

R
I[0,1](x − t)I[0,1](t) dt =

Z 1

0
I[0,1](x − t) dt.

PROOF. The integral in question is 0 if x ≤ 0 or x ∏ 2. For 0 ≤ x ≤ 2, the
change of variables u = x − t shows that it equals

R x
x−1 I[0,1](u) du =

R min{1,x}
max{0,x−1} 1 du = min{1, x} −max{0, x − 1};

this equals x if 0 ≤ x ≤ 1 or else equals 1− (x − 1) = 2− x if 1 ≤ x ≤ 2. §

Corollary 10.22. The Fourier transform of the B-spline 1∞ is given by

(F 1∞ )(y) = e−2π iy
≥sinπy

πy

¥2
.

PROOF. The Fourier transform of a convolution is the product of the Fourier
transforms, by Proposition 8.1c of Basic. Thus the result follows by combining
Propositions 10.20 and 10.21. §

The Fourier transform of the scaling equation of 1∞ is

(F 1∞ )(y)= 1
2 (
1
2 (F

1∞ )(y/2)+1( 12e
−π iy(F 1∞ )(y/2))+ 1

2 (
1
2e

−2π iy(F 1∞ )(y/2)).

We can check this equation explicitly by using Corollary 10.22 and thereby verify
the original scaling equation itself. The question is whether

e−2π iy
≥sinπy

πy

¥2 ?
= 1

2 (F
1∞ )(y/2)( 12 + e−π iy + 1

2e
−2π iy)

= 1
2 (F

1∞ )(y/2)e−π iy(1+ cosπy)
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= (F 1∞ )(y/2)e−π iy cos2 πy/2

= e−π iye−π iy
≥sin2 πy/2

π2y2/4

¥
cos2 πy/2,

and this comes down to the identity sin 2θ = 2 sin θ cos θ .
Motivated by Lemma 10.11, we now calculate

1(y) =
∞P

l=−∞
|(F 1∞ )(y + l)|2

We know that the sum cannot be almost everywhere equal to 1, since {1∞0,k}
is not an orthonormal set. However, the value of the sum will contain useful
information for us. To make the calculation, we need to use some elementary
complex analysis. We shall take as our starting point the results of Appendix B
of Basic.

Proposition 10.23. For complex z,

π2

sin2 πz
=

∞X

n=−∞

1
(z − n)2

,

the series being uniformly convergent on compact sets that contain no integers.

PROOF. The series is convergent for z /∈ Z by comparison with the series
∞P

n=1
(1/n2). If the terms corresponding to integers in a fixed closed disk about 0

are excluded, then the same comparison shows that the convergence is uniform
on the disk. By Problem 55 in Appendix B of Basic, the sum of the series is
meromorphic inCwith poles of order 2 at each integer. The functionπ2/ sin2(πz)
has the same property, and therefore the difference

g(z) = π2

sin2 πz −
∞P

n=−∞

1
(z−n)2 (∗)

is analytic in all of C. We show that g(z) is the zero function.
Each term on the right side of (∗) is periodic of period 1, and thus the same

thing is true of g(z). By Liouville’s Theorem it is enough to prove that |g(x+ iy)|
tends to 0 uniformly for |x | ≤ 1 as y → ∞. Consider the first term on the right
side of (∗). Direct calculation gives

| sin z|2 = 1
4 (e

i(x+iy) − e−i(x+iy))(ei(x+iy) − e−i(x+iy))

= 1
4 (e

−2y − e−2i x − e2i x + e2y) = cosh2 y − cos2 x,
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and the reciprocal of this tends to 0 uniformly for all x as y → ∞. This takes
care of the first term of the right side of (∗). For the second term we have

Ø
Ø 1
(z−n)2 | = 1

(x−n)2+y2 .

This has the required behavior for the terms with |n| ≤ 2. For the terms with
|n| ∏ 3, we have 1

(x−n)2+y2 ≤ 1
(|n|−1)2+y2 . Given ≤ > 0 with ≤ equal to the

reciprocal of an integer, suppose that |y| ∏ ≤−1. Then
1/≤P

|n|=2

1
(|n|−1)2+y2 ≤

1/≤P

|n|=2

1
y2 ≤ 2(1/≤)y−2 ≤ 2≤

and
∞P

|n|=1/≤

1
(|n|−1)2+y2 ≤

∞P

|n|=1/≤

1
(|n|−1)2 ≤

∞P

|n|=1/≤

° 1
|n|−2 − 1

|n|−1
¢

= 2
≤−1−2 ,

which is ≤ 6≤ as long as ≤ < 1
3 . This takes care of the second term on the right

side of (∗). §

Corollary 10.24. For every integer m ∏ 0,
≥ d
dz

¥m≥ π2

sin2 πz

¥
= (m + 1)!

∞X

n=−∞

1
(z − n)m+2

PROOF. This formula results from successive term-by-term differentiation of
the result of Proposition 10.23. To justify the interchange of derivative and sum,
we make repeated use the standard technique of Appendix B of Basic, writing
the complex derivative as a suitable line integral and using Fubini’s Theorem to
interchange the integral and the infinite sum. §

Returning to the calculation of
∞P

l=−∞
|(F 1∞ )(y + l)|2, we combine Corollary

10.22 with the formula of Corollary 10.24 when m = 2. Then

1(y) =
∞P

l=−∞
|(F 1∞ )(y + l)|2 =

∞P

l=−∞

Ø
Ø
Ø
sinπ(y + l)
π(y + l)

Ø
Ø
Ø
4

=
sin4(πy)

π4

∞P

l=−∞

1
(y + l)4

=
sin4(πy)
6π4

d2

dy2
≥ π2

sin2 πy

¥

= 1
3 (sin

2 πy + 3 cos2 πy)

= 1
3 (1+ 2 cos2 πy).
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In other words, the periodic function 1(y) =
∞P

l=−∞
|(F 1∞ )(y + l)|2 of period 1

is bounded above and below by the positive constants 1 and 1
3 . In terminology

used bymany authors, this means that the integer translates ofF 1∞ form a “Riesz
system.” In practical terms it means that we can use a general method to construct
an orthonormal system out of F 1∞ . We proceed as follows.
We define a member ϕ of L2(R) by

(Fϕ)(y) = 1(y)−1/2(F 1∞ )(y).

By Lemma 10.11, the set of functions {x 7→ ϕ(x − k)}∞k=−∞ is orthonormal.
What is not apparent is that they form an orthonormal basis of the same space V0
and that we thereby obtain a multiresolution analysis and an associated wavelet.
The relevant tool is Lemma 10.12, which we have not used explicitly so far.

Theorem 10.25. Let Vj be the closure in L2(R) of the space of all splines
of degree 1 of compact support with knots in 2− jZ, let 1∞ be the B-spline of
degree 1 defined above and having Fourier transform as in Corollary 10.22, and
let ϕ be the member of L2(R) defined by

(Fϕ)(y) = 1(y)−1/2(F 1∞ )(y).

Then
(a) the integer translates of ϕ are in V0 and form an orthonormal basis of it,
(b) {Vj }∞j=−∞ and ϕ constitute a multiresolution analysis,
(c) the corresponding wavelet √ may be taken to have Fourier transform

(F√)(y) equal to

(sin2 12πy)
≥1+ 2 sin2 12πy
1+ 2 cos2 πy

¥1/2
1( 12 y)

−1/2(F 1∞ )( 12 y),

(d) the Fourier series 1(y)−1/2 =
P

k dke−2π iky has the property that ϕ(x)
is given by ϕ(x) =

P
k dk1∞ (x − k), the series being locally a finite sum,

(e) the Fourier series
P

k uke−π iky of period 2 of the function

U(y) = (sin2 12πy)
≥1+ 2 sin2 12πy
1+ 2 cos2 πy

¥1/2
1( 12 y)

−1/2

has the property that √(x) is given by √(x) = 2
P

k uk1∞ (2x − k), the
series being locally a finite sum,

(f) ϕ(x) and √(x) are splines of degree 1 with infinite support, the knots of
ϕ being in Z and the knots of √ being in 1

2Z,
(g) ϕ(x) and √(x) decay exponentially fast as |x | tends to infinity.
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REMARKS. The wavelet obtained from Theorem 10.25 is called the Battle–
Lemarié wavelet of degree16 1. Another name for it is the Franklin wavelet.
Following Daubechies, we shall refer to the device of using1(y) the way we are
using it here as the orthonormalization trick. The formulas for ϕ in (d) and for
√ in (e) allow one to understand ϕ and √ without applying F−1 to Fϕ and F√ .
Graphs of ϕ and √ appear in Figure 10.10. To make the graphs, one computes
enough Fourier coefficients dk and uk numerically to be able to use partial sums
of the series in (d) and (e) as good approximations to ϕ and √ .

PROOF. For (a), put ϕ0,k(x) = ϕ(x−k). We saw above that the set of functions
{ϕ0,k}

∞
k=−∞ is orthonormal. Let V be the closure of its linear span. We shall use

Lemma 10.12 with this V and this ϕ. Let α and β be as in the statement of that
lemma. Let c = {ck}∞k=−∞ be the sequence of coefficients of the expansion of the

function 1(y)1/2 =
° 1
3 (1 + 2 cos2 πy)

¢1/2 in series as
∞P

k=−∞
cke−2π iky . If f is

the member of V given by f = α(c) =
P

k ckϕ0,k , then β−1α−1( f ) = 11/2, and
Lemma 10.12a shows that F f = 11/2 · (Fϕ), with the dot indicating pointwise
product. The right side equals F 1∞ , and therefore f = 1∞ , i.e.,

(F 1∞ )(y) = 1(y)1/2(Fϕ)(y). (∗)

Consequently 1∞ is in V , and the closure V0 of the space of splines of degree 1
of compact support with knots in Z is contained in V .
We shall show that equality holds: V = V0. Since 11/2 is smooth and is

bounded above and below by positive constants, 1−1/2 is a smooth periodic

function on [0, 1]. Expand 1(y)−1/2 in series as
∞P

k=−∞
dke−2π iky , and let pn be

its nth partial sum. By Proposition 1.56 of Basic, {pn} converges uniformly on
[0, 1]. The limit is 1−1/2 by Fejér’s Theorem (Theorem 1.59 of Basic).
We know that the function F−1°e−2π iky(F 1∞ )(y)

¢
=

°
x 7→ 1∞ (x − k)

¢
is in

V0 for each k, and hence so is the linear combination F−1°pn(y)(F 1∞ )(y)
¢

=
F−1°pn(y)1(y)1/2(Fϕ)(y)

¢
for each n. The product pn11/2 converges uni-

formly to 1−1/211/2 = 1, and uniform convergence implies convergence in
L2[0, 1]. Lemma 10.12 then allows us to conclude that pn(y)1(y)1/2(Fϕ)(y)
converges to (Fϕ)(y) in L2(R). Applying F−1, we see that there is a sequence
in V0 converging to ϕ. Since V0 is closed, ϕ is in V0, and it follows that V = V0.

16Terminology varies. Some authors use the word “order” in place of “degree.” Some authors
shift the indices by 1, saying that the case here is of order 2; for such authors the Haar wavelet
becomes the Battle-Lemarié wavelet of order 1.
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For (b), we have just seen that the closed subspace of L2(R) generated by the
integer translates of ϕ is V0, and we know for this explicit V0 that the dilates
Vj form an increasing sequence. Propositions 10.15 and 10.17 show that ϕ is a
scaling function, sinceFϕ is continuous, is bounded, and has (Fϕ)(0) 6= 0. Thus
{Vj }∞j=−∞ and ϕ constitute a multiresolution analysis.
For (c), we are to compute √ . The Fourier transform of the scaling equation

for ϕ gives us (Fϕ)(y) = m0(y/2)(Fϕ)(y/2), from which we have

m0(y/2) =
(Fϕ)(y)

(Fϕ)(y/2)

=

° 1
3 (1+ 2 cos2 πy)

¢−1/2
(F 1∞ )(y)

° 1
3 (1+ 2 cos2 πy/2)

¢−1/2
(F 1∞ )(y/2)

=

° 1
3 (1+ 2 cos2 πy/2)

¢1/2e−2π iy(πy)−2 sin2 πy)
° 1
3 (1+ 2 cos2 πy)

¢1/2e−π iy(πy/2)−2 sin2 πy/2)

= e−π iy
≥1+ 2 cos2 πy/2
1+ 2 cos2 πy

¥1/2
cos2 πy/2.

From Theorem 10.10 we may take √ to have

(F√)(y) = eπ iy∫(y)m0( 12 y + 1
2 )(Fϕ)( 12 y)

= −e2π iy∫(y) sin2 12πy
≥1+ 2 sin2 12πy
1+ 2 cos2 πy

¥1/2
(Fϕ)( 12 y)

= −e2π iy∫(y) sin2 12πy
≥1+ 2 sin2 12πy
1+ 2 cos2 πy

¥1/2
1( 12 y)

−1/2(F 1∞ )( 12 y)

with ∫ periodic of period 1. If we take ∫(y) = −e−2π iy , then the asserted formula
follows.
For (d), we observe that F−1(e−2π iky(F 1∞ )(y)) = ∞ (y − k) and hence that

F−1°
nP

k=−n
dke−2π iky(F 1∞ )(y)

¢
=

nP

k=−n
dk1∞ (x − k). That is,

F−1(pn11/2Fϕ) =
nP

k=−n
dk1∞ (x − k). (∗∗)

We saw in theproof of (a) that pn11/2Fϕ converges in L2(R) toFϕ. By continuity
of F−1 on L2(R), the left side of (∗∗) converges to ϕ in L2(R). Therefore

ϕ(x) = lim
n

nP

k=−n
dk1∞ (x − k), (†)
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the limit taken in L2(R). This proves the equality in (d). Since 1∞ has compact
support, the series in (†) is locally the finite sum of continuous functions. There-
fore the equality (†) is meaningful pointwise, as well as in L2(R), if we redefine
ϕ on a set of measure 0 so that it coincides with the pointwise sum.
For (e), let 1∞1,k(x) =

p
2 1∞ (2x − k). Changes of variables show that

(F 1∞1,k)(y) = 1p
2
e−π iky(F 1∞ )( 12 y). (††)

Without any justification of interchanges of limits, the argument for (e) is that

(F√)(y) = U(y)(F 1∞ )( 12 y)

=
∞P

k=−∞
uke−π iky(F 1∞ )( 12 y)

=
p
2

∞P

k=−∞
uk(F 1∞1,k)(y)

= F (
p
2

∞P

k=−∞
uk1∞1,k)(y).

(‡)

Application of F−1 then gives

√(x) =
p
2

∞P

k=−∞
uk1∞1,k(x) = 2

∞P

k=−∞
uk1∞ (2x − k). (‡‡)

We shall interpret (‡‡) as an equality in L2(R), with convergence in the L2
sense. With this interpretation the right side is locally a finite sum of continuous
functions and hence is continuous. Then the L2 function √ can be adjusted on a
set of measure 0 so as to agree with this continuous function, and the result is that
(‡‡) is also a pointwise equality, the sum being uniformly convergent on each
compact subset of R.
Thus we are to prove (‡‡) in the L2 sense. Since F is a unitary operator from

L2(R) onto itself, (‡‡) is immediate from (‡), and we are to justify the steps
of (‡). The first equality of (‡) is merely a restatement of conclusion (c) of the
theorem, and the third equality follows from (††). For the second equality of (‡),
we have substituted the series expansion of U(y), but we have left ambiguous
how to interpret this expression in terms of convergence. Is the convergence to be
that of periodic functions in L2([0, 2]), or is it to be convergence in L2(R) of the
whole expression? If we were working with ϕ instead of 1∞ , the two would come
to the same thing, by Lemma 10.12b, but in our situation we have no comparable
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result. Finally the fourth equality of (‡) requires the justification of a clear-cut
interchange of limits.
We can handle both difficulties at once if we show that

lim
n→∞

h
(F√)(y) −

P

|k|≤n
uke−π iky(F 1∞ )( 12 y)

i
= 0,

the convergence being in L2(R). The computation is

∞
∞
∞

P

|k|>n
uke−iπky(F 1∞ )( 12 y)

∞
∞
∞
L2(R)

=
∞
∞
∞

X

|k|>n
uke−iπky1( 12 y)

1/2(Fϕ)( 12 y)
∞
∞
∞
L2(R)

=
∞
∞
∞
° P

|k|>n
uke−iπky¢1( 12 y)

1/2
∞
∞
∞
L2([0,2])

by Lemma 10.12b applied to the space V1 and the function ϕ1,0, with the under-
standing that the measure on L2([0, 2]) is normalized so as to have total mass 1.
The right side is

≤
°
sup
0≤y≤2

1( 12 y)
1/2¢

∞
∞
∞

P

|k|>n
uke−iπky

∞
∞
∞
L2([0,2])

,

and this tends to 0 as n tends to infinity, since1( 12 y)
1/2 is bounded and

P
k |uk |2

is finite. This completes the proof of (e).
For (f), the fact that each series is locally finite implies that we can differentiate

term by term away from the knots. The second derivatives are zero, while the
functions themselves are continuous. Thus ϕ(x) and√(x) are splines of degree 1.
Their support is infinite since 1∞ has compact support and since arbitrarily large
translates of it are involved.
For (g), the idea is that the coefficients dk and uk decrease geometrically fast,

while 1∞ has compact support. The reason for the geometric decrease of the
two sequences of Fourier coefficients is that the functions in question are the
restrictions to the unit circle of analytic functions in a neighborhood within C
of the unit circle. By Theorem B.47 of Appendix B of Basic, these analytic
functions each have Laurent series expansions valid within an open annulus that
contains the unit circle, and the usual estimates on Taylor coefficients imply that
the Fourier coefficients decrease geometrically fast. §
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(a)

(b)

FIGURE 10.10. Graphs of Battle–Lemarié scaling function and wavelet
of degree 1. (a) Scaling function. (b) Wavelet.

8. Battle–Lemarié Wavelets

In Section 7 we saw how splines of degree 1 of compact support with knots in
Z lead to a multiresolution analysis and a wavelet. The wavelet is known as the
Battle–Lemarié wavelet of degree 1. In more detail the B-splines of degree 1
with knots in Z are exactly the integer translates of one of them, which we called
1∞ , and they form a vector space basis of the space of all splines of degree 1 of
compact support with knots in Z. The closure of this vector space is the space V0
of the analysis. Unfortunately the B-splines are not orthogonal to one another,
and an additional step was necessary to fit everything into our standard set-up.
In this section we shall consider the case of higher degree. The principles will

all be the same, but the technical details are more complicated. Before we begin,
let us pause to realize that this theory also works in degree 0. In this case the
splines in question are functions that are constant between consecutive integers
and have compact support, and the B-splines are the integer translates of the Haar
scaling function. When we follow through the construction, we arrive at the Haar
wavelet. The complication from nonorthogonal B-splines does not arise.



488 X. Introduction to Wavelets

Now we pass to degree m with m ∏ 1. The first step is to exhibit a nonzero
spline of degree m with compact support and with knots in Z. Specifically we
seek an analog of the B-spline 1∞ . When m = 2, an analog is

2∞ (x) =






1
2 x
2 for 0 ≤ x ≤ 1,

3
4 − (x − 3

2 )
2 for 1 ≤ x ≤ 2,

1
2 (x − 3)2 for 2 ≤ x ≤ 3,
0 otherwise.

One readily checks that 2∞ and its first derivative are continuous at x = 0, 1, 2, 3
and that 2∞ is supported in [0, 2]. Thus ∞ (2) is a nonzero spline of degree 2 of
compact support with knots in Z.

FIGURE 10.11. Graph of the B-spline 2∞.

It is a little hard to see how to generalize the above formula, and a different
notation will make matters a little more transparent. Let us introduce the name
( · )+ for the function with t+ = max{0, t}. This is a spline of degree 1, and its
only knot is in Z; but it does not have compact support. The function ( · )m+ with
tm+ = (max{0, t})m is a spline of degreem. It similarly has its only knot in Z, and
it too fails to have compact support. The integer translates of this function are of
the form ( · − k)m+ with (t − k)m+ = (max{0, t − k})m . We define

m∞ (t) =
1
m!

m+1X

k=0
(−1)k

µ
m + 1
k

∂
(t − k)m+.

This formula agrees with the concrete formula for 2∞ (t) given above. Also it
agrees with the formula 0∞ = I[0,1] except at integer points.
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FIGURE 10.12. Graph of the B-spline 3∞.

The function m∞ is a spline of degreem with knots in Z. It is nonzero because
if 0 < t < 1, then m∞ (t) = (m!)−1tm 6= 0. It is certainly 0 when t ≤ 0. We shall
prove that it is 0 when t ∏ m + 1. To do so, we make use of the first half of the
following combinatorial lemma.

Lemma 10.26.
(a) For any function g : R → R, write (δg)(x) = g(x) − g(x − 1). Then

for any m ∏ 1, (δmg)(x) =
mP

k=0
(−1)k

°m
k
¢
g(x − k).

(b) For any function h : R → R, write (εh)(x) = h(x + 1) − h(x). Then

for any m ∏ 1, (εmh)(x) =
mP

k=0
(−1)m−k°m

k
¢
h(x + k).

PROOF. In (a) the argument is for all g by induction on m. The case m = 1 is
the definition of δg. Assume inductively that equality holds form−1 ∏ 1. Then

δmg(x) = (δm−1(δg))(x)

=
m−1P

k=0
(−1)k

°m−1
k

¢
(δg)(x − k)

=
m−1P

k=0
(−1)k

°m−1
k

¢
g(x − k) −

m−1P

k=0
(−1)k

°m−1
k

¢
g(x − k − 1)

=
m−1P

k=0
(−1)k

°m−1
k

¢
g(x − k) +

mP

l=1
(−1)l

°m−1
l−1

¢
g(x − l)

=
mP

k=0
(−1)k

°m
k
¢
g(x − k).

and the induction is complete. Part (b) follows by applying (a) to the function
g(x) = h(−x). §
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Returning to m∞ , we use Lemma 10.26 to show that m∞ (t) = 0 for t ∏ m+ 1.
If t ∏ m + 1, then

m∞ (t) =
m+1P

k=0
(−1)k

°m+1
k

¢
(t − k)m

Because of Lemma 10.26, we recognize the polynomial on the right side as
δm+1(tm). The operation of δ reduces the degree of a polynomial by 1, and hence
δm+1(tm) = 0. Thus we see that m∞ (t) = 0 for t ∏ m + 1.
This proves that m∞ is supported in the interval [0,m + 1]. Translating by an

integer, we conclude that the vector space of splines of degree m with knots in Z
and with support in [N , N + m] is not 0 for each integer N .
Let us put that result aside for a moment and verify an integral formula for

m∞ (x). In turn the integral formula will allow us to see that the integer translates
of m∞ (x) form a vector-space basis of the space of all splines of degree m of
compact support with knots in Z. Let us write

J0 = I[0,1],

where I[0,1] is the indicator function of the interval [0, 1], and let us further define
inductively

Jm = Jm−1 ∗ I[0,1] for m ∏ 1.

We have defined J0 to equal 0∞ = I[0,1], and we saw in Proposition 10.21 that J1
equals 1∞ . We are going to extend this result to higher degrees.

Lemma 10.27.
(a) J 0

l (x) = δJl−1(x) = Jl−1(x) − Jl−1(x − 1) for l ∏ 1 as long as x /∈ Z if
l = 1,

(b)
R

R f 0(x)Jl(x) dx =
R

R(ε f )(x)Jl−1(x) dx for l ∏ 1 if f is of class C1.

PROOF. For (a), we have Jl(x) = (Jl−1 ∗ I[0,1])(x) =
R 1
0 Jl−1(x − t) dt .

Differentiation under the integral sign gives

J 0
l (x) =

R 1
0 J

0
l−1(x − t) dt = −[Jl−1(x − t)]t=1t=0 = Jl−1(x) − Jl−1(x − 1).

For (b), we first suppose that l ∏ 1. Then the function f Jl is of class C1 and
has compact support. Therefore 0 =

R
R

d
dx ( f Jl) dx =

R
R f J 0

l dx +
R

R f 0 Jl dx .
Substituting from (a), we obtain

R
R f 0(x)Jl(x) dx = −

R
R f (x)J 0

l (x) dx
= −

R
R f (x)Jl−1(x) dx +

R
R f (x)Jl−1(x − 1) dx

= −
R

R f (x)Jl−1(x) dx +
R

R f (x + 1)Jl−1(x) dx
=

R
R(ε f )(x)Jl−1(x) dx .
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Now suppose that l = 1. In this case the function J1(x) fails to beC1 at the points
x = 0, 1, 2. We compute

R
R

d
dx ( f J1) dx as

R 0
−1 +

R 1
0 +

R 2
1 +

R 3
2 and see that it

equals [ f J1]0x=−1+ [ f J1]1x=0+ [ f J1]2x=1+ [ f J1]3x=2. Because of the continuity
of J1 at x = 0, 1, 2, we still get cancellation andwe still have

R
R

d
dx ( f J1) dx = 0.

Thus the above argument extends to be valid for l = 1. §

Proposition 10.28. For m ∏ 1,
(a) m∞ (x) = Jm(x) for m ∏ 0 as long as x /∈ Z if m = 0, and
(b)

R
R
m∞ (x) dx = 1 for m ∏ 0.

PROOF. For (a), we shall prove equality for each point x0. To handle x0, we

work with the function g(t) =
(−1)m

(m − 1)!
(x0 − t)m−1

+ . For k ≤ m − 2, its kth

derivative is the continuous function

g(k)(t) =
(−1)m−k

(m − k − 1)!
(x0 − t)m−1−k

+ .

For k = m − 1, the k th derivative for t 6= x0 is

g(m−1)(t) =

Ω
1 for t > x0
0 for t < x0,

and it does not exist at t = x0.
We have

Jm(x0) =
R

R Jm−1(x0 − t)I[0,1](t)

=
R 1
0 Jm−1(x0 − t) dt

=
R x0
x0−1 Jm−1(s) ds under s = x0 − t

=
R
t>x0−1 Jm−1(t) dt −

R
t>x0 Jm−1(t) dt

=
R

R
°
g(m−1)(t + 1) − g(m−1)(t)

¢
Jm−1 dt

=
R

R(εg(m−1))(t)Jm−1(t) dt.

From here we can apply Lemma 10.27b recursively. The above expression is

=
R

R(ε2g(m−2))(t)Jm−2(t) dt

= · · · =
R

R(εm−1g(1))(t)J1(t)

=
R

R(εmg)(t)J0(t) dt

=
R 1
0 (εmg)(t) dt
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=
mP

k=0

(−1)m−k

(m − 1)!

µ
m
k

∂
R 1
0 (x0 − t − k)m−1

+ dt

=
mP

k=0

(−1)m−k

(m − 1)!

µ
m
k

∂
R x0−k
x0−k−1 s

m−1
+ ds

=
mP

k=0

(−1)m−k

m!

µ
m
k

∂
°
(x0 − k)m+ − (x0 − k − 1)m+

¢

=
mP

k=0

(−1)m−k

m!

µ
m
k

∂
(x0 − k)m+ +

m+1P

l=1

(−1)m−l

m!

µ
m

l − 1

∂
(x0 − l)m+

=
mP

k=0

(−1)m−k

m!

µ
m + 1
k

∂
(x0 − k)m+

= m∞ (x0).

This completes the proof of (a).
For (b), we have

R
R
m∞ (x) dx =

R
R Jm(x) dx . The integral over R of the

convolution of two functions is the product of their integrals. Thus
R

R Jm(x) dx
is the product of m + 1 factors of 1. §

Corollary 10.29. The vector space of splines of degree m with compact
support contained in [0,m] and with knots in Z is 0.

PROOF. We proceed by induction on m. For m = 1, a spline of degree 1 with
support in [0, 1] and knots in Z is given for 0 ≤ x ≤ 1 by a linear function s(x),
and the support condition implies that s(0) = s(1) = 0. Then we must have
s = 0.
Assume the result for degree m − 1 ∏ 1. If s(x) is a spline of degree m with

knots inZ andwith support in [0,m], then the derivative s0(x) is a spline of degree
m − 1 with knots in Z and with support in [0,m]. Arguing by contradiction, we
may assume that s(x) is not the 0 spline, so that s0(x) is not the 0 spline. Since
m−1∞ is a spline of degree m − 1 with knots in Z and with support in [0,m],
the boxed jump formula in Section 7 shows that s 0(x) − c m−1∞ for a suitable
constant c 6= 0 is a spline of degree m − 1 with knots in Z and with support
in [1,m]. By inductive hypothesis the difference must be 0. Thus s0(x) is the
nonzero constant multiple c of m−1∞ . However, any spline of compact support
that is a derivative has integral over R equal to 0, and Proposition 10.28b shows
that m−1∞ has nonzero integral. We conclude that s 0 = 0, and we have arrived at
a contradiction. §

We write m∞0,k(x) = m∞ (x − k) for the integer translates of the spline m∞ .
Each of them is a spline of degree m of compact support with knots in Z.
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Comparison of their supports shows that they are linearly independent. The
functions m∞0,k are called B-splines of degree m, the “B” short for basis. The
following result justifies this terminology.

Corollary 10.30. The B-splines of degree m, i.e., the integer translates of
m∞ , form a vector-space basis of the space of splines of degree m with compact
support and with knots in Z.

PROOF. We need to prove spanning. Suppose that a given spline s(x) of degree
m with knots in Z is supported in [M, N ] with M ≤ N . Corollary 10.29 shows
that M + m + 1 ≤ N unless s is the 0 spline. We shall subtract a multiple of a
B-spline to reduce the support. Since s(x) vanishes for x < M and since s(x)
is of class Cm−1, s(k)(M) = 0 for k 6= m. Let us say that s(k)(x) has a jump by
c at x = M , c possibly being 0. In this case the boxed jump formula shows that
s(x) = (m!)−1c(x−M)m for M ≤ x ≤ M+1. Consequently s(x)−c m∞0,M(x)
is a spline of degreem, and its support is contained in [M+1,max{M+m+1, N ]},
which is contained in [M + 1, N ] since M +m + 1 ≤ N . The support has been
reduced, and in finitely many steps we end up with the difference of s(x) and a
linear combination of B-splines exhibited as supported in the interval [N−m, N ].
By Corollary 10.29 this difference is 0. In other words, s(x) equals a linear
combination of B-splines. §

Corollary 10.31. The Fourier transform of the B-spline m∞ is given by

(F m∞ )(y) = e−(m+1)π iy
≥sinπy

πy

¥m+1
.

PROOF. The Fourier transform of a convolution is the product of the Fourier
transforms, by Proposition 8.1c of Basic. Thus the result follows by combining
Propositions 10.20 and 10.28a. §

In our effort to generalize Theorem 10.25 to higher order splines, we are up
to the stage of testing the B-splines for the extent to which they are orthonormal.
Two B-splines with overlapping support are certainly not orthogonal, but we
calculate the sum

12m(y) =
∞P

l=−∞
|(F m∞ )(y + l)|2

anyway. As before, this is a periodic function of period 1. Once againwe combine
Corollary 10.22 with the appropriate case of Corollary 10.24. Then
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12m(y) =
∞P

l=−∞
|(F m∞ )(y + l)|2 =

∞P

l=−∞

Ø
Ø
Ø
sinπ(y + l)
π(y + l)

Ø
Ø
Ø
2m+2

=
sin2m+2(πy)

π2m+2

∞P

l=−∞

1
(y + l)2m+2

=
sin2m+2(πy)

(2m + 1)!π2m+2
d2m

dy2m
≥ π2

sin2 πy

¥
.

The values of12m(y) for 1 ≤ m ≤ 4 appear as a table in Figure 10.13. We shall
be ready to state a generalization of Theorem 10.25 once we prove the following
lemma.

Lemma 10.32. For each m ∏ 1, the function

12m(y) =
sin2m+2(πy)

(2m + 1)!π2m+2
d2m

dy2m
≥ π2

sin2 πy

¥

is a polynomial in sinπy and cosπy with P2m(y) > 0 for all real y.
PROOF. Let q(y) be any polynomial in sinπy and cosπy. The formula

d
dy

≥ q(y)
sink πy

¥
=

q 0(y)
sink πy

−
kq(y) cosπy
sink+1 πy

=
q 0(y) sinπy − kq(y) cosπy

sink+1 πy
shows that the derivative of a quotient of a polynomial in sinπy and cosπy by
a power of sinπy is the quotient of a polynomial in sinπy and cosπy by one
higher power of sinπy. Consequently the expression12m(y) in the statement of
the lemma is indeed a polynomial in sinπy and cosπy.
The computation before the lemma shows that

(2m + 1)!π2m12m(y) = (2m + 1)!π2m
∞P

l=−∞

Ø
Ø
Ø
sinπ(y + l)
π(y + l)

Ø
Ø
Ø
2m+2

.

The expression on the right side can vanish only if sinπ(y + l) = 0 for all l,
hence only if y is an integer. By periodicity we have only to examine y = 0.
There the quotient sin(πy)

±
(πy) is not 0. So 12m(y) is positive for all y. §

m 12m(y)
1 1

3 (2+ 2 cos 2πy)
2 1

60 (33+ 26 cos 2πy + cos 4πy)
3 1

2520 (1208+ 1191 cos 2πy + 120 cos 4πy + cos 6πy)
4 1

2835 (62+ 1072 cos2 πy + 1452 cos4 πy + 247 cos6 πy + 2 cos8 πy)

FIGURE 10.13. Values of 12m(y) for small m.
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Theorem 10.33. For m ∏ 1, define

12m(y) =
∞X

l=−∞

|(F m∞ )(y + l)|2.

Let Vj be the closure in L2(R) of the space of all splines of degree m of compact
support with knots in 2− jZ, let m∞ be the B-spline of degree m defined above
and having Fourier transform as in Corollary 10.22, and let ϕ be the member of
L2(R) defined by

(Fϕ)(y) = 12m(y)−1/2(F m∞ )(y).

Then
(a) the integer translates of ϕ are in V0 and form an orthonormal basis of it,
(b) {Vj }∞j=−∞ and ϕ constitute a multiresolution analysis,
(c) the corresponding wavelet √ may be taken to have Fourier transform

(F√)(y) equal to

s(y)(sinm+1 1
2πy)

≥12m( 12 y + 1
2 )

12m(y + 1)

¥1/2
12m( 12 y)

−1/2(F 1∞ )( 12 y),

where s(y) is 1 if m is odd and is eπ iy if m is even,
(d) the Fourier series12m(y)−1/2 =

P
k dke−2π iky has the property that ϕ(x)

is given by ϕ(x) =
P

k dkm∞ (x−k), the series being locally a finite sum,
(e) the Fourier series

P
k uke−π iky of period 2 of the function

U(y) = s(y)(sinm+1 1
2πy)

≥12m( 12 y + 1
2 )

12m(y + 1)

¥1/2
12m( 12 y)

−1/2

has the property that √(x) is given by √(x) = 2
P

k ukm∞ (2x − k), the
series being locally a finite sum,

(f) ϕ(x) and √(x) are splines of degree m with infinite support, the knots of
ϕ being in Z and the knots of √ being in 1

2Z,
(g) ϕ(x) and √(x) decay exponentially fast as |x | tends to infinity.

REMARK. The wavelet obtained from Theorem 10.33 is called the Battle–
Lemarié wavelet of degree17 m. See Figures 10.14 and 10.15 for graphs of ϕ
and √ in the cases m = 2 and m = 3.

17As was mentioned in connection with Theorem 10.25, terminology varies. Some authors use
the word “order” in place of “degree.” Some authors shift the indices by 1, saying that the case here
is of order m + 1.
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(a)

(b)

FIGURE 10.14. Graphs of Battle–Lemarié scaling function and wavelet
of degree 2. (a) Scaling function. (b) Wavelet.

(a)

(b)

FIGURE 10.15. Graphs of Battle–Lemarié scaling function and wavelet
of degree 3. (a) Scaling function. (b) Wavelet.
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PROOF. Lemma 10.32 shows that P2m(y) is a polynomial in sinπy and cosπy
that is everywhere positive. Being a continuous periodic function that is every-
where positive, 12m(y) is bounded above and below by positive constants. We
can therefore use the orthonormalization trick introduced in the proof of Theorem
10.25 to show that the integer translates of ϕ form an orthonormal set.
For (a), we define ϕ0,k(x) = ϕ(x − k), and let V be the closure of its linear

span. We use Lemma 10.12 to argue as in Theorem 10.25a that V = V0.
For (b) we use Propositions 10.15 and 10.17 just as in the proof of Theorem

10.25b to complete the argument that {Vj }∞j=−∞ and ϕ constitute amultiresolution
analysis.
For (c) we have to compute √ . The Fourier transform of the scaling equation

gives us (Fϕ)(y) = m0(y/2)(Fϕ)(y/2), from which we have

m0(y/2) =
(Fϕ)(y)

(Fϕ)(y/2)

=
12m(y)−1/2(F 1∞ )(y)

12m(y/2)−1/2(F 1∞ )(y/2)

=
12m(y)−1/2e−(m+1)π iy(πy)−(m+1) sinm+1 πy

12m(y/2)−1/2e− 1
2 (m+1)π iy(πy/2)−(m+1) sinm+1 πy/2

= e− 1
2 (m+1)π iy

≥12m( 12 y)
12m(y)

¥1/2
cosm+1 1

2πy.

From Theorem 10.10 we may take

(F√)(y)= eπ iy∫( 12 y)m0(
1
2 y + 1

2 )(Fϕ)( 12 y)

= eπ iy∫( 12 y)e
1
2 (m+1)π iye

1
4π i(m+1)

× (sinm+1 1
2πy)

≥12m( 12 y + 1
2 )

12m(y + 1)

¥1/2
(Fϕ)( 12 y)

= ∫( 12 y)e
1
2 (m+3)π iye

1
4 (m+1)π i

× (sinm+1 1
2πy)

≥12m( 12 y + 1
2 )

12m(y + 1)

¥1/2
12m( 12 y)

−1/2(F m∞ )( 12 y).

with ∫ periodic of period 1. If we take

∫(y) =

Ω
e− 1

4 (m+1)π i e−(m+3)π iy if m is odd
e− 1

4 (m+1)π i e−(m+2)π iy if m is even,
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then
∫( 12 y)e

1
2 (m+3)π iye

1
4 (m+1)π i =

Ω
1 if m is odd
eπ iy if m is even,

and (c) follows.
The proofs of (d) through (g) are straightforward adaptations of the corre-

sponding arguments within the proof of Theorem 10.25. §

9. Daubechies Wavelets

Recall that the Haar wavelet has the desirable property of having compact support
and the undesirable property of being discontinuous. Studying the Haar wavelet
in the context of the general theory of wavelets leads one naturally to the question
whether there are continuous wavelets of compact support. The existence of the
Daubechies wavelets, as established in this section, gives an affirmative answer
to this question.
Indeed, the compactness of their supports is such a helpful property that the

Daubechieswavelets are theonesused inmanyapplications. Although thegeneral
method used in their construction allows for many alternative formulations, their
usual definitions include just one wavelet for each positive integer N , which is
called the order. The order of a Daubechies wavelet is one more than the degree
of a certain polynomial used in the definition of the scaling function, and it is half
the number of nonzero coefficients of the generating function18 m0. It is related
to the order of differentiability of the wavelet in a complicated way that will be
discussed in part in the next section. The Daubechies wavelet of order 1 is the
Haar wavelet. All Daubechies wavelets of higher order are continuous. Unlike
with the Meyer wavelets, there is no Daubechies wavelet of infinite order; we
shall see in the next section that no compactly supported wavelet of class C∞

exists.
No closed form is known for the definition of the Daubechies wavelets of

order greater than 1. They are constructed within the context of a multiresolution
analysis by a limiting process.
The starting point for the construction is the scaling equation, specifically the

generating functionm0 that appears in the scaling equation. Recall that the scaling
equation is of the form

ϕ(x) =
∞P

k=−∞
ak

p
2ϕ(2x − k)

18The functionm0 is sometimes called the scaling filter or low-pass filter, but its role as a filter
will not be part of our discussion until Section 11.
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for constants ak =
R

R
p
2ϕ(x)ϕ(2x − k) dx with

P
|ak |2 = 1 and that the

associated generating function is given by

m0(y) = 1p
2

∞P

k=−∞
ake−2π iky .

If ϕ has compact support, then ak can be nonzero for only finitely many k,
and hence m0(y) is a trigonometric polynomial.19 Following the Daubechies
approach, we wish to arrange that the scaling function ϕ is real-valued and has
compact support. The inner product formula for the coefficients ak then shows
that ak is real for all k.
The wavelet is given by a similar equation, the wavelet equation, with coef-

ficients bk related to the ak’s. As a consequence only finitely many bk’s will be
nonzero, and thus we see that having ϕ of compact support forces the wavelet √
to have compact support.
Before beginning the construction, let us peek ahead and see that the com-

pactly supported scaling function ϕ must have |(Fϕ)(0)| = 1. (In particular,
ϕ must have nonzero integral over R.) Since ϕ is to be a scaling function for a
multiresolution analysis, the integer translates of ϕ are to form an orthonormal
set. The closed linear span of the integer translates will be the space V0, and we
form spaces Vj as usual. The intersection of the Vj ’s is 0 automatically, according
to Proposition 10.15. But when the Vj are increasing, it is not automatic that their
union is dense in L2(R). Proposition 10.17 gives a sufficient condition, namely
that Fϕ is a bounded function that is continuous and nonzero at y = 0.
Since ϕ is in L2(R) and has compact support, it has to be in L1(R) and its

Fourier transform Fϕ has to be bounded and continuous. But what about the
condition (Fϕ)(0) 6= 0? Let us see that the union of the Vj ’s will actually fail to
be dense in L2(R) unless |(Fϕ)(0)| = 1. In fact, let f be any nonzero member
of L2(R) whose Fourier transform is bounded and is compactly supported, say
in the interval [−M,M]. If Pj is the orthogonal projection on Vj , then Lemma
10.16 gives

kPj f k22 =
R M
−M |(F f )(y)|2 |(Fϕ)(2− j y)|2 dy

when j is large enough so that 2 j−1 > M . The integrand is bounded by amultiple
of |(F f )(y)|2, and dominated convergence gives us

lim
j→∞

kPj f k22 =
R M
−M |(F f )|2|(Fϕ)(0)|2 dy

= |(Fϕ)(0)|2kF f k22 = |(Fϕ)(0)|2k f k22.

19A trigonometric polynomial is defined for current purposes to be a polynomial in e2π iy and
e−2π iy .
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If
S

j Vj is dense in L2(R), then the left side equals k f k22, whichwe are assuming
is nonzero. Then it follows that |(Fϕ)(0)| = 1. Hence a ϕ with compact support
cannot yield a multiresolution analysis unless |(Fϕ)(0)| = 1.
We are ready to construct the multiresolution analysis. For each step we

shall derive necessary conditions and then either show that those conditions are
sufficient or add some additional conditions to make them sufficient. These are
the two steps:

(1) find the possible trigonometric polynomials that might serve as m0,
(2) find how to determine ϕ from m0, and find conditions on ϕ so that ϕ is

the scaling function for a multiresolution analysis.

Step 1. In this step we look for m0 in the form of a trigonometric polynomial.
Let us write down conditions thatm0 must satisfy. A first condition is the identity

|m0(y)|2 + |m0(y + 1
2 )|

2 = 1

given by Lemma 10.13. We do not need to add the words “almost everywhere”
because m0 as a trigonometric polynomial is automatically continuous. We have
just seen that we must have (Fϕ)(0) 6= 0. From the Fourier transform of the
scaling equation, namely

(Fϕ)(y) = m0(y/2)(Fϕ)(y/2),

we see that m0(0) = 1. Since |m0(0)|2 + |m0( 12 )|
2 = 1, we see that m0( 12 ) = 0.

Then we can write
m0(y) =

≥1+ e−2π iy

2

¥N
L(y)

for some trigonometric polynomial L(y), where N ∏ 1 is the order of the zero
of m0(y) at y = 1

2 . It will be observed in the proof below that since m0(y) has
real coefficients, so does L(y). In Propositions 10.34 and 10.36 below, we shall
determine all the functions m0 that satisfy all conditions so far.

Proposition 10.34. Let a trigonometric polynomial m0(y) with real coeffi-
cients be given in the form

m0(y) =
≥1+ e−2π iy

2

¥N
L(y)

with N ∏ 1. If m0 satisfies the equation |m0(y)|2 + |m0(y + 1
2 )|

2 = 1, then the
trigonometric polynomial L(y) = |L(y)|2 can be written as

L(y) = P(sin2 πy)
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for some ordinary polynomial P of the form

P(w) = PN (w) + wN R( 12 − w)

with

PN (w) =
N−1X

k=0

µ
N − 1+ k

k

∂
wk

and with R an odd ordinary polynomial such that P(w) ∏ 0 for 0 ≤ w ≤ 1.
Conversely if the trigonometric polynomial L(y) = |L(y)|2 with real coefficients
can be written as

L(y) = P(sin2 πy)

for some ordinary polynomial P of the form

P(w) = PN (w) + wN R( 12 − w)

with

PN (w) =
N−1X

k=0

µ
N − 1+ k

k

∂
wk

and with R an odd ordinary polynomial such that P(w) ∏ 0 for 0 ≤ w ≤ 1, then

m0(y) =
≥1+ e−2π iy

2

¥N
L(y) satisfies the equation |m0(y)|2+|m0(y+ 1

2 )|
2 = 1.

REMARKS. What Proposition 10.34 says briefly is that a trigonometric poly-
nomial m0(y) =

° 1
2 (1+ e−2π iy)

¢NL(y) satisfying the functional equation leads
us to a certain kind of polynomial P and that that kind of P leads us back to the
integer N and the modulus squared |L(y)|2 of the function that appears in the
formula for m0(y). To get all the way back to m0(y), rather than merely back to
|m0(y)|2, we need a way of passing from |L(y)|2 to L(y). That step is postponed
to Proposition 10.36.

To prove Proposition 10.34, we need a lemma.

Lemma 10.35. Let PN (w) be the polynomial
N−1P

k=0

°2N−1
k

¢
wk(1 − w)N−k−1.

Then PN has the properties
(a) PN (w)(1− w)N + wN PN (1− w) = 1,

(b) PN (w) =
N−1P

k=0

°N−1+k
k

¢
wk ,

(c) 0 ≤ PN (y) ≤ PN (1) =
°2N−1

N
¢
for 0 ≤ y ≤ 1.
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N Polynomial PN (w)

1 1
2 1+ 2w
3 1+ 3w + 6w2

4 1+ 4w + 10w2 + 20w3

5 1+ 5w + 15w2 + 35w3 + 70w4

6 1+ 6w + 21w2 + 56w3 + 126w4 + 252w5

7 1+ 7w + 28w2 + 84w3 + 210w4 + 462w5 + 924w6

FIGURE 10.16. Table of values of the polynomial PN (w)
used in defining the Daubechies wavelet of order N .

PROOF. The Binomial Theorem gives

1 = (w + (1− w))2N−1

=
2N−1X

k=0

µ
2N − 1

k

∂
wk(1− w)2N−1−k

= (1− w)N
N−1X

k=0

µ
2N − 1

k

∂
wk(1− w)N−1−k

+ wN
2N−1X

k=N

µ
2N − 1

k

∂
wk−N (1− w)2N−1−k

= (1− w)N PN (w) + wN PN (1− w).

This proves (a). For (b) we observe that QN (w) =
N−1P

k=0

°N−1+k
k

¢
wk equals the

sum of the terms of the Taylor series of (1 − w)−N about w = 0 through order
N − 1. From the result of (a),

(1− w)−N = PN (w) + wN (1− w)−N PN (1− w).

On the other hand, PN (w) on the right side is a polynomial of degree N − 1, and
the other term on the right side is the product of wN and an analytic function for
|w| < 1. Thus PN (y) = QN (y). This proves (b). For (c), we use the result

of (b) to see that 0 ≤ PN (y) =
N−1P

k=0

°N−1+k
k

¢
yk ≤

N−1P

k=0

°N−1+k
k

¢
= PN (1), and

PN (1) =
°2N−1

N
¢
from the definition of PN (w). This proves (c). §



9. Daubechies Wavelets 503

PROOF OF NECESSITY IN PROPOSITION 10.34. If a trigonometric polynomial
m(y) =

P
cke−2π iky with real coefficients is divisible by 1 + e−2π iy , say as

m(y) = q(y)(1 + e−2π iy) with q(y) =
P
dke−2π iky equal to a trigonometric

polynomial, then we see that ck = dk +dk−1 for all k. Since dk−1 = 0 for some k,
it follows that we can recursively determine the coefficients dk and see that they
are real. Iterating this result, we see that the trigonometric polynomial L(y) in
the statement of the proposition has real coefficients.
The function L(y) = |L(y)|2 is a trigonometric polynomial with real coef-

ficients, say L(y) =
P

Ake−2π iky , and it is real valued. Taking its complex
conjugate, we see that Ak = A−k for each k, hence that L(y) is a finite linear
combination of the functions cos 2πky with real coefficients. Each cos 2πky is a
polynomial function of cos 2πy, and thus L(y) is a polynomial in cos 2πy with
real coefficients, say L(y) = Q(cos 2πy).
Consider |m0(y)|2. This has

|m0(y)|2 =
≥1+ e−2π iy

2

¥N≥1+ e2π iy

2

¥N
L(y)

=
°
cos2 πy

¢N Q(cos 2πy). (∗)

Since sin2 πy = 1
2 (1 − cos 2πy), we can rewrite Q(cos 2πy) as P(sin2 πy)

for a polynomial P with real coefficients. Define a function w = w(y) by
w(y) = sin2 πy. Then 1− w(y) = cos2 πy, and (∗) becomes

|m0(y)|2 = (1− w(y))N P(w(y)). (∗∗)

To work with the corresponding formula for |m0(y + 1
2 )|

2, we need to compute
w(y+ 1

2 ). Observe that sinπ(y+ 1
2 ) = sinπy cosπ/2+cosπy sinπ/2 = cosπy.

Thus w(y + 1
2 ) = sin2 π(y + 1

2 ) = cos2 πy = 1− sin2 πy = 1− w(y), and

|m0(y + 1
2 )|

2 = (1− w(y + 1
2 ))

N P(w(y + 1
2 )) = (w(y))N P(1− w(y)). (†)

Adding (∗∗) and (†) gives

1 = |m0(y)|2 + |m0(y + 1
2 )|

2 = (1− w)N P(w) + wN P(1− w). (††)

In view of Lemma 10.35a, we have 1 = (1 − w)N PN (w) + wN PN (1 − w).
Subtracting (††) and this equation gives

(1− w)N
°
P(w) − PN (w)

¢
+ wN °

P(1− w) − PN (1− w)
¢

= 0, (‡)

from which it follows that wN divides P(w) − PN (w).
Let write P(w) − PN (w) = wN R( 12 − w) for a polynomial R. Equation (‡)

shows that

wN (1− w)N R( 12 − w) + wN (1− w)N R( 12 − (1− w)) = 0.

Hence R(−w) = −R(w), and R is odd. §
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PROOF OF SUFFICIENCY IN PROPOSITION 10.34. If L(y) = |L(y)|2 can be
written as L(y) = P(sin2 πy) with P of the form

P(w) = PN (w) + wN R( 12 − w)

and R odd, then we use Lemma 10.35a to write

PN (w)(1− w)N + wN PN (1− w) = 1. (‡‡)

The oddness of R ensures that

wN R( 12 − w)(1− w)N + wN (1− w)N R( 12 − (1− w)) = 0. (§)

Adding (‡‡) and (§) gives

P(w)(1− w)N + wN P(1− w) = 1.

Substituting w = sin2 πy shows that

P(sin2 πy)(cos2 y)N + (sin2 y)N P(cos2 πy) = 1. (§§)

We saw in (∗∗) that |m0(y)|2 = (1− w)N P(w) and in (†) that |m0(y + 1
2 )|

2 =
wN P(1− w). Substituting these two relations into (§§) gives

|m0(y)|2 + |m0(y + 1
2 )|

2 = 1,

as required. §

Proposition 10.36 (Fejér and F. Riesz).20 If t (y) =
MP

k=−M
cke−2π iky is a

trigonometric polynomial that is everywhere∏ 0, then there exists a trigonometric

polynomial L(y) =
MP

k=−M
dke−2π iky such that t (y) = |L(y)|2. If all the ck are

real, then all the dk can be taken to be real.
REMARKS.
(1) Proposition 10.36 adds to Proposition 10.34 a final step in the inverse

direction. Instead of merely passing from a certain kind of polynomial P to
the integer N and |L(y)|2, we can now pass back from P to N and L(y) itself,
therefore to m0.
(2) No uniqueness result is asserted in Proposition 10.36. In the construction

of L(y) in the proof below, we do not need to take all the roots αj inside the unit
disk and none of the roots αj

−1 outside the unit disk. We merely have to select
one root from each pair αj ,αj

−1. If there are r pairs of roots, the total number
of possibilities for L(y) is 2r .

20The original version appears on page 117 of the book by Riesz and Sz.-Nagy.
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PROOF. Wemay assume that t (y) is not identically 0. Since t (y) is real valued,
we have an equality

MX

k=−M
c−ke2π iky =

MX

k=−M
cke−2π iky = t (y) = t (y) =

MX

k=−M
cke2π iky,

and we must have equality term by term. Therefore c−k = ck for all k. We may
assume that M is as small as possible, and then c−M 6= 0. Define an ordinary
polynomial by

Q(z) = c−M + · · · + cMz2M = cM + · · · + c−Mz2M .

Then
t (y) = e2π iMyQ(e−2π iy) (∗)

and
z2MQ(z−1) = Q(z̄). (∗∗)

From (∗∗) it follows that if Q(z0) = 0 with z0 outside the closed unit disk, then
Q(1/ z0 ) = 0 with 1/ z0 inside the unit disk, and vice versa. Furthermore, the
multiplicitiesmatch. Observe that Q(z) cannot vanish at z = 0 because c−M 6= 0.
Suppose that Q(z) has a zero at e−2miθ0 of order m. Then θ 7→ Q(e−2π iθ ) has

a zero at θ = θ0, and this zero is of the same order m because the exponential
function has a locally defined inverse about every point of its image. Similarly
θ 7→ e2π iMθQ(e−2π iθ ) has a zero of order m at θ = θ0. This function is real-
valued, matching t (θ) for θ ∈ R, and it equals the sum of a multiple of (θ − θ0)

m

and a small error term for |θ − θ0| small. Since t takes on no negative values, m
has to be even.
All that being so, let {αj } be the zeros of Q(z) inside the open unit disk,

repeated according to their multiplicities, and let {βk} be the distinct zeros of
Q(z) on the unit circle, with βk having multiplicity 2mk . Since a polynomial is
determined up to a multiplicative constant by its roots and their multiplicities, we
have

Q(z) = c
≥Y

j
(z − αj )(z − (αj )

−1
¥≥Y

k
(z − βk)

2mk
¥

and

t (y) = ce2π iMy
≥Y

j
(e−2π iy − αj )(e−2π iy − (αj )

−1)
¥≥Y

k
(e−2π iy − βk)

2mk
¥
.

Put
r(y) =

≥Y

j
(e−2π iy − αj )

¥≥Y

k
(e−2π iy − βk)

mk
¥
.
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Then
|r(y)|2 =

≥Y

j
|e−2π iy − αj |

2
¥≥Y

k
|e−2π iy − βk |

2mk
¥

Now

|e−2π iy − αj |
2 = (e−2π iy − αj )(e2π iy − αj )

= −e2π iyαj (e−2π iy − αj )(e−2π iy − (αj )
−1)

and

|e−2π iy − βk |
2 = (e−2π iy − βk)(e2π iy − βk ) = −βke2π iy(e−2π iy − βk)

2.

Comparing, we see that there is some integer p with

|r(y)|2 = c0e2π i pyt (y) and with c0 in C.

Since |r(y)|2 and t (y) are nonnegative and not identically 0, we see that c0 is
positive and that p = 0. Putting L(y) = r(y)

p
c0 −1, we obtain a trigonometric

polynomial whose absolute value squared equals t (y).
If all the ck are real, then Q(z) has real coefficients and its roots come in

complex conjugate pairs. If αj used in the definition of r(y), then we use αj also,
with the same multiplicity. Then the result is that r(y) has real coefficients, and
so does L(y). §

Step 2. In this step we determine ϕ from m0. We start from the Fourier
transform of the scaling equation,

(Fϕ)(y) = m0(y/2)(Fϕ)(y/2).

We know from earlier that m0(0) = 1, that m0( 12 ) = 0, and that m0 is a
trigonometric polynomial periodic of period 1. If we iterate the formula, we
obtain

(Fϕ)(y) =
° nQ

j=1
m0(2− j y)

¢
(Fϕ)(2−n y).

Proposition 10.37. If ϕ is a compactly supported scaling function, then the
infinite product

nQ

j=1
m0(2− j y)

converges (to a limit that is nonzero at points where all the factors are nonzero),
the convergence being uniform on compact sets in R, and

(Fϕ)(y) =
° ∞Q

j=1
m0(2− j y)

¢
(Fϕ)(0)

with |(Fϕ)(0)| = 1.
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PROOF. Fix M > 0. We prove uniform convergence for |y| ≤ M . By Taylor’s
Theorem, |m0(y) − 1| ≤ C|y| for |y| ≤ M , say. Then also |m0(2− j y) − 1| ≤

C2− j M . Since
∞P

j=1
C2− j M converges, the given infinite product converges as

asserted.21 Therefore

(Fϕ)(y) =
° ∞Q

j=1
m0(2− j y)

¢°
lim
n→∞

(Fϕ)(2−n y)
¢
.

The second factor on the right equals (Fϕ)(0) since the Fourier transform of the
L1 function ϕ is continuous, and we have seen that |(Fϕ)(0)| = 1. §

Now let us consider the converse direction, to pass from m0 to ϕ. We need to
remember that we are seeking a real-valued ϕ. Then (Fϕ)(0), being the integral
of ϕ, must be real, and so we must have (Fϕ)(0) = ±1. This minus sign is
harmless, and we might as well aim for (Fϕ)(0) = 1 and define Fϕ by the
product formula in the proposition:

(Fϕ)(y) =
∞Q

j=1
m0(2− j y).

Sadly if we start from m0 produced from Step 1 and we define ϕ this way, the
result is not necessarily a scaling function: the set of its integer translates can
fail to be orthonormal. We need an extra assumption. A necessary and sufficient
condition is known, but we shall not give it. Instead we give a sufficient condition
that we can easily verify in the examples of interest.

Proposition 10.38. Suppose that m0(y) is a trigonometric polynomial such
that

(i) m0(0) = 1,
(ii) |m0(y)|2 + |m0(y + 1

2 )|
2 = 1, and

(iii) m0(y) is nonzero for |y| ≤ 1
4 .

Define
h(y) =

∞Q

j=1
m0(2− j y).

Then the infinite product converges uniformly on compact sets of R, and the
limit function h is a smooth function in L2(R) with h(0) = 1. Moreover the
inverse Fourier transform ϕ = F−1h has compact support, has the property that
its integer translates are orthonormal, and satisfies the scaling equation (Fϕ)(y) =
m0(y/2)(Fϕ)(y/2). Consequently ϕ is the scaling function for a multiresolution
analysis. If m0(y) has real coefficients, then ϕ is real-valued.

21For a proof of the standard facts relating convergence of infinite series with convergence of
infinite products, see the author’s Elliptic Curves, page 195. For the uniformity of the convergence,
we are incorporating the Weierstrass M test into the relevant theorem.
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PROOF. For the moment let us regard the variable y as complex. Observe that
m0(y) is a trigonometric polynomial and is therefore entire. We check that the
product defining h(y) converges uniformly on compact subsets of C, and hence
h(y) is an entire function.22 Fix K > 0. From assumption (i), m0(0) = 1,
and therefore |m0(y) − 1| ≤ A|y| for all complex y with |y| ≤ K . Then also

|m0(2− j y)−1| ≤ A2− j K . Since
∞P

j=1
A2− j K converges, the given infinite product

h(y) =
Q∞

j=1m0(2− j y) converges uniformly23 on the compact subset ofCwhere
|y| ≤ K . The number K being arbitrary, h(y) is an entire function of the complex
variable y.
We are going to estimate the size ofh(y) as a functionof the complex variable y.

We begin by estimating the size of the entire function m0(y). Write m0 out in

the form of a trigonometric polynomial as m0(y) = 1p
2

MP

k=−M
ake−2π iky . Since

m0(0) = 1, we have

MP

k=−M

1p
2
ake−2π iky − 1 =

MP

k=−M

1p
2
ak(e−2πky − 1)

and thus
|m0(y) − 1| ≤

MP

k=−M

1p
2
|ak ||e2π iky − 1|.

Put C =
MP

k=−M

1p
2
|ak |. Let us record that

MP

k=−M

1p
2
ak = 1 implies

C =
MP

k=−M

1p
2
|ak | ∏ 1. (∗)

By comparing power series term by term, we have

|e2π iky − 1| ≤ e2πk|y| − 1 ≤ e2πM|y| − 1,

Consequently

|m0(y) − 1| ≤
° MP

k=−M

1p
2
|ak |

¢
(e2πM|y| − 1) = C(e2πM|y| − 1).

22A sequence of analytic functions converges to an analytic function if the convergence is uniform
on compact sets, according to Problem 55 in Appendix B of Basic.

23This is the same argument as in the proof of Proposition 10.37 except that we are now allowing
the variable to be complex.
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Since C ∏ 1 by (∗), we have

C(e2πM|y| − 1) =
∞P

n=1

C(2πM|y|)n

n!
≤

∞P

n=1

(2πCM|y|)n

n!
= e2πCM|y| − 1.

Thus
|m0(y)| ≤ 1+ |m0(y) − 1| ≤ e2πCM|y|. (∗∗)

The product of the first J factors defining h(y) is
JQ

j=1
m0(2− j y), and its absolute

value, according to (∗∗), is

JQ

j=1
|m0(2− j y)| ≤

JQ

j=1
e2πCM|2− j y| = exp

°
2πCM|y|

JP

j=1
2− j¢ ≤ e2πCM|y|.

Letting J tend to infinity, we obtain

|h(y)| ≤ e2πCM|y|. (†)

This estimate, which we shall return to a little later, is summarized by saying that
the entire function h(y) is of exponential type.
For the reminder of the proof, y can be regarded as a real variable. Let us write

the inner product of f and g in L2(R) as ( f, g), and let us define a translation
operator Tk : L2(R) → L2(R) for k ∈ Z by Tk f (x) = f (x − k). Each operator
Tk is unitary. Put

C = { f ∈ L2(R)
Ø
Ø k f k2 = 1 and ( f, Tk f ) = 0 for all k 6= 0 in Z}.

We shall prove that C is a closed set. In fact, suppose that { fn} is a sequence in C
convergent to f in L2(R). Since the norm is continuous, k f k2 = 1. For nonzero
k in Z, the equality

( f, Tk f ) − ( fn, Tk fn) = ( f − fn, Tk f ) + ( fn, Tk f − Tk fn)

together with the triangle inequality, the Schwarz inequality, and the fact that Tk
is unitary give

|( f, Tk f ) − ( fn, Tk fn)| ≤ k f − fnk2kTk f k2 + k fnk2kTk( f − fn)k2
= k f k2k f − fnk2 + k fnk2k f − fnk2
= 2k f − fnk2.

The right side has limit 0. Since k 6= 0 and fn is in C, the left side reduces to
|( f, Tk f )|, and consequently ( f, Tk f ) = 0. Thus C is a closed set.



510 X. Introduction to Wavelets

Let ϕ0 be the L2 function with Fϕ0 = I[− 1
2 ,
1
2 ]
, i.e., the scaling function of

the Shannon wavelet in Section 4. It was shown in the proof of Theorem 10.14
that the integer translates of ϕ0 are orthonormal. Hence ϕ0 is in C. Since m0
has to be bounded as a function of a real variable, we can define L2 functions ϕn
inductively for n ∏ 1 by

(Fϕn)(y) = (Fϕ0)(2−n y)m0(2−1y) · · ·m0(2−n y). (††)

We shall prove inductively that each ϕn is in C. The base case n = 0 of the
induction having been settled, assume inductively that ϕn−1 is in C. Since
(Fϕn)(y) = m0(y/2)(Fϕn−1)(y/2), we have

P

l∈Z
|(Fϕn)(y + l)|2 =

P

l even
|m0( 12 (y + l))|2|(Fϕn−1)(

1
2 (y + l))|2

+
P

l odd
|m0( 12 (y + l))|2|(Fϕn−1)(

1
2 (y + l))|2

= |m0( 12 y)|
2 P

l∈Z
|(Fϕn−1)(

1
2 y + l)|2

+ |m0( 12 y + 1
2 )|

2 P

l∈Z
|(Fϕn−1)(

1
2 (y + 1) + l)|2

= |m0( 12 y)|
2 + |m0( 12 y + 1

2 )|
2,

the last equality holding by Lemma 10.11 and the inductive hypothesis. The
last line of the above expression equals 1 by assumption (ii), and it follows from
another application of Lemma 10.11 that ϕn is in C. This completes the proof by
induction that ϕn is in C.
We know that the partial products

QJ
j=1m0(2− j y) converge uniformly on

compact sets to what we have defined to be h(y). Since (Fϕ0) is continuous at 0
and has (Fϕ0)(0) = 1, a glance at (††) shows that

lim
n

(Fϕn)(y) = h(y)

uniformly on compact sets. Applying Fatou’s Lemma24 to the absolute values
squared, we obtain

R
R |h(y)|2 dy ≤ lim inf

R
R |(Fϕn)(y)|2 dy.

The right side equals 1 since ϕn is in C, and therefore the restriction of the entire
function h to R is in L2(R) with khk2 ≤ 1. We let ϕ = F−1h, so that ϕ is in
L2(R) with kϕk2 ≤ 1.

24Theorem 5.29 of Basic.
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We know that lim(Fϕn) = Fϕ uniformly on compact sets, and we are going
to prove that the convergence takes place in L2(R). Once we have done so, the
Plancherel Theoremwill yield limϕn = ϕ in L2(R). SinceC is closed and eachϕn
is in C, we will then have proved that the integer translates of ϕ are orthonormal,
and we will be on our way toward obtaining a multiresolution analysis.
To prove that Fϕn converges to Fϕ in L2(R), we are going to use dominated

convergence, showing that for all n, |(Fϕn)(y)| is ≤ C1|(Fϕ)(y)| for some
constantC1 and all real y. By assumption (iii), |m0(y)| is nonzero for real y with
|y| ≤ 1

4 . The function m0(y) is continuous (being a trigonometric polynomial),
and thus there is a positive number c such that |m0(y)| ∏ c > 0 for real y with
|y| ≤ 1

4 . By the uniform convergence of the partial products of h(y) on compact
sets, we can choose an integer J large enough so that

Q
j>J |m0(y2− j )| ∏ 1

2
whenever |y| ≤ 1

2 and y is real. Then we have

|(Fϕ)(y)| =
° JQ

j=1
|m0(y2− j )|

¢° Q

j>J
|m0(y2− j )|

¢
∏ 1

2

JQ

j=1
|m0(y2− j )| ∏ 1

2c
J

for |y| ≤ 1
2 . In other words, inf|y|≤1/2 |(Fϕ)(y)| ∏ c1 > 0 for some positive

constant c1. The definition of Fϕn shows that (Fϕn)(y) = 0 for |y| > 2n−1 and
hence that |(Fϕn)(y)| ≤ c−1

1 |(Fϕ)(y)| there. Meanwhile for |y| ≤ 2n−1, we
have (Fϕ)(y) = (Fϕn)(y)(Fϕ)(2−n y) and hence also

|(Fϕn)(y)| =
Ø
Ø
Ø

(Fϕ)(y)
(Fϕ)(2−n y)

Ø
Ø
Ø ≤ c−1

1 |(Fϕ)(y)|.

Thus
|(Fϕn)(y)| ≤ c−1

1 |(Fϕ)(y)| for all y.

Consequently |(Fϕn)(y) − (Fϕ)(y)|2 is dominated for all y by the multiple
(c−1
1 + 1)2 of |(Fϕ)(y)|2, which in turn has been shown to be integrable. By

dominated convergence we therefore have

lim
R

R |(Fϕn)(y) − (Fϕ)(y)|2 dy =
R

R lim |(Fϕn)(y) − (Fϕ)(y)|2 dy = 0.

Thus Fϕn converges to Fϕ in L2(R), as asserted.
Let us recapitulate. We formed h(y) as an infinite product of dilates of the

trigonometric polynomial m0(y), exhibited it as a limit of functions Fϕn uni-
formly on compact sets, and deduced from Fatou’s Lemma that h is in L2(R). We
definedϕ = F−1h as amember of L2(R), andwe saw thatϕ is in C, i.e., its integer
translates formanorthonormal set. Thedefinitionsmadeh(y) = m0(y/2)h(y/2),
i.e.,

(Fϕ)(y) = m0(y/2)(Fϕ)(y/2),
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and thus ϕ satisfies a scaling equation. We now define ϕj,k(x) = 2 j/2ϕ(2 j x − k)
and let Vj be the closure of the linear span of {ϕj,k}∞k=−∞. The sequence {Vj }
is increasing, since ϕ satisfies a scaling equation. The claim is that {Vj } and ϕ
together form a multiresolution analysis in the sense of Section 3. Condition
(iv) in the definition is satisfied, and condition (iii) is built into the definition.
Proposition 10.15 shows that condition (ii) is automatic, and Proposition 10.17
says that condition (i) holds if Fϕ is a bounded function that is continuous and
nonzero at y = 0. But Fϕ is just h, and we saw that h is the restriction to R of
an entire function with h(0) = 1. Thus indeed (i) holds. Consequently {Vj } and
ϕ together form a multiresolution analysis.
Next we are to show that ϕ has compact support. We saw that the L2 function h

extends to an entire function of exponential type. By the classical Paley–Wiener
Theorem,25 the L2 function ϕ = F−1h has compact support.
Finally we are to show that ifm0(y) has real coefficients, then ϕ is real-valued.

Since m0(y) has real coefficients, m0 satisfies m0(y) = m0(−y). Referring to
the formulas, we then see that h(y) = h(−y) and ϕ(x) = ϕ(x). §

Now we are in a position to collect all our results and produce the wavelets of
compact support.
Theorem 10.39. Fix an integer N ∏ 1, and define

PN (w) =
N−1X

k=0

µ
N − 1+ k

k

∂
wk .

LetL(y) be any of the trigonometric polynomials produced by Proposition 10.36
such that |L(y)|2 = PN (sin2 πy), and define

m0(y) =
≥1+ e−2π iy

2

¥N
L(y).

Let h(y) be the L2 function
h(y) =

∞Q

j=1
m0(2− j y),

and define ϕ = F−1h. Then ϕ has compact support and is the scaling function of
a multiresolution analysis whose wavelet can be taken to have Fourier transform
given by

(F√)(y) = e−iπym0( 12 y + 1
2 )h(y/2).

25The classical Paley–Wiener Theorem says that a function h in L2(R) is of the form h = Fϕ

for a function ϕ in L2(R) of compact support if and only if h (after adjustment on a set of measure 0)
can be extended to all of C as an entire function of exponential type. This theorem is not included in
Chapter VIII of Basic, but instead the sufficiency appears as Theorem 10.41 at the end of the present
section. The necessity is much easier but is not needed.
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REMARKS.
(1) Proposition 10.36 produces a number of trigonometric polynomials L(y)

with |L(y)|2 = PN (sin2 πy), corresponding to the subsets of roots αj of a certain
polynomial inside the unit disk. The Daubechies wavelet of order N arises by
choosing the subset to consist of all the roots within the unit disk. All other
choices of subsets of roots, however, lead to wavelets. The subsets that are closed
under complex conjugation lead to ϕ and √ real-valued.
(2) Theorem 10.39 contains no assertion of smoothness or even continuity for

the Daubechies wavelets. This issue is postponed until the next section, in which
we shall see that theDaubechieswavelets of order∏ 2 are continuousand that they
becomeprogressivelymoredifferentiableas N increases. However, they arenever
infinitely differentiable. Graphs of the scaling functions and wavelets appear
in Figures 10.17a and 10.17b, except that the wavelets have been translated by
integers tomake them better centered.26 The cases of small N look as if theywere
drawn with a shaky hand, and this fact reflects the low order of differentiability
in these cases.
(3) The Daubechies wavelet of order 1 is just the Haar wavelet. In fact,

we have P1(w) = 1. The polynomial L(y) is to have |L(y)|2 = 1 and thus
can be taken to be 1. Then m0(y) = 1

2 (1 + e−2π iy), in agreement with the

formula in the example in Section 3. To compute h(y) =
∞Q

j=1
m0(2− j y), we write

m0(y) = e−π iy cosπy. The product of the exponentials e−π i2− j y comes out to

be e−π iy , and thus h(y) = e−π iy
∞Q

j=1
cos(2− jπy). By making repeated use of

the identity sin 2θ = 2 sin θ cos θ , we obtain 2J sin(2−Jπy)
JQ

j=1
cos(2− jπy) =

= 2J−1sin(2−J+1πy)
J−1Q

j=1
cos(2− jπy) = · · · = sinπy. Therefore

JQ

j=1
cos(2− jπy) =

sinπy
2J sin(2−Jπy)

.

Using lim
θ→0

θ−1 sin θ = 1 and passing to the limit, we obtain
∞Q

j=1
cos(2− jπy) =

(sinπy)
±
(πy). Hence

h(y) = e−iπy sinπy
πy

.

The right side is the Fourier transform of the indicator function I[0,1], and thus
ϕ = I[0,1], as asserted.

26As the proof notes, the definition ofF√ involves an arbitrary periodic function ∫ of absolute
value 1, and the figures use a power of ∫(y) = e2π iy to achieve this translation.
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(N = 1)

(N = 2)

(N = 3)

(N = 4)

(N = 5)

FIGURE 10.17a. Daubechies scaling function (left) and wavelet (right)
of order N for N = 1, 2, 3, 4, 5.
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(N = 6)

(N = 7)

(N = 8)

(N = 9)

(N = 10)

FIGURE 10.17b. Daubechies scaling function (left) and wavelet (right)
of order N for N = 6, 7, 8, 9, 10.
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(4) The Daubechies wavelet of order 2 is sufficiently complicated that no
closed form is known for it. However, it is sufficiently simple that we can
compute m0(y) exactly. For it, we have P2(w) = 1+ 2w. Thus P2(sin2 πy) =
1 + 2 sin2 πy = |L(y)|2. Proposition 10.36 tells us how to find the possibil-
ities for L(y). In the proposition the function t has t (y) = 1 + 2 sin2 πy =
2 − cos 2πy = − 1

2e
−2π iy + 2 − 1

2e
2π iy . In the notation of the proof of that

proposition, we have M = 1, Q(y) = − 1
2 + 2y − 1

2 y
2, and z2Q(z−1) = Q(z̄).

The zeros of Q(z) occur at 2 ±
p
3, and we are to use the one inside the unit

disk, namely 2 −
p
3, in defining L(y). The proof of the proposition says

to use r(y) = e−2π iy − (2 −
p
3) as a first approximation to L(y). Then

|r(y)|2 = (8− 4
p
3 ) − 2(2−

p
3 ) cos 2πy = c0(2− cos 2πy) = c0t (y), where

c0 = 4 − 2
p
3. Since (c0)−1/2 = 1

2 (1 +
p
3), the proof of the proposition says

that L(y) = 1
2 (1 +

p
3)r(y) has |L(y)|2 = t (y). In other words, L(y) =

1
2 (1+

p
3)(e−2π iy − (2−

p
3)). Then m0(y) is given by= 1

4 (1+ e−2π iy)2L(y),
i.e.,

m0(y) = 1
2 (1+

p
3)(e−2π iy − (2−

p
3)) 14 (1+ e−2π iy)2.

Observe that the expansion of m0(y) in terms of exponentials has exactly four
nonzero coefficients—those for 1, e−2π iy , e−4π iy , and e−6π iy .
(5) The Daubechies wavelet of order N , when expanded in terms of exponen-

tials, has exactly 2N nonzero coefficients—those for 1, e−2π i x , . . . , e−2π i(2N−1)x .
Decimal approximations of these coefficients for 2 ≤ N ≤ 10 appear in a table27
on page 195 of the award-winning book byDaubechies,Ten Lectures onWavelets.

PROOF OF THEOREM 10.39. Proposition 10.34 shows that when defined as in
the statement of the theorem, m0(y) satisfies |m0(y)|2 + |m0(y + 1

2 )|
2 = 1, as

well as m0(0) = 1. Also

|m0(y)|2 = 2−2N |1+ e−2π iy|2N PN (sin2 πy)

= (cos2 πy)N
N−1P

k=0

°2N−1
k

¢
(sin2 πy)k(cos2 πy)N−k

∏ (cos2 πy)2N ,

and this is > 0 for |y| ≤ 1
4 . Therefore the hypotheses of Proposition 10.38 are

satisfied, and we can conclude that

h(y) =
∞Q

j=1
m0(2− j y)

27The coefficients in the table differ from those in the present book by a factor of
p
2. One can

verify this fact for N = 2 by using the coefficients obtained for N = 2 in the previous remark.
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defines an entire function for y ∈ C with h(0) = 1 whose restriction to R is in
L2(R). Moreover, the proposition says that ϕ = F−1h is compactly supported
and is the scaling function for a multiresolution analysis. According to Theorem
10.10, the corresponding wavelet is any function of the form

(F f )(y) = eπ iy∫(y)m0( 12 y + 1
2 )(Fϕ)(y/2)

with ∫ periodic of period 1 and with |∫(y)| = 1 everywhere. If we take into
account that Fϕ = h and if we put ∫(y) = e−2π iy , then the resulting formula is

(F√)(y) = e−iπym0( 12 y + 1
2 )h(y/2). §

Before turning to smoothness questions, we insert as Theorem 10.41 the hard
direction of the Paley–Wiener Theorem. This result was used at a critical point
in the proof of Proposition 10.38. In the course of proving Theorem 10.41, we
shall make use of the Phragmén–Lindelöf Theorem, which is a variant of the
Three Lines Theorem (Basic, Lemma 9.19B, p. 471).

Lemma 10.40 (Phragmén–Lindelöf Theorem). Let f be a function that is
analytic in an open neighborhood of the closure D of an open sector D of C with
angular opening < π . Suppose that | f (z)| ≤ C on the boundary of D and that
f satisfies a growth estimate | f (z)| ≤ C 0eM|z| throughout D. Then | f (z)| ≤ C
throughout D.

PROOF. Without loss of generality, we may assume that D is positioned
symmetrically about the positive x axis with vertex at the origin and with angle
√ on each side of the axis. Since √ < π

2 by assumption, we can choose and fix
α > 1 with α√ < π

2 . For each positive number ε, define gε(z) = f (z)e−εzα ,
where zα refers to the principal value. For z = reiθ in D with |θ | ≤ √ , we have

|gε(z)| ≤ C 0eM|z||e−ε(reiθ )α | = C 0eMre−εrα cos(αθ) ≤ C 0eMre−εrα cos(α√).

Since α > 1, this tends to 0 as r tends to infinity, and we can regard gε as
continuous on the compact subset D ∪ {∞} of the extended plane. Then |gε(z)|
has an absolute maximum at some point zε of D ∪ {∞}. The point zε cannot
be ∞, and the maximum principle for analytic functions then forces zε to be
on the boundary of D. Hence |gε(zε)| ≤ C . Consequently |gε(z)| ≤ C and
| f (z)| ≤ C|e−εzα | everywhere on D. Passing to the limit as ε decreases to 0, we
see that | f (z)| ≤ C everywhere on D. §
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Theorem 10.41 (Paley–Wiener Theorem). If h is an L2 function on R that
extends to an entire function onC of exponential type, then the Fourier transform
of h has compact support.
REMARK. In our application within the proof of Proposition 10.38, we needed

ϕ = F−1h to be of compact support, and the assertion here is aboutFh. However,
the question of compact support comes to the same thing forFh andF−1h, since
(F−1h)(ξ) = (Fh)(−ξ).
PROOF. We regard h as an entire function on C with |h(z)| ≤ Ae2πM|z| for

all z. Allusions to the Fourier transform are to the restriction of h to R. For
most of the proof, we shall assume that h is bounded on R, say with |h(x)| ≤ B.
Toward the end of the proof, we shall show how to drop this assumption.
We shall prove that (Fh)(ξ) = 0 a.e. for |ξ | > M . We handle ξ > M and

ξ < −M separately. First suppose that ξ > M . For ε > 0, we introduce
hε(z) = h(z)/(1 + iεz)2. This is analytic in a neighborhood of the lower half
plane Im z ≤ 0, and its restriction to R is in L1(R), being the product of two
functions in L2(R). We shall show that its Fourier transform bhε(ξ) vanishes
for ξ > M . We are going to move the contour of integration in the integral
bhε(ξ) =

R ∞
−∞ hε(x)e−2π iξ x dx .

Let b > 0 be arbitrary. Form the rectangle in C whose top side extends
from −R to R on the real axis and whose bottom side extends from −R − ib to
−R + ib. Orient the rectangle clockwise. The total integral over the rectangle
of hε(z)e−2π iξ z is 0 by the Cauchy Integral Theorem, and we are going to show
that in the limit R → ∞ and then b → ∞, the other three sides each contribute
0. Then the conclusion will be that the contribution from the top side is 0, i.e.,
that bhε(ξ) = 0.
To estimate the contributions from the vertical sides and bottom of the rec-

tangle, we shall apply Lemma 10.40 (the Phragmén–Lindelöf Theorem) twice to
the analytic function h(z)e−2π iMz in the lower half plane. Consider the quadrant
with Re z ∏ 0 and Im z ≤ 0. On the positive real axis we have

|h(x)e−2π iMx | = |h(x)| ≤ B,

while on the negative imaginary axis {−iy with y ∏ 0} we have

|h(−iy)e−2π iM(−iy)| ≤ Ae2πM|−iy|e−2πMy = A.

On the whole quadrant where Re z ∏ 0 and Im z ≤ 0, we have

|h(z)||e−2π iMz| = |h(z)|e2πM| Im z| ≤ Ae2πM|z|e2πM| Im z| ≤ Ae4πM|z|.

Thus the lemma applies with C = max{A, B} and gives the bound

|h(z)e−2π iMz| ≤ C (∗)
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everywhere on the quadrant. We can argue similarly with the quadrant for which
Re z ≤ 0 and Im z ≤ 0. The estimates are the same, and Lemma 10.40 yields the
bound (∗) whenever Re z ≤ 0 and Im z ≤ 0. Consequently

|h(x + iy)| ≤ C|e2π iM(x+iy)| = Ce2πM|y| (∗∗)

whenever y ≤ 0.
To estimate the contributions from the vertical sides, where |x | = R, we apply

(∗∗) and make use of the bound

|hε(z)| ≤ |h(z)|(1+ ε2|z|2)−1 ≤ Ce2πM|y|(1+ ε2R2)−1 ≤ Cε−2R−2e2πMb.

The integral over the right vertical side is

≤
R −b
0 |hε(R + i t)||e−2π iξ(R+i t)| dt ≤ Cε−2R−2e2πMb

R −b
0 e2πξ t dt.

Since we are holding b fixed as we let R tend to infinity, this term tends to 0.
Similarly the integral over the left vertical side tends to 0.
After the passage to the limit in R and the application of the Cauchy Integral

Theorem, we see that bhε(ξ) equals the integral over the bottom side of the
rectangle, i.e., that

bhε(ξ) =
R ∞
−∞ hε(x − ib)e−2π iξ(x−ib) dx .

On the right side we use the bound (∗∗) and the estimate

|hε(z)| = |h(z)|(1+ ε2|z|2)−1 ≤ |h(z)|(1+ ε2x2)−1

to see that

|bhε(ξ)| ≤
R ∞
−∞(1+ ε2x2)−1Ce2πMbe−2πξb dx = ce−2πb(ξ−M).

As b tends to infinity, the right side tends to 0 because ξ > M . Thus bhε(ξ) = 0.
Still with ξ > M , we shall let ε tend to 0. Let g be any function in C∞

com(R)
with support in the interval (M,+∞). Then the multiplication formula gives
0 =

R
R

bhεg dx =
R

R hεbg dx , i.e.,

0 =
Z

R

h(x)bg(x)
(1+ iεx)2

dx

for every ε > 0. Here h andbg are in L2(R) and also |(1+ iεx)−2| ≤ 1. Thus we
have dominated convergence as ε tends to 0, and we obtain

0 =
R

R h(x)bg(x) dx =
R

R(Fh)(ξ)g(ξ) dξ.
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Since g is any smooth function supported in (M,+∞), we see that (Fh)(ξ) = 0
a.e. for ξ > M .
In similar fashion we argue for ξ < −M by using approximating functions

hε(z) = h(z)/(1 − iεz)2 and working in the upper half plane. Lemma 10.40 is
to be applied to the function h(z)e2π iMz in the two quadrants of the upper half
plane. The new version of estimate (∗∗) is that |h(x+ iy)| ≤ Ce2πM|y| whenever
y ∏ 0. The result is that (Fh)(ξ) = 0 a.e. for ξ < −M .
This completes the proof under the assumption that h is bounded. To see that

we can drop this assumption, let u ∏ 0 be in Ccom(R), and form the convolution
hu(z) =

R
R h(z − t)u(t) dt . The function hu is entire, and it has

|hu(z)| =
Ø
Ø R

R h(z − t)u(t) dt
Ø
Ø ≤

R
R |h(z − t)|u(t) dt

≤ A
R

R e
2πM|z−t |u(t) dt ≤ Ae2πM|z| R

R e
2πM|t |u(t) dt = A0e2πM|z|.

The argument in the special case applies to hu and shows that Fhu vanishes a.e.
for |ξ | > M . If we replace u(x) by uε(x) = ε−1u(ε−1x) and let ε decrease to 0,
then lim huε

= h in L2(R), and so limFhuε
= Fh in L2(R). SinceFhuε

vanishes
a.e. for |ξ | > M , so does Fh. §

10. Smoothness Questions

The Daubechies wavelet of order N that was constructed in Theorem 10.39 has
compact support, but we have not yet proved that it and its scaling function are
continuous if N ∏ 2. (For N = 1, the resulting wavelet is the Haar wavelet,
which is certainly not continuous.)
We shall get at this continuity in this section. As a general principle, the more

rapidly the Fourier transform of a function f decays at infinity, the smoother that
f is. An explanation in simple terms is that under certain technical assumptions
given in Proposition 8.1 of Basic, the Fourier transform of d

dx f (x) is 2π iy f (y).
Thus the starting point for our study is an investigation of the rapidity of decay at
infinity ofFϕ, ϕ being the scaling function of theDaubechieswavelet of order N .

Lemma 10.42. The binomial coefficient
µ
2n
n

∂
satisfies

µ
2n
n

∂
≤

4n
p

πn
for all

n ∏ 1.

REMARK. In fact, the ratio of the two sides of the inequality tends to 1, as is
easily seen by examining the proof of the lemma closely.
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PROOF. Because of the orthogonality of the exponentials on [−π,π], the 0th
Fourier coefficient of cos2n x is

1
2π

Z π

−π

cos2n x dx =
2−2n

2π

Z π

−π

(eix + e−i x)2n dx

=
2−2n

2π

Z π

−π

2nX

k=0

µ
2n
k

∂
eikxei(2n−k)x dx = 2−2n

µ
2n
n

∂
.

Since cos x is even, µ
2n
n

∂
=
4n

π

Z π/2

−π/2
cos2n x dx . (∗)

Consider the function f (x) = log cos x + 1
2 x
2 on [−π/2,π/2]. It has f (0) =

f 0(0) = 0 and f 00(x) = − sec2 x + 1. Therefore it has an absolute maximum at
x = 0, and we obtain the inequality

log cos x ≤ − 1
2 x
2 for − π

2 ≤ x ≤ π
2 .

Exponentiating and raising both sides to the (2n)th power gives

cos2n x ≤ e−nx2 for − π
2 ≤ x ≤ π

2 .

Thus (∗) is

≤
4n

π

Z π/2

−π/2
e−nx2 dx ≤

4n

π

Z ∞

−∞
e−nx2 dx =

4n

π

r
π

n

Z ∞

−∞
e−πy2 dy =

4n
p

πn
. §

Proposition 10.43. For every N ∏ 1 and every integer j ∏ 1, the scaling
function ϕ of the Daubechies wavelet of order N satisfies an estimate

|(Fϕ)(y)|2 ≤
≥ 2N−1
p

πN

¥
(
p
4πN )− j for 2 j−1 ≤ |y| ≤ 2 j .

Consequently
Z

2 j−1≤|y|≤2 j
|(Fϕ)(y)| dy ≤

≥ 2N−1
p

πN

¥1/2
(πN/4)− j/4.

PROOF. For the moment we allow y to be an arbitrary real number. Theorem
10.39 says that

(Fϕ)(y) =
∞Q

j=1
m0(2− j y),
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where m0(y) = e−π i Ny(cosπy)NL(y) and |L(y)|2 = PN (sin2 πy). Moreover,
Lemma 10.35c gives 0 ≤ PN (sin2 πy) ≤

°2N−1
N

¢
. Thus

|(Fϕ)(y)|2 =
∞Q

k=1
|m0(2−k y)|2

≤
j+1Q

k=1
|m0(2−k y)|2 since |m0(y)| ≤ 1

=
j+1Q

k=1
(cos 2−kπy)2N PN (sin2 2−kπy)

≤
j+1Q

k=1

≥
(cos 2−kπy)2N

°2N−1
N

¢¥
by Lemma 10.35c

=
≥ j+1Q

k=1
cos 2−kπy

¥2N °2N−1
N

¢ j+1

=
≥ j+1Q

k=1
cos 2−kπy

¥2N≥
N
2N

°2N
N

¢¥ j+1

≤
≥ j+1Q

k=1
cos 2−kπy

¥2N≥
1
2
4Np
πN

¥ j+1
by Lemma 10.42. (∗)

To handle the product of powers of cosine, we use the same trick as in Re-
mark 3 with Theorem 10.39, namely repeated application of the identity sin 2θ =
2 sin θ cos θ :

2 j+1 sin(2−( j+1)πy)
j+1Q

k=1
cos(2−kπy) = 2 jsin(2− jπy)

jQ

k=1
cos(2−kπy)

= · · · = sinπy.

Thus
j+1Q

k=1
cos 2−kπy =

sinπy
2 j+1 sin 2−( j+1)πy

,

and (∗) is
≤

≥ sinπy
2 j+1 sin 2−( j+1)πy

¥2N≥
1
2
4Np
πN

¥ j+1
. (∗∗)

We nowbring in the constraint 2 j−1 ≤ |y| ≤ 2 j in order to give an upper bound
for the first factor. In the numerator we use | sinπy| ≤ 1. For the denominator,
the absolute value of the argument of the sine lies between π/4 and π/2. Thus
| sin 2−( j+1)πy| ∏ sinπ/4 = 2−1/2, and (∗∗) is

≤ 4− j N2−(1/2)(2N )
≥
1
2
4Np
πN

¥ j+1
=2−N

≥
1
2
4Np
πN

¥
(2

p
πN )− j=

≥
2N−1
p

πN

¥
(2

p
πN )− j .
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This proves the upper bound for |(Fϕ)(y)|2.
An upper bound for the integral is the product of the square root of this bound

by the measure 2 j of the set of integration. The result follows. §

As soon as Nπ > 4, namely as soon as N ∏ 2, the sum over j ∏ 1 of
the integrals in Proposition 10.43 is finite, and it follows that Fϕ is integrable.
Consequently the function ϕ = F−1Fϕ, after adjustment on a set of measure 0,
is a bounded continuous function vanishing at infinity. We already knew that it
had compact support (and hence vanishes at infinity), and the new fact is that it
is continuous. Since in the case of compact support the wavelet is a finite linear
combination of translates of dilates of the scaling function, the wavelet itself is
continuous. Let us state that result as a corollary.

Corollary 10.44. For every N ∏ 2, the scaling function ϕ of the Daubechies
wavelet of order N is continuous, and so is the wavelet √ itself.

The pointwise estimate in Proposition 10.43 gives more, however. One way
of proceeding is to observe as a further corollary of Proposition 10.41 that
|(Fϕ)(y)|2(1+|y|2)s is integrable for specific values of s. In the terminology of
Problems8–12 forChapter III, f is in certain spaces Hs(R) of “Bessel potentials.”
We elaborate on this approach in Problems 18–19 at the end of the present chapter.
But for nowwe shall proceed somewhat differently, so as to avoid invoking results
from Chapter III.
If 0 < α < 1, we say that a continuous function f on R satisfies a Hölder

conditionwith exponent α if there is a constantC such that | f (x+h)− f (x)| ≤
C|h|α whenever x and h are in R with |h| ≤ 1.

Proposition 10.45. Fix α > 0. Suppose that
(i) f is a compactly supported member of L2(R),
(ii) F f is integrable and f has been adjusted on a set of measure 0 so as to

be continuous, and
(iii) there is a constant C with

Z

2 j−1≤|y|≤2 j
|(F f )(y)| dy ≤ C2−α j for every integer j ∏ 0.

If 0 < α < 1, then f satisfies a Hölder condition with exponent α. If the
inequality n < α < n + 1 holds for some positive integer n, then f is of class
Cn , and its nth derivative f (n) is in L2(R) and satisfies a Hölder condition with
exponent α − n.
REMARK. In our case we define α so that 2−α = (πN/4)−1/4, and Proposition

10.43 establishes the estimate in the hypothesis of Proposition 10.45. In other
words, α is any number ≤ 1

4 log2(πN/4).
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PROOF. First suppose that 0 < α < 1. Under the hypotheses on f , we can
write f pointwise as the inverse Fourier transform of F f , and then

f (x + h) − f (x) =
Z

R
e2π i xy(e2π ihy − 1)(F f )(y) dy,

the integrand being integrable. We are to estimate

| f (x + h) − f (x)| ≤
Z

R
|e2π ihy − 1||(F f )(y)| dy (∗)

With |h| ≤ 1, we define the index j = j (h) ∏ 0 so that 2−( j+1) ≤ |h| < 2− j ,
and then we break the region of integration in (∗) into three sets S1, S2, and S3 as
follows: S1 = S1(h) where 0 ≤ |y| < 1

2 , S2 = S2(h) where 12 ≤ |y| < 2 j (h), and
S3 = S3(h) where 2 j (h) ≤ |y|.
For the integral over S1, we use the inequality |eiθ − 1| ≤ |θ |, which is valid

for all real θ , to write
Z

S1
|e2π ihy − 1| |(F f )(y)| dy ≤ 2π |h|

Z

S1
|y| |(F f )(y)| dy ≤ π |h|αkF f k1.

For the integral over S2, we have similarly
Z

S2
|e2π ihy − 1| |(F f )(y)| dy ≤ 2π |h|

Z

S2
|y| |(F f )(y)| dy

= 2π |h|
j (h)X

k=0

Z

2k−1≤|y|<2k
|y| |(F f )(y)| dy

≤ 2π |h|
j (h)X

k=0
2k

Z

2k−1≤|y|<2k
|(F f )(y)| dy

≤ 2π |h|
j (h)X

k=0
2kC2−αk

= 2πC|h|
j (h)X

k=0
2(1−α)k

≤ 2πC|h|(21−α − 1)−12(1−α)( j (h)+1).

Since 2−( j (h)+1) ≤ |h| ≤ 2− j (h), we have |h| = |h|α|h|1−α ≤ |h|α2−(1−α) j (h),
and thus

Z

S2
|e2π ihy − 1| |(F f )(y)| dy ≤ 2πC21−α(21−α − 1)−1|h|α.
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For the integral over S3, we have
Z

S3
|e2π ihy − 1| |(F f )(y)| dy ≤ 2

Z

S3
|(F f )(y)| dy

= 2
∞X

k= j (h)+1

Z

2k−1≤|y|≤2k
|(F f )(y)| dy

≤ 2
∞X

k= j (h)+1
C2−αk

= 2C(1− 2−α)−12−α( j (h)+1)

≤ 2C(1− 2−α)−1|h|α.

Combining the estimates for S1, S2, and S3, we obtain

| f (x + h) − f (x)| ≤ C 0|h|α,

as required. This completes the proof for 0 < α < 1.
Now suppose that α > 1. Proceeding inductively, we shall show that f is

of class C1 and that f 0 satisfies the hypotheses of the proposition for the index
α − 1. Then the result will follow by induction.
First of all, we have
R
2 j−1≤|y|≤2 j |y| |(F f )(y)| dy ≤

R
2 j−1≤|y|≤2 j 2

j |(F f )(y)| dy ≤ C2−(α−1) j ,

and it follows that |y| |(F f )(y)| is integrable.
To prove28 that f is of class C1, we make use of the inequality

|h−1(e2π iyh − 1)| ≤ 2π |y| (∗∗)

valid for |h| ≤ 1; this inequality follows from the inequality |eiθ − 1| ≤ |θ | that
was used for estimating S1. We have

f (x + h) − f (x)
h

=
Z

R
(F f )(y)e2π iyx

he2π iyh − 1
h

i
dy.

The expression in brackets is ≤ 2π |y| in absolute value by (∗∗), and we have
seen that y(F f )(y) is integrable. Therefore we have dominated convergence,
and we conclude that

f 0(x) =
Z

R
(F f )(y)(2π iy)e2π iyx dy,

28This argument is a version of the proof of Proposition 8.1g of Basic, but it is easier to write
out the details of the argument than to show that the C1 property follows from Proposition 8.1g.
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the derivative existing. Except for an extra minus sign in the exponential, this for-
mula exhibits f 0 as the Fourier transformof the integrable function 2π iy(F f )(y),
and f 0 is therefore continuous. Since f has compact support, so does f 0. The
Fourier inversion formula is applicable, and we obtain

(F f 0)(y) = (2π iy)(F f )(y).

We conclude that f 0 satisfies the hypotheses of the proposition for the index α−1,
and the proof is complete. §

Corollary 10.46. Let n be a positive integer. If N is large enough so that
1
4 log2(πN/4) > n, then the scaling function of the Daubechies wavelet of order
N is of class Cn , and the same thing is true of the wavelet itself.
PROOF. This follows immediately by combining Proposition 10.43 and

Proposition 10.45. §

Qualitatively Corollary 10.46 says that if n is given, then the scaling function
is of class Cn if N is sufficiently large. The growth of n as a function of N
is logarithmic. For example, the corollary asks that N be at least 21 before it
guarantees that the scaling function is of class C1. Quantitatively this result does
not appear to be very sharp if one takes into account the appearance of the curves
in Figures 10.17a and 10.17b. In fact, Daubechies with much more work shows
in Chapter 7 of her book Ten Lectures on Wavelets that asymptotically for large
N , the scaling function for the Daubechies wavelet of order N is of class Cµn

with µ = 3
4
log 3
log 2 − 1 ≈ .1887.

Anyway, Daubechies wavelets can have as many derivatives as we like. But
it turns out that no such wavelet can have infinitely many. This fact will be a
corollary of the following proposition.

Proposition 10.47. Suppose that √ is a compactly supported continuous
function onR such that the set of functions {2 j/2√(2 j x−k)}j,k∈Z is an orthogonal
set. If √ is of class Cm , then

R
R x

l√(x) dx = 0 for 0 ≤ l ≤ m.

PROOF. We write√ (0) = √ ,√ (1), . . . ,√ (m) for the successive derivatives, and
we introduce successive integrals inductively by the formula

√ (−l)(x) =
R x
−∞ √ (−l+1)(t) dt for 1 ≤ l ≤ m.

We prove by induction on l for 0 ≤ l ≤ m that
R

R x
l√(x) dx = 0.

The case l = 0 makes use of the assumed orthogonality. Let a = k/2 j be an
arbitrary diadic rational number. We do not necessarily assume that k is an odd
integer. Then

0 =
R

R √(x)√(2 j x − k) dx =
R

R √(x)√(2 j (x − a)) dx,
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and the change of variables x = a + x 02− j yields

0 =
R

R √(a + x 02− j )√(x 0) dx 0. (∗)

In this expression we can let j tend to +∞, since we have not assumed that k
is odd. Then dominated convergence yields the equality 0 = √(a)

R
R √(x 0) dx 0.

Either
R

R √(x) dx = 0 or √(a) = 0 for all a, in which case
R

R √(x) dx = 0
by the assumed continuity of √ . This completes the argument for l = 0. It also
shows that √ (−1)(x) has compact support.
Assume inductively that 0 ≤ l < m and that

R
R x

l√(x) dx = 0 and that
√ (0), . . . ,√ (−l−1) have compact support. Integrating (∗) by parts l times is
allowable since with each integration, both functions in the integrand have com-
pact support, and we obtain

0 =
R

R √ (l+1)(a + x2− j )√ (−l−1)(x) dx .

Letting j tend to+∞ as above, we obtain√ (l+1)(a)
R

R √ (−l−1)(x) dx = 0 for all
a. We cannot have √ (l+1)(a) = 0 for all a, since the continuity of √ (l+1) would
force √ to be a polynomial and that is not the case. Thus we obtain

R
R √ (−l−1)(x) dx = 0. (∗∗)

This shows that √ (−l−2) has compact support and completes one part of the
inductive step.
We now integrate (∗∗) by parts, differentiating the integrated √ factor and

integrating a complementary power of x . After one such integration we obtainR
R x√

(−l)(x) dx = 0. After a total of l such integrations by parts, we haveR
R x

l√ (−1)(x) dx = 0. Finally we integrate by parts once more, obtainingR
R x

l+1√(x) dx = 0. This completes the induction and the proof. §

Corollary 10.48. If √ is a compactly supported continuous function on R
such that the set of functions {2 j/2√(2 j x − k)}j,k∈Z is an orthogonal set, then √
cannot be of class C∞ unless √ = 0.

PROOF. If √ is a compactly supported C∞ function on R such that the set of
functions {2 j/2√(2 j x− k)}j,k∈Z is an orthogonal set, then

R
R x

m√(x) dx = 0 for
all m ∏ 0, according to Proposition 10.47, and therefore

R
R p(x)√(x) dx = 0

for every polynomial p. By the Weierstrass Approximation Theorem (Theorem
1.52 of Basic), choose a sequence {pn} of polynomials converging uniformly to
√ on the support of √ . Then {pn√} tends uniformly to |√ |2 on the support of √ ,
and it follows that

R
R |√(x)|2 dx = 0. Therefore √ = 0. §
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It is time to take stock of where we are. We have constructed a number of
families ofwavelets, often by applying some general theory, andwe have seen that
eachof these families has certainproperties, somedesirable and someundesirable.
We summarize this information in the table in Figure 10.18. In the table, √ has
the same decay and smoothness qualitatively as ϕ does. The expression “jump”
points to the presence of a jump discontinuity, while “compact supp.” means
that the indicated function has compact support and “Schwartz” means that the
function is in the Schwartz class S. A function on R is real analytic if it is the
restriction to R of an analytic function on an open subset of C that contains R.

Family ϕ decay Fϕ decay ϕ smoothness Fϕ smoothness
Haar compact supp. ≤ c/|y| jump real analytic

Shannon ≤ C/|x | compact supp. real analytic jump
Meyer, index m ≤ C|x |m+2 compact supp. real analytic Cm

Meyer, index∞ Schwartz compact supp. real analytic C∞

Battle–LeMarié, deg. 1 exponential ≤ c/|y|2 C0 real analytic
Battle–LeMarié, deg. m exponential ≤ c|y|m+1 Cm−1 real analytic
Daubechies, order 1 compact supp. ≤ c/|y| jump real analytic
Daubechies, order N compact supp. ≤ c/|y|n(N ) Cn0(N ) real analytic

FIGURE 10.18. Summary of properties of constructed wavelets.

11. A Quick Introduction to Applications

If it were not for the usefulness of wavelets in applications, the subject of
wavelets might have remained something known only to experts in one corner
of mathematics. But there are by now applications in many areas of science and
engineering, even in areas of social science, and the subject cannot be ignored
by a well educated mathematician. Not only are there applications, but also the
applications have in many cases driven the theory. In this section we shall list
some areas where wavelets have been useful, and we shall give a few details for
some of them.
As we often saw throughout the theoretical development, the hypotheses on

wavelets that we were accustomed to were not exactly the hypotheses that were
needed for new steps. This phenomenon persists with applications, as we shall
see. Let us distinguish two situations, corresponding to one and two dimensions.
In one dimension the objective is to analyze some function f in L2(R). It will

be convenient to think of the domain variable as representing time and f as being
some kind of signal. The orthogonal wavelets that we have studied are in many
practical cases a suitable tool for the analysis of f . We fix a wavelet√ that comes
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from a scaling function ϕ, and just as we did with the Haar wavelet, we introduce
the corresponding discrete wavelet transform, which carries f to the system
{( f,√j,k)}j,k∈Z of inner products of f with the members of the orthonormal basis
{√j,k}. We can think of these inner products as the wavelet coefficients. As with
the Haar wavelet, we are really interested in a one-sided wavelet expansion of
the form

f (x) =
P

k∈Z

° R
R f (y)ϕ0,k(y) dy

¢
ϕ0,k(x) +

∞P

j=0

P

k∈Z

° R
R f (y)√j,k(y) dy

¢
√j,k(x).

In effect this expansion groups all the contributions from the√j,k with j < 0 into
the first term. This expansion represents a process of looking at f with an infinite
system of finer and finer resolutions. The first term gives the result of using an
initial resolution corresponding to j = 0. New terms in the approximating expan-
sion represent taking into account higher and higher resolutions, thus providing
better and better knowledge of what is happening in the time domain. In short,
the new terms represent the detail in the signal. Changing k represents changing
the center of the interval of time on which we are concentrating; increasing
j represents increasing the resolution. Experts in signal processing think of
the process as one of passing the signal through a sequence of filters. Barbara
Hubbard explains matters in the following way in her book:29

Mathematicians classify functions in all kinds of ways. The view-
point of signal processors is simpler: to them, a function is either a
signal to be analyzed or a filter with which to analyze a function. A
classical filter is an electric circuit with one wire that carries a signal
in and another wire that carries a signal out. But a filter can also be
a function (or, if it is digital, a sequence of numbers). The effect of a
filter, whether physical or abstract, is easier to understand in Fourier
space: the Fourier transform of the signal is multiplied by the Fourier
transform of the filter, letting certain frequencies pass through while
blocking others.
If, for example, the Fourier transform of the filter is almost 1 near

zero, and almost 0 everywhere else . . . , the signal’s low frequencies
will survive this multiplication by 1, but the high frequencies will
be essentially eliminated. This is a low-pass filter. The result in
“physical” space is to smooth the signal: the small variations given
by the high frequencies disappear, leaving the general tendency. . . .

Mallat [the person who formally introduced multiresolution anal-
yses] realized that one can incorporate wavelets into a system that
uses a cascade of filters to decompose a signal. Each resolution has
its own pair of filters: a low-pass filter associated with the scaling

29The World According to Wavelets, second edition, pp. 166–167.
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function, giving an overall picture of the signal, and a high-pass filter
associated with the wavelet, letting through only the high frequencies
associated with the details. The two filters complement each other;
that which one blocks, the other lets through. (Of course “high”
or “low” frequencies are relative. The low frequencies encoded by
the low-pass filter at a fine resolution may be higher than the high
frequencies encoded by the high-pass filter at a coarse resolution.)

In quantitative terms the process described by Hubbard is as follows: For
each index j , let Pj be the orthogonal projection of L2(R) on Vj , and let Qj be
the orthogonal projection on Wj . Then we have PJ f = PJ−1 f + QJ−1 f and
PJ−1 f = PJ−2 f + QJ−2 f and so on, with the result that

PJ f = P0 f + QJ−1 f + QJ−2 f + · · · + Q1 f + Q0 f.

We shall come back to this decomposition shortly when we discuss the discrete
wavelet transform in more detail.
For many purposes one wants to chop off the expansion at some point by

dropping small terms. This is already what we did above in passing from f to
PJ f . The same kind of chopping would be the simplest thing to do if one were
trying to compress the signal or counteract the effect of noise. Meyer30 says the
following about this process:

The most astonishing result we obtain will be the remarkable fact
that “full”wavelet series (those havingplenty of non-zero coefficients)
represent really pathological functions, whereas “normal” functions
have “sparse” or “lacunary”wavelet series. On the other hand, Fourier
series of the usual functions are “full,” whereas lacunary Fourier series
represent pathological functions.
This phenomenon has a simple explanation. Analysis by wavelets

is a local Fourier analysis which takes place at every scale. It has
the advantage of being concentrated near the singular support of the
function analyzed. In other words, away from the singular support,
the function analyzed is infinitely differentiable and the corresponding
wavelet coefficients are negligible.

The book by Burris, Gopinath, and Guo31 has some interesting graphs giving
an example of how this works in practice. The authors have created a one-
dimensional signal out of the Houston skyline, and they show how the signal is

30Wavelets and Operators, p. 113. Meyer makes this statement in a specific context, which is a
little different from ours, but that distinction will not deter us.

31See the Selected References.
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decomposedwhen the discrete wavelet transform is applied using the Daubechies
wavelet32 of order 4.
Other applications use this and other wavelets. As a rule, authors tend not

to explain how they came to use one particular wavelet rather than another. The
wavelets in use tend to be theMeyer wavelets with index≤ 3, the Battle–Lamarié
wavelets of degree≤ 3, and the Daubechies wavelets of order≤ 6. Occasionally
an author will use some other kind of wavelet for some particular purpose. Some
of the applications that have been discussed in print are the following:

(a) Automatic analysis of an electrocardiogram. This is discussed in the book
by Louis, Maass, and Rieder, pp. 232ff. The objective is to automate the
obvious diagnoses of irregular heartbeats, leaving a more careful analysis
to a human being. The questions are whether the rhythm of the cardiac
valve is in synchronization with that of the heart muscle and whether the
heart muscle relaxes between beats. The Daubechies wavelet of order 2
is used for this purpose.

(b) Speech storage. Speech takes a great deal of computer memory to store.
Imagine that one wanted to store the content of all telephone calls world-
wide that might be of national security interest. One wants a way of
compressing the speech without making it unintelligible.

(c) Music storage. Music takes a great deal of space to store but for different
reasons from speech. One has to handle a greater range of frequencies
without losing subtle techniques of the performers.

(d) Speech recognition. The idea is to use wavelet analysis to identify
phonemes from a signal representing speech.

(e) Hearing aids for understanding speech. Modern hearing aids are capa-
ble of doing a complicated nonlinear analysis and synthesis of speech,
amplifying part of a signal and suppressing another part, in order to
make speech more recognizable to a patient using a hearing aid. Simple
amplification is not enough. The usual difficulty that a patient has in
hearing is an inability to distinguish among certain consonants, and the
processing of the signal is supposed to emphasize those features that
the patient needs in order to recognize what is being said, all the while
eliminating background noise. Smoothing of the signal is definitely not
what is called for; smoothed speech sounds largely like vowels, and the
difficulty in recognizingconsonants is aggravated if speech is smoothed.33

(f) Applications in economics. Wavelet analysis can reveal relationships
between economic variables and indicate how those relationships evolve
with time.

32This is in Section 2.7 of the book. There are two standard ways of naming the Daubechies
wavelets—by the order N and by the number of nonzero coefficients 2N in the scaling equation.

33There is a problem with being too specific about how particular hearing aids work in that a
certain amount of the information is proprietary and therefore unpublished and unavailable.
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(g) Applications in finance. Economic variables affect markets according to
various time scales, short term and medium term, for example. Some are
leading indicators, and some are lag indicators. In principle wavelets de-
compose time series data into different scales and can reveal relationships
that are not obvious in the aggregate data.

Let us come back to the discrete wavelet transform. Calculating a one-sided
wavelet expansion as at the beginning of this section looks as if it involves a
great many integrals. However, these integrals are related to one another by the
scaling equation and the wavelet equation, and matters are not so complicated.
As indicated with the Hubbard quotation, we are to think of the goal as forming
PJ f with J chosen large enough so that k f − PJ f k2 is small.34 Write ϕj,k(x) =
2 j/2ϕ(2 j x − k) for each integer j and k. For fixed j , these functions form an
orthonormal basis of Vj , and we write cj,k for the coefficient in the expansion of
f in this basis:

cj,k = ( f,ϕj,k) =
R

R f ϕj,k dx .

We write cj for the square-summable sequence {cj,k}k∈Z.
To be systematic, we shall introduce an algorithm of “decomposition” of cj

and an algorithm of “reconstruction” of cj . Each of these makes use of the two
functionsm0(y) andm1(y) that we have carried along ever since Theorem 10.10.
The function m0(y) was introduced just before the statement of that theorem in
terms of the scaling equation

ϕ(x) =
∞P

k=−∞
ak

p
2ϕ(2x − k), where ak = (ϕ,ϕ1,k),

the definition being

m0(y) = 1p
2

∞P

k=−∞
ake−2π iky .

The function m1(y) = e2π iy∫(y)m0(y + 1
2 ) was introduced just after the state-

ment of the theorem and involved the wavelet equation

√(x) =
∞P

k=−∞
bk

p
2ϕ(2x − k), where bk = (√,ϕ1,k).

Its formula was
m1(y) = 1p

2

∞P

k=−∞
bke−2π iky .

In this formula the coefficients bk are related to the coefficients ak . The exact
relationship depends on the choice of the function ∫(y), but we saw, for example,
that if ∫(y) = 1, then bk = (−1)k+1 a−k−1.

34From a theoretical standpoint this norm can be estimated with the aid of Lemma 10.16.
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The above formulas relate matters in V1 to those in V0. Let us see the relation-
ship between Vj and Vj−1. We have

ϕj−1,k(x) = 2( j−1)/2ϕ(2 j−1x − k) = 2( j−1)/2ϕ( 12 (2
j x − 2k))

= 2( j−1)/2
∞P

l=−∞
al

p
2ϕ(2 j x − 2k − l)

=
∞P

l=−∞
al2 j/2ϕ(2 j x − 2k − l)

=
∞P

l=−∞
alϕj,2k+l(x)

Similarly

√j−1,k(x) =
∞P

l=−∞
blϕj,2k+l(x).

For the decomposition algorithm, we substitute the relationship between
ϕj−1,k and the ϕj,2k+l into the definition of the coefficient cj−1,k . Then we obtain

cj−1,k = ( f,ϕj−1,k) =
°
f,

∞P

l=−∞
alϕj,2k+l

¢
=

∞P

l=−∞
al cj,2k+l =

∞P

l=−∞
al−2k cj,l

If we define coefficients dj,k by dj,k = ( f,√j,k), then we similarly have

dj−1,k = ( f,√j−1,k) =
°
f,

∞P

l=−∞
blϕj,2k+l

¢
=

∞P

l=−∞
bl cj,2k+l =

∞P

l=−∞
bl−2k cj,l .

Then one step of the decomposition algorithm is the passage from the system
of coefficients {cj,k}k∈Z to the systems {cj−1,k}k∈Z and {dj−1,k}k∈Z by the same
operation. To make this step more transparent, let us extend our definition of cj
above by giving names to all of our various square-summable sequences:

a = {al}l∈Z and b = {bl}l∈Z,

atr = {a−l}l∈Z and btr = {b−l}l∈Z,

and with j fixed,

cj = {cj,k}k∈Z and dj = {dj,k}k∈Z.

Then cj−1 is obtained from cj by convolving with the sequence atr and retaining
only the even-numbered entries. Similarlydj−1 is obtained from cj by convolving
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with the sequence btr and retaining only the even-numbered entries. Iterating this
step, starting at cJ , allows us to pass from the sequence cJ to the system of
sequences dJ−1, dJ−2, . . . , d0, c0.
The reconstruction algorithm will pass from the system of sequences dJ−1,

dJ−2, . . . , d0, c0 to the sequence cJ . To understand matters, it is enough to carry
out one step of the algorithm, namely to pass from cj−1 and dj−1 to cj . The
relevant formula in terms of projections is

Pj f = Pj−1 f + Qj−1 f,

which we write out as

P

k∈Z
( f,ϕj,k)ϕj,k =

P

k∈Z
( f,ϕj−1,k)ϕj−1,k +

P

k∈Z
( f,√j−1,k)√j−1,k,

hence as

P

k∈Z
cj,kϕj,k =

P

k∈Z
cj−1,kϕj−1,k +

P

k∈Z
dj−1,k√j−1,k

=
P

k∈Z
cj−1,k

° P

l∈Z
alϕj,2k+l

¢
+

P

k∈Z
dj−1,k

° P

l∈Z
blϕj,2k+l

¢

=
P

l∈Z

P

k∈Z
(cj−1,kal−2k + dj−1,kbl−2k )ϕj,l .

Since the functions ϕj,l are an orthonormal basis of Vj , we obtain

cj,l =
P

k∈Z
(cj−1,kal−2k + dj−1,kbl−2k ),

which is a formula for recovering cj from cj−1 and dj−1.
Both sums in the expression for cj,k can be viewed as convolutions, but they

are more subtle than the ones in the decomposition algorithm. To see them as
convolutions, define

c̃j−1,n =

Ω cj−1,n/2 if n is even
0 if n is odd,

and let c̃j−1 = {c̃j−1,n}n∈Z. Define d̃j−1,n and d̃j−1 similarly. Then cj is the sum
of two terms; the first is the convolution of c̃j−1 and a, and the second is the
convolution of d̃j−1 and b.
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We conclude this discussion of the one-dimensional case with some general
remarks.
In the language of signal processing, the decomposition algorithm and the

reconstruction algorithm are the analysis and synthesis steps of a scheme of “sub-
band filtering with exact reconstruction.” The point is to do some compression
or other processing between the decomposition and reconstruction steps. The
decomposition step draws attention to terms that are candidates for dropping
without the loss of too much information, and then one drops those terms. The
reconstruction step is applied to the terms that remain. Here the theory has
built this idea from signal processing into a mathematical transform that isolates
features of a signal that are important.
In practice a given signal will often be given by discrete pulses obtained by

sampling. To make the discrete pulses into a function onR, one defines the signal
to be constant or perhaps linear over each interval between sampling points. In
this situation the Shannon Sampling Theorem (Proposition 10.3) indicates that
there is an upper limit to how much resolution will contain useful information.
We omit the details.

Let us turn our attention to two dimensions. In two dimensions the objective
is to analyze some square integrable function f on R2. Let us think of this
function as representing a visual image. If the image is in black-and-white, then
the function is scalar valued. If it is in color, then it is vector-valued. The usual
thing is to make the vectors be three-dimensional. Initially the three dimensions
for color can be regarded as representing the intensity of three colors; red, green,
and blue are one choice. We return to this matter in a moment.
We shall concentrate on two situations:
(i) compression and storage of fingerprints, and
(ii) traditional JPEG compression of images from digital cameras and the

wavelet version, JPEG 2000.
In terms of multiresolution analysis, proceeding in the setting of R2 is not

fundamentally more complicated than proceeding in the setting of R1. The idea
is that one can use a kind of completed tensor product to convert one-variable data
into two-variable data. Thus for example, if ϕ and {Vj } define a multiresolution
analysis is one dimension, then the set of functions {x 7→ ϕ(x − k)}k∈Z is an
orthonormal basis of V0. For the two-dimensional setting the corresponding
orthonormal basis is {(x, y) 7→ ϕ(x − k)ϕ(y − l)}k,l∈Z, and one calls the space
V0e⊗V0. The spaces Vje⊗Vj are obtained as usual by dilation. The details will not
be of concern to us.
What is of more significance is that for some reason, the human brain seems

especially sensitive to visual asymmetries. When one goes through the process
of decomposition, compression, and reconstruction for a visual image by the
process that was just described, the use of a real-valued wavelet √ that lacks
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symmetry about an axis turns out to be noticeable. As it happens, all Daubechies
wavelets other than the Haar wavelet fail to be symmetric or antisymmetric about
any vertical axis, and in fact the same thing is true in all real-valued compactly
supported cases except in the Haar case.35 The effect is that one has to enlarge
the theory that we have presented to allow wavelets that are not orthogonal. It is
enough to use “biorthogonal wavelets,” which use two scaling functions that are
related in a certain way. This expansion of the theory will take us too far afield,
and thus we omit it.
However, we can mention the name of the best known family of biorthogonal

wavelets, namely the Cohen–Daubechies–Feauveau family. The twomembers of
the family that are most used have indices 5/3 and 9/7, and for current purposes
we need not know what these indices refer to; the one with indices 5/3 is for
compression with no loss of information, and the one with indices 9/7 is for
compression that allows loss of information.
Now let us come to the two situations mentioned above. First let us consider

fingerprints.36 As of 1995 the database of fingerprints maintained by the Federal
Bureau of Investigation contained more than 200 million records, and there was
a need for computerizing these records, which were all in the form of inked
impressions on cards, one card per person. Taking a full uncompressed 8-bit
gray-scale digital image at a resolution of 500 dots per inch would have required
too much computer storage, and a system for compressing digital images was
sought that would be accurate enough to make the distinctions that one could
traditionally make by hand if given enough time. A group set up to investigate
the situation found that the JPEGmethodused in digital cameras unavoidably adds
faint horizontal and vertical lines to the images in certain places if the compression
ratio is at least 10 to 1, and that feature was unacceptable. After trying a number
of other possibilities, the group settled on some guidelines in 1997. In principle
these guidelines could be met by a number of wavelets, and initially the one put
in use was the Cohen–Daubechies–Feauveau 9/7 wavelet. That choice seemed to
produce reliable images even after a process that involved 15 to 1 compression.
Finally we consider JPEG and JPEG 2000 for the compression and storage of

photographic and other images.37 For each we treat black-and-white images first
and then color images.
Of the two systems, JPEG is the conceptually simpler one. It uses classical

Fourier analysis rather than wavelets, but it still has steps of decomposition,
compression, and reconstruction. It works independently on 8-by-8 blocks of
pixels, doing an analysis on each one. The transform at the decomposition stage
is a version of Fourier series that avoids complex numbers. Within the classical
treatment of Fourier series, a Fourier cosine expansion is obtained for functions on

35The result in question is Theorem 8.1.4 of the book by Daubechies in the Selected References.
36The article by Brislawn listed in the Selected References is a readable expository account.
37The two items by Austin listed in the Selected References are readable expository accounts.

See the article by Rabbabi and Joshi for more detail about JPEG 2000.
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[0,π] by extending the functions to be even functions on [−π,π] that are periodic
of period 2π ; if the Fourier series is written out with cosines and sines in place of
complex exponentials, the sine terms drop out, and the desired series results. In
our situation our function is defined at 8 points, and we think of extending it to be
defined on 16 points so as to be even. In defining the Fourier cosine expansion,
there is a choice how the 16 points are to be distributed in the given interval,
and the particular choice that is made in the case of JPEG is what is sometimes
called the discrete cosine transform of type II. If the given interval were [0,π],
doubled to [−π,π], this particular choice of transform would visualize [0,π] as
divided into 8 equal pieces, and then the midpoint of each piece would be used.
Thus the points for evaluation of a function h would be the points π(2x + 1)/16
with 0 ≤ x ≤ 7, and functions on these points would be be expanded as linear
combinations of the functions cos[π(2x + 1)u/16] with 0 ≤ u ≤ 7. For our
application we abbreviate the cumbersome h(π(2x + 1)/16) as f (x), and we
expand f (x) in terms of the functions cos[π(2x + 1)u/16] with 0 ≤ u ≤ 7.
Using the formula cos A cos B = 1

2 (cos(A + B) + cos(A − B)), we readily
check that the eight functions of x given by cos[π(2x + 1)u/16] with 0 ≤ u ≤ 7
are orthogonal in the sense that

7P

x=0
cos[π(2x + 1)u/16] cos[π(2x + 1)u0/16] = 0 for u 6= u0.

Hence they are linearly independent and form a basis of an 8-dimensional vector

space. As to their normalization,
7P

x=0
cos2[π(2x + 1)u/16] equals 8 if u = 0 and

equals 4 if 1 ≤ u ≤ 7. Thus the system of functions

© 1
2C(u) cos[π(2x + 1)u/16]

™7
u=0

is an orthonormal basis of our space of functions of x if C(u) is defined to be 1
for 1 ≤ u ≤ 7 and to be 1/

p
2 for u = 0. The discrete cosine transform is the

passage from f to the system of coefficients F of f is this basis. Specifically in
terms of f we let

F(u) = 1
2C(u)

7P

x=0
f (x) cos[π(2x + 1)u/16],

and we recover f from F by the formula

f (x) = 1
2

7P

u=0
C(u)F(u) cos[π(2x + 1)u/16].
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For the application to JPEG, the 8-by-8 block of pixels in a photographic
image is a function f (x, y) of two variables x and y, and we do a discrete cosine
transform in each variable. The result is the function F(u, v) given by

F(u, v) = 1
4C(u)C(v)

7P

x=0

7P

y=0
f (x, y) cos[π(2x+1)u/16] cos[π(2y+1)v/16],

and we recover f (x, y) by the inversion formula

f (x, y) = 1
4

7P

u=0

7P

v=0
C(u)C(v)F(u, v) cos[π(2x +1)u/16] cos[π(2y+1)v/16].

The above formula for F(u, v) takes care of the decomposition algorithm
except for the question of its fast implementation, which will not concern us. The
next step is the compression algorithm. A naive approach would be to chop off
higher frequencies, but there are two problems. One is that there are not many
frequencies in this analysis, and the other is that such a chopping process would
introduce Gibbs phenomenon. Instead, one goes through a process that involves
linear combinations of frequencies.
This consists of a step of “quantization” or rounding off, followed by an

invertible packaging step that will not concern us. Part of the input to the JPEG
process is a quality parameter q with 1 ≤ q ≤ 100. This parameter is converted
to another number α by the formula

α =

( 50
q if 1 ≤ q ≤ 50,

2− 50
q if 50 ≤ q ≤ 100.

Data on human perception leads to the definition of a matrix Q with rows and
columns numbered from 0 to 7 and given by38

Q =













16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99













.

In the quantizing step, we replace the 64 real numbers F(u, v) by the 64 integers
round

°
F(u, v)/(αQ(u, v))

¢
, where “round” refers to the nearest integer. The

38The exact matrix appears in the JPEG standard as a matter of information, not as a requirement.
The article by Wallace in the Selected References includes an example of what happens to some
given data when this matrix is used and α equals 1.
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effect of this step is to replace all of the numbers F(u, v) by integers, most of
which are 0. Instead of recording each zero, the algorithm records the number of
zeros. It is here that space is saved. After the invertible packaging step, the data
can be saved.
For the reconstruction algorithm one reverses the steps—unpackaging, un-

quantizing (i.e., multiplication of entries by αQ(u, v)), and inversion of the
discrete cosine transform.
For color images the main difference with the black-and-white case is that

the functions in question have values that are 3-component vectors rather than
real numbers. The three components could correspond to the red, green, and blue
components, but it is customary to use certain linear combinationsof these instead.
These are called luminance Y , blue chrominance Cb, and red chrominance Cr .
The relationship is given by39

√ Y
Cb
Cr

!

=

√ 0.29900 0.58700 0.11400
−0.16874 −0.33126 0.50000
0.50000 −0.41869 −0.08131

!√ R
G
B

!

.

Then one goes through the same steps as above, using suitable matrices Q for
each component. The matrix Q for the luminance is the one given above, but the
matrices Q for the chrominance components are different.
The ingredients for JPEG 2000 are based on those for JPEG but are more

complicated. The distinction between black-and-white as involving scalar-valued
functions and color as involving vector-valued functions persists, and in the
latter case one still uses luminance, blue chrominance, and red chrominance.
The processing involves decomposition, compression, and reconstruction just
as before, but there is also a step of preprocessing. As before, we ignore the
packaging step, which is more complicated than before.
The preprocessing step consists first of a decision about how to partition the

input image into rectangular and nonoverlapping tiles (except possibly for the
tiles at the image borders). These can be as large as the original image itself or
as small as a single pixel. The various tiles are processed independently. There
are other aspects to the preprocessing, but we ignore them.
For the decomposition a discretewavelet transform is used, the same transform

in each variable. As was mentioned earlier, orthogonal wavelets are not suitable
in the wavelet transform for a visual image. Instead, biorthogonal wavelets are
used. These have different scaling functions and wavelets for the decomposition
and reconstruction stages. Thinking in terms of the wavelet transform as given by
filters, one speaks of using a pair of filter banks (one for decomposition and one
for reconstruction) rather than just one. The two that are mentioned in the article
by Rabbani and Joshi are the Cohen–Daubechies–Feauveau 5/3 biorthogonal

39An adjustment is made to force the chrominance components to be ∏ 0, but we omit this part.
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wavelet40 and the Cohen–Daubechies–Feauveau 9/7 biorthogonal wavelet. To
describe either of these, one has only to give the coefficients of the two generating
functions. They are integers in the first case and are merely real numbers in the
second case. The coefficients are written down explicitly in the Rabbani–Joshi
article.
For the compression stage the idea is to drop low-pass terms beyond a certain

threshold. This is done with the aid of a “budget” for how many bits are to
be allowed and an algorithm for comparing the distortion that results from the
various choices.

BIBLIOGRAPHICAL REMARKS ABOUT CHAPTER X. In Section 1, Proposition
10.1 is taken from Chapter 3 of Debnath’s Wavelet Transforms, and Proposition
10.3 is taken from from Chapter 2 of Daubechies’s Ten Lectures on Wavelets.
Sections 2 through 10 are adapted from material in the following chapters of
books listed in the Selected References:

Section 2: Pinsky, Chapter 6.
Section 3: Daubechies, Chapter 5.
Section 4: Daubechies, Chapter 5; Hernandez–Weiss, Chapter 2.
Section 5: Daubechies, Chapter 5; Pinsky, Chapter 6.
Section 6: Daubechies, Chapters 4 and 5.
Section 7: Ahlfors, Chapter 5; Chui, Chapters 1 and 4; Daubechies,
Chapter 5; Meyer, Chapter 2.

Section 8: Chui, Chapter 4.
Section9: Daubechies, Chapter 6; Debnath, Chapter 7; Pinsky, Chapter 6.
Section 10: Daubechies, Chapter 7; Pinsky, Chapter 6.

The proof of Lemma 10.42 in Section 10 is from the note by N. D. Elkies listed in
the Selected References. The proofs of the Paley–Wiener Theorem and its lemma
in Section 10 are based on the Junior Paper of L. B. Pierce. Section 11 draws on
the above books in the Selected References, as well as the expository articles by
Austin and Brislawn and the books by Burris et al. and by Louis et al.

12. Problems

1. Find all Schwartz functions f on R for which equality holds in the inequality
of the Uncertainty Principle (Proposition 10.1). Assume that the mean values t0
and ω0 are 0.

2. Referring to the proof of the ShannonSamplingTheorem (Proposition 10.3), give
an example of a nonzero continuous function f in L2(R) such that f (k) = 0 for
every integer k and such that F f has compact support.

40Rabbani and Joshi refer to the the Cohen–Daubechies–Feauveau 5/3 biorthogonal wavelet as
the “LeGall (5,3) spline.”
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3. Theorem 10.10b limits the wavelets √ that can correspond to a given scaling
function ϕ. The form of the most general such √ allows for a periodic function
∫(y) of period 1 with |∫(y)| = 1 almost everywhere.
(a) Prove that if ϕ has compact support, then ∫(y) is a trigonometric polynomial.
(b) Prove that if ∫(y) is a trigonometric polynomial such that |∫(y)| = 1 almost

everywhere, then ∫(y) = ce2π iny for some integer n and some constant c
with |c| = 1.

4. (a) Show that if {Vj } andϕ formamultiresolutionanalysis, thenϕ# withϕ#(x) =
ϕ(−x) is a scaling function for a suitable sequence of spaces {V #j }, and
identify the corresponding spaces {V #j }. Why does it follow that V #j = Vj
if ϕ# is an integer translate of ϕ?

(b) Show that the scaling function ϕ# is an integer translate of ϕ in the cases
of the Haar wavelet, the Shannon wavelet, the Meyer wavelets, and the
Battle–Lemarié wavelets.

(c) In the case of the Daubechies wavelets of order ∏ 2, the function ϕ# is not
an integer translate of ϕ. Nevertheless, show that ϕ# arises in some way
from the same kind of construction.

5. Let K be the interval
£
− 2

3 ,
1
3
¢
, and let ϕ be the indicator function of K . Prove

that ϕ is the scaling function of a multiresolution analysis.

6. In connection with Proposition 10.38, define m0(y) = 1
2 (1+ e−4π iy).

(a) Define h(y) =
∞Q

j=1
m0(2− j y), and check that h(y) = (1−e−4π iy)/(4π iy) =

(F I[0,2])(y).
(b) Verify that the integer translates of ϕ = I[0,2] do not form an orthonormal

sequence. Conclude that hypothesis (iii) of Proposition 10.38 cannot be
weakened to the point of allowing this particular trigonometric polynomial
but still deducing that F−1h is a scaling function.

Problems 7–12 concern the Haar system of Section 2. Let ϕ be the indicator function
of [0, 1), and define ϕj,k(x) = 2 j/2ϕ(2 j x − k) as usual. The orthogonal projection
of L2(R) on the closed linear span Vm of the subset {ϕm,k}k∈Z of L

2(R) is

(Pm f )(x) =
P

k∈Z

° R
R f (y)ϕm,k(y) dy

¢
ϕm,k(x).

7. Why is Pm f meaningful for all f in L1(R)? For f in L1(R), why is Pm f
convergent to f in L1(R) as m tends to +∞?

8. Give an example of an L1 function for which Pm f does not tend to 0 in L1(R)

as m tends to −∞.
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9. Suppose that f (t) = 1 for 0 ≤ t < 1/3 and that f (t) = 0 elsewhere. Show that
lim inf
m→+∞

Pm f (1/3) < lim sup
m→+∞

Pm f (1/3), so that the Haar series of f diverges

at the point t = 1/3. (By contrast the Fourier series of a function of bounded
variation converges at every point.)

10. The Haar system of wavelets consists of the functions√j,k(x) = 2 j/2√(2 j x−k)
on R with j and k in Z. Here √(x) equals 1 for 0 ≤ x < 1

2 , equals −1 for
1
2 ≤ x < 1, and equals 0 otherwise. Prove that the nonzero restrictions to [0, 1)
of ϕ and the functions √j,k with j ∏ 0 together form an orthonormal basis of
L2([0, 1]).

11. The Haar scaling function ϕ satisfies ϕ(x) = ϕ(2x) + ϕ(2x − 1) almost
everywhere. By working with Fourier transforms, show that any function f
in L1(R) ∩ L2(R) with f (x) = f (2x) + f (2x − 1) almost everywhere equals
a multiple of I[0,1](x) almost everywhere.

12. Let8(x) = I[− 1
2 ,
1
2 )

(x). Using the orthogonality of the functions x 7→ 8(2x−k)
for k in Z, show that 8 cannot satisfy an equation

8(x) =
P

k∈Z
ak8(2x − k) a.e.

for complex constants ak such that
P

|ak |2 < ∞.
Problems 13–17 concern the polynomial used in the construction of the Meyer
wavelets in Section 6. Fix an integer m ∏ 1. Construction of the Meyer wavelet of
index m makes use of a Cm function ∫ on R such that ∫(x) = 0 for x ≤ 0, ∫(x) = 1
for x ∏ 1, ∫(y) + ∫(1− y) = 1 everywhere, and ∫(x) equals a polynomial P(x) for
0 ≤ x ≤ 1. Define a polynomial P(x) for current purposes to be “admissible” if it is
divisible by xm+1, has P(1) = 1, and has P(k)(1) = 0 for 1 ≤ k ≤ m.
13. Show that if P is usable as the polynomial in the definition of the Meyer wavelet

of index m, then P(x) is admissible.
14. Show that an admissible polynomial exists if and only if there exists an admissible

polynomial of degree ≤ 2m + 1, and in this case the admissible polynomial of
degree ≤ 2m + 1 is unique.

15. Show that an admissible polynomial P of the least possible degree necessarily
satisfies P(x)+ P(1− x) = 1 for all x . Deduce that such a polynomial is usable
as the polynomial in the definition of the Meyer wavelet of index m.

16. This problem establishes a certain formula for the alternating sum of products
of two binomial coefficients. To do so, it combines a technique in the proof of
Lemma10.35with the techniqueused in proving the “Vandermondeconvolution”

formula
nP

j=0

°n
j
¢° m
k− j

¢
=

°n+m
k

¢
for binomial coefficients, namely of recognizing

the two sides of the formula as the coefficient of xk on the two sides of the
equation (1+ x)n(1+ x)m = (1+ x)n+m .
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(a) With m as above and with p ≤ m, prove the formula

(1− z)m+1 =
pP

q=0
(−1)p−q

µ
m + 1
p − q

∂
z p−q + [z p+1],

where [z p+1] is an analytic function in a disk about z = 0 that is divisible
by z p+1.

(b) With m and p as above, prove the formula

(1− z)−(m+1) =
pP

k=0

µ
m + k
k

∂
zk + [z p+1],

where [z p+1] is another analytic function in a disk about z = 0 that is
divisible by z p+1.

(c) Taking the product of the results of (a) and (b), prove that

pP

q=0
(−1)p−q

µ
m + 1
p − q

∂µ
m + q
q

∂

equals 1 if p = 0 and equals 0 if 0 < p ≤ m.
17. Let D be the differentiation operator on polynomials in one variable. If f and g

are polynomials in x , the Leibniz rule says that

Dn( f g) =
nP

k=0

µ
n
k

∂
(Dn−k f )(Dkg).

(a) With m as above and p ≤ m, apply the Leibniz rule to compute Dp of the
polynomial

P(x) = xm+1
mP

k=0

µ
m + k
k

∂
(1− x)k .

Then evaluate at x = 1, and obtain the identity

(DpP)(1) = p!
pP

q=0
(−1)q

µ
m + 1
p − q

∂µ
m + q
q

∂
.

(b) Combine the above results to prove that the polynomial P is admissible for
index m, and conclude that P(x) is a polynomial of degree 2m + 1 that is
usable as the polynomial in the definition of the Meyer wavelet of index m.

Problems 18–19 refer to the spaces Hs(R) of Bessel potentials studied in Problems
8–12 for Chapter III. The idea is to show that theDaubechieswavelet of order N lies in
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a suitable space Hs(R) with s equal to a real number depending on N . Then one can
conclude that the Daubechies scaling function and wavelet of order N automatically
have whatever smoothness is forced on all functions in the space Hs(R).
18. Using the estimate

|(Fϕ)(y)|2 ≤
≥ 2N−1
p

πN

¥
(
p
4πN )− j for 2 j−1 ≤ |y| ≤ 2 j

fromProposition 10.43, show that the Daubechies scaling functionϕ andwavelet
√ of order N lie in Hs(R) if s < 1

4 log2(πN ).
19. DeduceCorollary 10.46 from the previous problem in combinationwith Problem

12c for Chapter III, showing that ifm is an integer∏ 0 withm < 1
4 log2(πN/4),

then the Daubechies scaling function ϕ and wavelet √ of order N are of class
Cm .




