Calculus 1, 2018/19/I., topics for Part 2 of the Final exam
Part 2 of the Final exam will consist of several exercises to solve. The exercises will be similar to those we have covered in class during the semester.

Possible topics include:

1. Logical symbols: given a statement in words, write it out with logical symbols; given a statement with logical symbols, explain what it means in words. Decide truth values.
2. Mathematical induction. Prove equalities or inequalities by induction.
3. Limit of sequences: calculate the limit of sequences (several types of sequences). The use of monotone convergence, and the sandwich rule.
4. Convergence of series: decide whether a given series converges or diverges (nth term test, ratio test, nth root test, domination test, limit comparison test, integral test, absolute convergence, Leibniz-test).
5. Power-series: decide the radius of convergence of a given power-series.
6. Sum of series: calculate the sum of a given series (geometric series, partial fractions, product series).
7. Differentiation: differentiate a given function
8. Differentiate implicitly given functions.
9. Taylor-polynomials: give the Taylor-polynomial of a certain order of a given function around a point x_{0}. Calculate error bounds.
10. L'Hospital's rule. Find limits of type $" \frac{0}{0} "$ and $" \frac{\infty}{\infty} ", ~ " 1^{\infty} "$.
11. Analysis of functions: given a function, plot its graph after determining its properties (zeroes, limits, asymptotes, monotonically increasing and decreasing parts, local maxima and minima, convexity).
12. Optimization problems: e.g. maximize the volume of a cylinder inscribed inscribed in sphere, maximize the profit of a company under given constraints, etc.
13. Functional inequalities: prove that $f(x) \leq g(x)$ by comparing derivatives.
14. Integration: find the indefinite integral (antiderivative) of a given function (integration by parts, substitution, rational functions). Solve initial value problems.
15. Definite integrals: use the Newton-Leibniz forumla
16. Improper integrals: calculating definite integrals of functions on an infinite domain, or an unbounded function on a finite domain.
17. Convergence of improper integral: decide convergence or divergence (limit comparison test, domination test, $\int_{0}^{1} \frac{1}{x^{\alpha}}, \int_{1}^{\infty} \frac{1}{x^{\alpha}}$
18. Calculate area, volume, surface area, arc-length.
19. Differentiating integral expressions
