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The aim of these notes is to present an easily accessible introduction to a
powerful method of number theory.

The punchline will be the following finite counterpart of Fermat’s Last The-
orem:

Theorem 0.1 If k is an integer, q a prime power, and q ≥ k4 + 4, then the
Fermat equation

xk + yk = zk (1)

has a nontrivial solution in the finite field Fq of order q.

This result seems to belong to algebraic geometry over finite fields: we have
an algebraic variety and we assert that it has points over Fq other than certain
“trivial” ones. In fact, we can asymptotically estimate the number of solutions
if q/k4 is large.

As we shall see, algebraic equations have little to do with the method. In-
deed, a much more general result will follow easily from the basic theory. Let
F
×
q = Fq\{0}.

Theorem 0.2 Let k be an integer, A1, A2 ⊆ Fq, li = (q − 1)/|Ai| (not neces-
sarily integers), and assume that

q ≥ k2l1l2 + 4. (2)

Then the equation

x+ y = zk (x ∈ A1, y ∈ A2, z ∈ F×q ) (3)

has at least one solution.

Theorem 0.1 follows from this result if we set A1 = A2 = {ak : a ∈ F×q .
Clearly, |Ai| = q−1

g.c.d.(k,q−1) ≥ (q − 1)/k and therefore li ≤ k in this case.
Note that in Theorem 0.2, the sets A1 and A2 are arbitrary (as long as they

are not too small compared to q). This result has a flavor of combinatorics where
the task often is to create order out of nothing (i.e., without prior structural
assumptions). Results like this one have wide applicability in combinatorial
terrain such as combinatorial number theory (to which they belong) and even
in the theory of computing.
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Notation

C: field of complex numbers

C
× = C\{0}: multiplicative group of complex numbers

Z: ring of integers

Zn = Z/nZ: ring of mod n residue classes

Fq: field of q elements where q is a prime power

(Fq,+): the additive group of Fq

F
×
q = Fq\{0}: the multiplicative group of Fq.

1 Characters

Let G be a finite abelian group of order n, written additively.
A character of G is a homomorphism χ : G→ C

× of G to the multiplicative
group of (nonzero) complex numbers:

χ(a+ b) = χ(a)χ(b) (a, b ∈ G). (4)

Clearly,
χ(a)n = χ(na) = χ(0) = 1 (a ∈ G), (5)

so the values of χ are nth roots of unity. In particular,

χ(−a) = χ(a)−1 = χ(a) (6)

where the bar indicates complex conjugation.
The principal character is defined by

χ0(a) = 1 (a ∈ G). (7)

Proposition 1.1 For any nonprincipal character χ of G,∑
a∈G

χ(a) = 0. (8)

Proof: Let b ∈ G be such that χ(b) 6= 1, and let S denote the sum on the left
hand side of equation (8). Then

χ(b) · S =
∑
a∈G

χ(b)χ(a) =
∑
a∈G

χ(b+ a) = S

hence
S(χ(b)− 1) = 0,

proving the claim. �
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Corollary 1.2 (First orthogonality relation for characters) Let χ and ψ
be two characters of G. Then∑

a∈G
χ(a)ψ(a) =

{
n if χ = ψ
0 otherwise. (9)

Proof: The case χ = ψ follows from equation (6). If χ 6= ψ, then χψ is a
nonprincipal character, hence Proposition 1.1 applies. �

As observed in the last proof, the pointwise product of the characters χ and
ψ is a character again:

(χψ)(a) := χ(a)ψ(a) (10)

Let Ĝ denote the set of characters. It is easy to see that this set forms an
abelian group under operation (10). Ĝ is called the dual group of G.

Proposition 1.3 Let ω be a primitive nth root of unity. Then the map χj :
Zn → C

× defined by
χj(a) := ωja (11)

is a character of Zn for every j ∈ Z. Moreover,
(a) χj = χk if and only if j ≡ kmod n;
(b) χj = χj1;
(c) Ẑn = {χ0, . . . , χn−1}.
(d) Consequently, Ẑn ∼= Zn.

Proof: (a) and (b) are straightforward. Let now χ be an arbitrary character;
then χ(1) = ωj for some j, 0 ≤ j ≤ n − 1 by eqn. (5). If follows that χ = χj .
Now, (d) is immediate. �

Proposition 1.4 If G is a direct sum: G = H1 ⊕H2, and ϕi : Hi → C
× is a

character of Hi (i = 1, 2), then χ = ϕ1 ⊕ ϕ2, defined by

χ(h1, h2) := ϕ1(h1) · ϕ2(h2), (12)

is a character of G. Moreover, all characters of G are of this form. Conse-
quently,

Ĝ ∼= Ĥ1 ⊕ Ĥ2 (13)

Proof: The first statement is clear, and it is easy to verify that the map
Ĥ1 ⊕ Ĥ2 → Ĝ defined by (12) is injective. Let now χ ∈ Ĝ. The restriction
ϕi = χ|Hi is clearly a character of Hi, and it is easy to verify that χ = ϕ1⊕ϕ2.
�

Corollary 1.5 G ∼= Ĝ.
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Proof: G ∼= Zn1⊕· · ·⊕Znk , hence Ĝ ∼= Ẑn1⊕· · ·⊕ Ẑnk ∼= G using the previous
two propositions. �

We remark that there is no natural isomorphism between G and Ĝ; even for
cyclic groups, the isomorphism selected depends on the arbitrary choice of ω.

The consequent isomorphism G ∼= ̂̂
G is, however, natural:

Corollary 1.6 G can be identified with ̂̂
G in the following natural way: for

a ∈ G, define ã ∈ ̂̂G by
ã(χ) = χ(a) (χ ∈ Ĝ). (14)

The map a 7→ ã is an isomorphism of G and ̂̂
G.

Proof: Left to the reader. �
Let CG denote the space of functions f : G → C. This is an n-dimensional

linear space over C. We introduce an inner product over this space:

(f, g) =
1
n

∑
a∈G

f(a)g(a) (f, g ∈ CG). (15)

Theorem 1.7 Ĝ forms an orthonormal basis in CG.

Proof: Orthonormality follows from Cor. 1.2. Completeness follows from
Cor. 1.5 which implies that |Ĝ| = n = dim(CG). �

Let χ0, . . . , χn−1 be the characters of G = {a0, . . . , an−1}. The n×n matrix

C = (χi(aj)) (16)

is the character table of G.

Corollary 1.8 The matrix A = 1√
n
C is unitary, i. e., AA∗ = A∗A = I. (A∗ is

the conjugate transpose of A; I is the n× n identity matrix.)

Proof: A∗A = I follows immediately from Theorem 1.7 in view of the for-
mula (15). �

Corollary 1.9 (Second orthogonality relation for characters) Let a, b ∈
G. Then ∑

χ∈Ĝ

χ(a)χ(b) =
{
n if a = b
0 otherwise. (17)

First proof: This is a restatement of the fact that AA∗ = I in Corollary 1.8. �

Second proof: In view of the identification of G and ̂̂
G (Cor. 1.6), Cor. 1.9 is

a restatement of Cor. 1.2 for the abelian group Ĝ in place of G. �
We state a special case separately. The following is the dual of Proposi-

tion 1.1.
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Corollary 1.10 For any non-zero element a ∈ G,∑
χ∈Ĝ

χ(a) = 0. �

2 Fourier Transform

Corollary 2.1 Any function f ∈ CG can be written as a linear combination of
characters:

f =
∑
χ∈Ĝ

cχχ. (18)

Such a linear combination is also called a trigonometric sum since f(a) is
expressed as a combination of nth roots of unity. The coefficients cχ are called
the Fourier coefficients and are given by the formula

cχ = (χ, f). (19)

Proof: Expansion (18) exists by Theorem 1.7. The inner product (χ, f) is
equal to cχ by orthonormality. �

The function f̂ : Ĝ→ C, defined by

f̂(χ) = ncχ =
∑
a∈G

χ(a)f(a) (χ ∈ Ĝ), (20)

is called the Fourier Transform of f . This transformation is easily inverted:
using equations (18) and (20), we see that

f =
∑
χ∈Ĝ

cχχ =
∑
χ∈Ĝ

1
n
f̂(χ)χ,

hence the formula for the Inverse Fourier Transform is

f(a) =
1
n

∑
χ∈Ĝ

f̂(χ)χ(−a) (a ∈ G). (21)

We derive a simple consequence.
Let δ ∈ CG be defined by

δ(a) =
{

1 if a = 0
0 if a 6= 0 (a ∈ G).

Corollary 2.2 (a)
δ̂(χ) = 1 (χ ∈ Ĝ). (22)
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(b)

δ =
1
n

∑
χ∈Ĝ

χ. (23)

Proof: (a) follows from eqn. (20). (b) follows from eqn. (21). (Note that (b)
also follows from the second orthogonality relation (17) with a = 0.) �

Applying formula (15) to Ĝ we obtain the inner product

(f, g) =
1
n

∑
χ∈Ĝ

f(χ)g(χ) (f, g ∈ CĜ) (24)

over the space CĜ. Corollary 1.8 tells us that Fourier transformation is
√
n

times a unitary transformation between CG and CĜ:

Theorem 2.3 (Plancherel formula) For any f, g ∈ CG,

(f̂ , ĝ) = n(f, g). (25)

First proof: Using the notation introduced before Cor. 1.8, let

f = (f(a0), . . . , f(an−1)), g = (g(a0), . . . , g(an−1)),
f̂ = (f̂(χ0), . . . , f̂(χn−1)), ĝ = (ĝ(χ0), . . . , ĝ(χn−1))

As in (16), let C = (χi(aj)) be the character table of G. Then f̂ = fC,
ĝ = gC, and

(f̂ , ĝ) =
1
n
· f̂ · ĝ∗ =

1
n

fCC∗g∗ = f · g∗ = n · (f, g). (26)

(As before, ∗ denotes conjugate transpose.) We made use of the fact that
C =

√
nA, hence CC∗ = nAA∗ = nI. (Cor. 1.8). �

Second proof: The map f 7→ f̂ is clearly linear. Therefore it suffices to prove
(25) for elements f, g of a basis of CG. The functions of δa defined by

δa(b) = δ(b− a) (b ∈ G) (27)

(the characteristic vectors of the singletons) form a basis of CG. Clearly,

δ̂a(χ) = χ(a), (28)

hence by the second orthogonality relation,

(δ̂a, δ̂b) =
1
n

∑
χ∈Ĝ

χ(a)χ(b) =
{

1 if a = b
0 otherwise

On the other hand, obviously,

(δa, δb) =
{

1/n if a = b
0 otherwise.

}
=

1
n

(δ̂a, δ̂b). �

Let ‖f‖ =
√

(f, f).
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Corollary 2.4 ‖f̂‖ =
√
n‖f‖. �

The characteristic function of a set A ⊆ G is the function fA ∈ CG defined by

fA(a) =
{

1 if a ∈ A
0 otherwise. (29)

Proposition 2.5 For A,B ⊆ G,

(fA, fB) =
1
n
|A ∩B|. (30)

In particular, √
n ‖fA‖ =

√
|A|. (31)

Proof: Evident. �

We note that
f̂A(χ0) = |A|. (32)

This is n-times the principal Fourier coefficient of fA. The remaining Fourier
coefficients give important “randomness” information on the set A. Let

Φ(A) = max{|f̂A(χ)| : χ ∈ Ĝ, χ 6= χ0}.

The smaller Φ(A), the “smoother,” more “random looking” the set A is. We
shall estimate Φ(A) for specific “smooth” sets in Sections 5 and 6. Here we give
a lower bound which holds for every set A ⊆ G.

Proposition 2.6 For every A ⊆ G, if |A| ≤ n/2, then

Φ(A) ≥
√
|A|/2. (33)

Proof: By Cor. 2.4 and eqn. (31) we have:

‖f̂A‖2 = n‖fA‖2 = |A|.

On the other hand,

n‖f̂A‖2 =
∑
χ∈Ĝ

|f̂A(χ)|2 ≤ (f̂A(χ0))2 + (n− 1)Φ(A)2 = |A|2 + (n− 1)Φ(A)2.

Consequently,

|A|2 + (n− 1)Φ(A)2 ≥ n|A|; Φ(A)2 ≥ (n− |A|)|A|
n− 1

≥ |A|
2
.

�
The “smooth” sets will be those which come close to this bound. The as-

sumption |A| ≤ n/2 is justified by the following exercise.
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Exercise 2.7 Prove: Φ(A) = Φ(G\A) for every A ⊆ G.

For A ⊆ G and k ∈ Z, let kA = {ka : a ∈ A}.

Exercise 2.8 Prove: If g.c.d.(k, n) = 1 then Φ(kA) = Φ(A) for every A ⊆ G.

In particular Φ(−A) = Φ(A).
More generally, Φ is invariant under automorphism of G. Let Aut G denote

the automorphism group of G.

Exercise 2.9 Prove: if α ∈ Aut G then Φ(A) = Φ(αA) for every A ⊆ G.

Exercise 2.10 Prove: Φ(A+ a) = Φ(A) for every a ∈ G.
(Here A+ a = {u+ a : u ∈ A}.)

3 Equations over finite abelian groups

We shall consider the following general problem: Let A1, . . . , Ak ⊆ G and let a
be a fixed element of G. Estimate the number of solutions of the equation

x1 + · · ·+ xk = a (xi ∈ Ai, i = 1, . . . , k). (34)

In particular, decide whether or not a solution exists.
Let |Ai| = mi. Assume for a moment that while the sets Ai are fixed,

the element a ∈ G is selected at random. This makes the expected number of
solutions equal to

m1 · · ·mk

n
(35)

the numerator being the number of k-tuples from A1 × · · · × Ak, and 1
n being

the chance that a random element a ∈ G happens to be equal to
∑k
i=1 xi for

fixed xi ∈ G.
It is remarkable that under fairly general circumstances, the quantitym1 · · ·mk/n

will be close to the actual number of solutions for every a ∈ G.
We shall give a sufficient condition for this to happen. First of all we observe

that the number of solutions will not change if we replace Ak by Ak−a = {u−a :
u ∈ Ak} and set the right hand side in eqn. (34) to zero. So it suffices to consider
the homogeneous equation

x1 + · · ·+ xk = 0 (xi ∈ Ai, i = 1, . . . , k). (36)

Let N denote the number of solutions of eqn. (36).
We first describe an explicit formula for N .
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Theorem 3.1. The number of solutions of eqn. (36) is

N =
m1 · · ·mk

n
+R, (37)

where mi = |Ai| and

R =
1
n

∑
χ ∈ Ĝ
χ 6= χ0

k∏
i=1

f̂Ai(χ). (38)

Proof: The number of solutions is clearly

N =
∑

(x1, . . . , xn)
xi ∈ Ai

δ(x1 + · · ·+ xn) =
1
n

∑
χ∈Ĝ

∑
(x1, . . . , xn)
xi ∈ Ai

χ(x1 + · · ·+ xk)

(we have used eqn. (23)). Since χ(x1 + · · ·+xn) = χ(x1) · · ·χ(xk), the rightmost
sum factors as

∏k
i=1(

∑
xi∈Ai χ(xi)). We recognize the term in the parentheses

as f̂Ai(χ). In summary,

N =
1
n

∑
χ∈Ĝ

k∏
i=1

f̂Ai(χ).

We separate out the term corresponding to χ0:

N =
1
n

k∏
i=1

f̂Ai(χ0) +R.

By eqn. (32), f̂Ai(χ0) = mi. This observation concludes the proof. �
The value of this formula depends on our ability to estimate the “error-term”

R. In order to be able to conclude that equation (36) has a solution at all, we
need to prove that |R| < (m1 · · ·mk)/n.

The art of estimating |R| and variations of it constitute the method of
trigonometric sums.

4 The Cauchy-Schwarz trick

In the case k = 3, one can give a strong explicit upper bound on R under
surprisingly general circumstances. It will follow from the estimate that if at
least one of the sets Ai is smooth (all non-principal Fourier coefficients of Ai
are small) and the sets are not too small, then equation (36) has approximately
(m1 · · ·mk)/n solutions. Along the way, we shall experience a little Cauchy-
Schwarz magic.
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Theorem 4.1. Let A1, A2, A3 ⊆ G, a ∈ G, and let N denote the number of
solutions of the equation

x1 + x2 + x3 = a (xi ∈ Ai, i = 1, 2, 3). (39)

Then ∣∣∣∣N − |A1||A2||A3|
n

∣∣∣∣ < Φ(A3)
√
|A1||A2|. (40)

Proof: Applying a translation by−a toA3 as mentioned in Section 3, transform
eqn. (40) into its homogeneous version (a = 0). By Exercise 2.10, inequality (40)
is invariant under this transformation, so it suffices to consider the homogeneous
case.

We thus have to estimate |R| where R is defined by eqn. (38), k = 3:

R =
1
n

∑
χ ∈ Ĝ
χ 6= χ0

f̂A1(χ)f̂A2(χ)f̂A3(χ) (41)

It follows that

|R| ≤ 1
n

∑
χ ∈ Ĝ
χ 6= χ0

|f̂A1(χ)| · |f̂A2(χ)| · |f̂A3(χ)|

≤ 1
nΦ(A3)

∑
χ∈Ĝ

|f̂A1(χ)| · |f̂A2(χ)|
(42)

By the Cauchy-Schwarz inequality, the right hand side can now be bounded as∑
χ∈Ĝ

|f̂A1(χ)| · |f̂A2(χ)| ≤ ((
∑
χ∈Ĝ

|f̂A1(χ)|2)(
∑
χ∈Ĝ

|f̂A2(χ)|2))1/2. (43)

By definition (24) and Cor. 2.4, the right hand side here is

(n‖f̂A1‖2n‖f̂A2‖2)1/2 = n2‖fA1‖ · ‖fA2‖ = n
√
|A1||A2|,

using Corollary 2.4 and eqn. (31). Substituting back into (42), we obtain the
desired bound. �

Corollary 4.2. If
Φ(A3)
|A3|

<

√
|A1||A2|
n

(44)

then equation (39) has at least one solution.

Proof: Inequality (44) is a restatement of the condition that |R| < m1m2m3
n . �

The value of this result depends on our ability to bound Φ(A) for various
sets A ⊆ G.

Our next objective is to show that “smooth” sets abound.
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5 Almost every set is smooth1

Recall that we are especially interested in sets for which all the non-principal
Fourier coefficients are small. We referred to such sets as “smooth.” In this
section we show that almost all t-subsets of a finite abelian group G are smooth.

We have already seen (Proposition 2.6) that, for all sets A ⊆ G, if |A| ≤ n/2,
then √

|A|/2 ≤ Φ(A) ≤ |A|.

This is quite a large range! However, we will now show that, when A is
randomly selected , Φ(A) almost always lies near the bottom of this interval; for
almost all sets A of size t, we have Φ(A) = O(

√
t lnn) (see Theorem 5.14).

Some familiarity with finite probability spaces will required for this section
(see e.g. L.B., “Finite Probability Spaces” Lecture Notes). In particular, a key
tool is Chernoff’s bound, which we state here without proof (see e.g. Alon,
Spencer, Erdős pp. 83–85, or L.B. Finite Probability Spaces, Theorem 5.4).

First, we review some basic terminology. A finite probability space is a pair
(Ω, P ) where the nonempty finite set Ω is the sample space, thought of as the set
of possible outcomes of an experiment. The probability distribution P : Ω→ R

must satisfy (∀x ∈ Ω) (P (x) > 0) and
∑
x∈Ω P (x) = 1.

An event is a subset A ⊆ Ω. We define P (A) =
∑
x∈Ω P (x). Singletons {x}

are called elementary events.
A random variable is a function ξ : Ω → R

n. For a “real-valued” random
variable, we have n = 1. We shall treat “complex-valued” random variables
ξ : Ω → C as 2-dimensional random variables ξ : Ω → R

2. The expected value
of ξ is defined as E (ξ) =

∑
x∈Ω ξ(x)P (x).

For concepts of independence, we refer to the lecture notes cited above, or
any text on probability. Later in this section, we give a self-contained introduc-
tion to a class of discrete stochastic processes called martingales.

Theorem 5.1 (Chernoff) Let ξi be real-valued independent random variables
satisfying |ξi| ≤ 1 and E(ξi) = 0. Let η =

∑n
i=1 ξi. Then for any a > 0,

Pr (η ≥ a) < e−a
2/2n

and
Pr (|η| ≥ a) < 2e−a

2/2n.

Theorem 5.2 Let ε > 0. For all but a O(n−ε) fraction of subsets A ⊆ G,

Φ(A) <
√

(1 + ε) n ln(n).

1This chapter was contributed by T. Hayes in June 2002.
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Proof: As before, let G = {a0, . . . , an−1}. Choose a random subset A ⊆ G by
independently flipping a fair coin to decide whether to include each element ai.

Let ζi be the ±1-valued indicator variable for the event ai ∈ A, i. e.,

ζi =
{

1 if ai ∈ A
−1 otherwise.

Let χ ∈ Ĝ be any non-principal character of G. Let ηχ =
∑
ai∈A χ(ai) =∑n−1

i=0
ζi+1

2 χ(ai). By Proposition 1.1, this can be rewritten as

2ηχ =
n−1∑
i=0

ζiχ(ai).

Now, the summands ζiχ(ai) are independent random variables satisfying
|ζiχ(ai)| ≤ 1 and E(ζiχ(ai)) = 0, but unfortunately, since they are complex-
valued, Chernoff’s bound cannot be applied directly. Instead, we look at the
real and imaginary parts of ζiχ(ai).

Let ξi = ζiRe(χ(ai)). Let ν =
∑n−1
i=0 ξi. Then, by Chernoff’s bound,

Pr (|ν| ≥ a) < 2e−a
2/2n.

Similarly, let µ =
∑n
i=1 ζiIm(χ(ai)).

Pr (|µ| ≥ a) < 2e−a
2/2n.

Since 2ηχ = ν + µi, the event {|ηχ| ≥ a} is contained in the union {|ν| ≥
a
√

2} ∪ {|µ| ≥ a
√

2}. By the union bound, this event has probability at most
4e−a

2/n.
The event {Φ(A) ≥ a} is contained in the union ∪n−1

i=1 {ηχi > a}. Thus, its
probability is at most 4(n−1)e−a

2/n. When a ≥
√

(1 + ε)n lnn, this probability
is O(n−ε). �

In Theorem 5.2, we assumed that A was a randomly chosen subset of G, and
we know that randomly chosen subsets almost always have size approximately
n/2. We would also like to show that most subsets of a given size are also
smooth. To do this, we will need a strengthened version of Chernoff’s bounds
due to Azuma (cf. Alon, Spencer, Erdős [pp. 83–85, 233–240], or Azuma’s
original paper). Azuma’s inequality applies to random variables which are not
independent, but instead satisfy a weaker condition, that of being a “martin-
gale.”

Definition 5.3 Let ξ : Ω → R
n, ζ : Ω → R

m be two random variables defined
over the same finite probability space. The conditional expectation of ζ with
respect to ξ, denoted E (ζ | ξ), is the unique random variable which is constant
on atoms of ξ, and whose value on an atom A of ξ is E(ζϑA)/Pr (A), where ϑA
denotes the indicator variable of A, i. e.,

ϑA(x) =
{

1 if x ∈ A
0 otherwise.
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The atoms of ξ are the non-empty preimage sets ξ−1(y), y ∈ Rm. (Note that
these form a partition of Ω.)

Note 5.4 Observe that η = E (ζ | ξ) is a random variable. The value η(x)
depends only on ξ(x), and not on the specific elementary event x.

Exercise 5.5 Prove that E (η) = E (ζ), where as above, η = E (ζ | ξ).

Exercise 5.6 Suppose that an elementary event x ∈ Ω is drawn at random.
You are told ξ(x), and asked to predict ζ(x). Show that, to minimize your
expected error, you should answer E (ζ | ξ) (x). In this sense, E (ζ | ξ) is the
best guess for the value of ζ given the value of ξ.

Exercise 5.7 Let ζ, ξ1, ξ2 : Ω → R be random variables. The conditional
expectation E (ζ | ξ1, ξ2) is defined to equal E (ζ | (ξ1, ξ2)). Check that this
also equals E (E (ζ | ξ1) | ξ2). E (ζ | ξ1, ξ2) is a “best” guess for ζ given the
values for both ξ1 and ξ2. Extend this to ζ, ξ1, . . . , ξk.

After these introductory definitions, we come to the central concept.

Definition 5.8 A sequence of random variables σ0, σ1, . . . , σn, . . . is called a
martingale if, for every i ≥ 1, E (σi | σ0, . . . , σi−1) = σi−1.

Example 5.9 If ξ1, . . . , ξn are independent random variables satisfying E(ξi) =
0, then the partial sums

σi =
i∑

j=1

ξj

form a martingale. (By convention, the empty sum σ0 = 0.)

Example 5.10 Consider the following gambling proposition. A player, P , is
allowed to flip a fair coin up to 10 times, but may stop earlier. If heads comes
up at least 2 more times than tails, the player wins $100, otherwise, he pays
$30. Let µ be the amount which P wins (the random variable µ is thus defined
in terms of P ’s strategy!)

Obviously, P ’s best strategy is to stop flipping iff heads has already come
up two more times than tails. (What is E(µ) in this case?)

As the game progresses, P ’s expected winnings fluctuate based on the out-
comes of the coin flips. Let σi be P ’s expected winnings after the coin has been
flipped i times. Obviously, σi is a random variable, determined by the first i
coin flips. Formally, σi is defined as

σi = E (µ | ξ1, . . . , ξi) ,

where ξi are indicator variables for the coin flips.

13



Exercise 5.11 Show that σ0 = E(µ) and σ10 = µ. Show that σ0, σ1, . . . , σ10

is a martingale (regardless of P ’s strategy!) Hint: For a given initial sequence
ξ1, . . . , ξi (for which P would not already stop) one way to compute σi would
be to compute σi+1 for each of the two possible values of ξi+1, then average.

Exercise 5.12 Suppose that σ0, . . . , σn, . . . : Ω → C satisfies the martingale
condition, for every i ≥ 1 E (σi | σ0, . . . , σi−1) = σi−1 (a complex-valued mar-
tingale). Show that the sequences Re(σ0), . . . ,Re(σn), . . . : Ω→ R and
Im(σ0), . . . , Im(σn), . . . : Ω→ R are real-valued martingales.

Theorem 5.13 (K. Azuma) Let σ0, . . . , σn, . . . be a real-valued martingale
such that for every i, |σi − σi−1| ≤ 1. Then

Pr (|σn − σ0| ≥ a) < 2e−a
2/2n. (45)

Theorem 5.14 (T. Hayes) Let ε > 0. Let k ≤ n/2. For all but an O(n−ε)
fraction of subsets A ⊆ G such that |A| = t,

Φ(A) < 4
√

(1 + ε) |A| ln(n).

Proof: Let A be selected uniformly at random from all t-subsets of G. As in
the proof of Theorem 5.2, let ζi be the indicator variable for the event ai ∈ A.
In this case, ζ0, . . . , ζn−1 are far from independent; for instance, they always
satisfy

∑n−1
i=0 ζi = t.

Let χ be a non-principal character, and define ηχ =
∑
ai∈A χ(ai) =

∑n
i=0 ζiχ(ai).

Suppose we look at the ζi one at a time, and, after each one, make the best
prediction we can about the value of ηχ. In other words, let σ0 = E (ηχ) = 0,
and, for 1 ≤ i ≤ n, let σi = E (ηχ | ζ0, . . . , ζi−1). Note that, since ζ0, . . . , ζi−1

determine ηχ, σn = ηχ.
Claim: σ0, . . . , σn is a martingale, and for 1 ≤ i ≤ n, |σi − σi−1| ≤ 2.

The formal proof of this claim is an exercise in conditional probabilities, and
is left to the reader. The intuition is: by definition, σi is the unique best predic-
tion of ηχ given ζ0, . . . , ζi−1. But σi+1 would be the best possible prediction if
we knew ζi as well. So another best prediction would be E (σi+1 | ζ0, . . . , ζi−1),
which equals E (σi+1 | σ0, . . . , σi). This proves the martingale condition.

To see that |σi − σi−1| ≤ 2, observe that substituting one element of A
for another can change ηχ by at most two. Therefore, learning whether any
particular element is included or excluded cannot change the expectation of ηχ
by more than two.

By Exercise 5.12, the real and imaginary parts of σ0, . . . , σn are martingales,
which clearly satisfy the same distance bound |Re(σi) − Re(σi−1)| ≤ 2. By
Azuma’s Inequality applied to Re(σn)/2 (and since σ0 = 0), we have

Pr
(
|Re(σn)| ≥ a/

√
2
)
< 2e−a

2/4n,

and similarly,
Pr
(
|Im(σn)| ≥ a/

√
2
)
< 2e−a

2/4n.

14



From this it follows that

Pr (|ηχ| ≥ a) = Pr (|σn| ≥ a) < 4e−a
2/4.

By the usual union bound, this gives us

Pr (|Φ(A)| ≥ a) < 4(n− 1)e−a
2/4n,

which is O(n−ε) when a ≥ 2
√

(1 + ε)n lnn. �

Remark: The constants appearing in Theorems 5.2 and 5.14 can be improved
by a factor of

√
2, using an extension of Azuma’s Inequality to higher dimensions,

due to T. Hayes. He showed that for Rn-valued martingales σ0, . . . , σn satisfying
|σi − σi−1| ≤ 1, the inequality

Pr (|σn − σ0| ≥ a) < 2e2e−a
2/2n

holds. Using the isometry between C and R2 as Euclidean spaces, this can also
be applied to complex-valued martingales.

6 Gauss sums and the Fourier coefficients of cy-
clotomic classes

Fourier transforms in this section will be taken over G = (Fq,+), the additive
group of the field of the order q. Our aim is to estimate the Fourier coefficients
of sets of the form

H(q, k) = {ak : a ∈ F×q } (46)

and related sets. We shall see that all these sets are “smooth” (all Fourier
coefficients are small) (see Theorem 6.8).

Exercise 6.1. Prove: If q = ps, p prime, then (Fq,+) ∼= Zp×· · ·×Zp (s times).

Exercise 6.2. Let χ1 be a nonprincipal character of (Fq,+). For a, b ∈ Fq, set

χa(b) = χ1(ab). (47)

Prove:

(i) For every a ∈ Fq, χa is a character of (Fq,+).

(ii) For a 6= b, χa 6= χb.

(iii) Every character of (Fq,+) is of the form χa for some a ∈ Fq.

(Observe that this notation is compatible with our previous notation χ0 for the
principal character.)

Exercise 6.3. Prove: if A ⊆ Fq and a, b ∈ Fq, a 6= 0, then Φ(aA+ b) = Φ(A).
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Exercise 6.4. Prove:

(i) H(q, k) (defined by formula (46)) is a subgroup of the multiplicative group
F
×
q .

(ii) If
d = g.c.d.(q − 1, k) then H(q, k) = H(q, d) (48)

(iii) Every subgroup of F×q is of the form H(q, k) for some k|q − 1.

(iv) If k|q − 1 then H(q, k) is the unique subgroup of F×q of order (q − 1)/k.

(Hint: Use the fact that F×q is a cyclic group.)
The cosets of the subgroups of the multiplicative group F×q are called cyclo-

tomic classes. By the previous exercise these sets are of the form

b ·H(q, k) = {bak : a ∈ F×q } (49)

form some b ∈ F×q and k|q− 1. By Ex.6.3, the parameter of Φ of such a set does
not depend on b.

One of the most fascinating features of the theory of characters is the inter-
play between the additive and multiplicative structures of finite fields captured
by the concept of Gauss sums.

Definition. An additive character of Fq is a character of the additive group
(Fq,+). For such a character χ we have for all a, b ∈ Fq:

χ(a+ b) = χ(a)χ(b); (50)

χ(0) = 1; (51)

χ(−a) = χ(a). (52)

A multiplicative character of Fq is a character ψ of the multiplicative group
F
×
q , extended to all of Fq by setting ψ(0) = 0. For such a character we have for

all a, b ∈ Fq:
ψ(ab) = ψ(a)ψ(b); (53)

ψ(1) = 1; (54)

ψ(a−1) = ψ(a). (55)

Example. For p a prime, the Legendre symbol

ψ(a) =
(
a

p

)
is a multiplicative character of Fp.
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Definition. Let χ be an additive character and ψ a multiplicative character of
Fq. The sum

S(χ, ψ) =
∑
a∈Fq

χ(a)ψ(a) (56)

is called a Gauss sum over Fq.

Exercise 6.5. Prove:

(i) S(χ0, ψ0) = q − 1, where χ0 and ψ0 are the principal additive and multi-
plicative characters, resp., of Fq.

(ii) S(χ0, ψ) = 0 if ψ 6= ψ0.

(iii) S(χ, ψ0) = −1 if χ 6= χ0.

In the cases not covered by this exercise, a result of startling simplicity and
uniformity holds.

Theorem 6.6. If neither χ nor ψ is principal, then

|S(χ, ψ)| = √q. (57)

Proof:
|S(χ, ψ)|2 = S(χ, ψ)S(χ, ψ)

=
∑
a∈Fq

∑
b∈Fq χ(a)χ(b)ψ(a)ψ(b)

=
∑
a∈F×q

∑
b∈F×q χ(b− a)ψ(ba−1)

Let c = ba−1. Then our expression turns into∑
c∈F×q

∑
a∈F×q

χ(ac− a)ψ(c) =
∑
c∈F×q

ψ(c)
∑
a∈F×q

χ(a(c− 1)). (58)

For c 6= 1, we have (by Prop. 1.1)∑
a∈Fq

χ(a(c− 1)) = 0. (59)

Consequently, ∑
a∈F×q

χ(a(c− 1)) = −1. (60)

For c = 1, this sum is q − 1. Substituting back into eqn. (58), we obtain

|S(χ, ψ)|2 = ψ(1) · (q − 1)−
∑

c ∈ F×q
c 6= 1

ψ(c) = ψ(1) · q −
∑
c∈F×q

ψ(c).
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The last term is zero again by Prop. 1.1, hence

|S(χ, ψ)|2 = ψ(1) · q = q. �

The following simple sieve idea links the Fourier coefficients of the cyclotomic
classes to Gaussian sums.

Lemma 6.7. Let k|q−1 and let A be the (unique) subgroup of index k in F×q . Let
ψ0, . . . , ψk−1 be the characters of F×q /A. For a ∈ F×q , define ψi(a) := ψi(aA) to
make ψi a multiplicative character of Fq. With this notation, for every additive
character χ, we have

f̂A(χ) =
1
k

k−1∑
i=0

S(χ, ψi). (61)

Proof:
k−1∑
i=0

S(χ, ψi) =
∑
a∈F×q

χ(a)
k−1∑
i=0

ψi(a). (62)

By Corollary 1.10,
∑k−1
i=0 ψi(a) = 0 unless a ∈ A, in which case

∑k−1
i=0 ψi(a) = k.

From (62) we thus obtain

k−1∑
i=0

S(χ, ψi) = k
∑
a∈A

χ(a) = kf̂A(χ). �

The estimate promised at the beginning of this section now follows.

Theorem 6.8. Let A be a cyclotomic class in Fq. Then

Φ(A) <
√
q.

.

Proof: By Exercises 6.3 and 6.4, we may assume that A = H(q, k) for some
k|q − 1. Then A is a subgroup of index k in F×q . Let ψ0, . . . , ψk−1 be the
multiplicative characters of the factor group F×q /A. We shall regard ψi as mul-
tiplicative characters of Fq through the map F×q → F

×
q /A → C

×. For every
nonprincipal additive character χ we have by Lemma 6.7:

|f̂A(χ)| ≤ 1
k

k−1∑
i=0

|S(χ, ψi)| ≤
1
k

(1 + (k − 1)
√
q) <

√
q.

(We used Exercise 6.5 (iii) and Theorem 6.6.) �
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Remark 6.1 As k
′

:= gcd(k, q−1) increases, A becomes smaller (|A| = (q − 1)/k
′
),

so one might expect Φ(A) to become smaller. This is not reflected in Theorem
6.8; indeed, for k

′
>
√
q we have |A| < √q and so the bound Φ(A) <

√
q be-

comes weaker than even the trivial upper bound Φ(A) ≤ |A|. In fact, I believe,
but have not checked, that for cyclotomic sets A of size |A| = o(

√
q), the trivial

bound Φ(A) ≤ |A| is rather tight.
Compare this with Theorem 5.14, which says that for a random set A of

size t, we have almost surely Φ(A) = O(
√
t log n). So while arguments involving

random sets of size greater than c
√
n can be “derandomized” using cyclotomic

sets, this method does not seem to work for |A| = o(
√
n).

7 Fermat’s Last Theorem over finite fields

In order to prove Theorem 0.2, all we have to do is to combine Theorem 4.1 (the
explicit estimate of the error term for the number of solutions) with Theorem
6.8 (the estimate of the Φ parameter for cyclotomic classes). We summarize the
conclusion.

Theorem 7.1. Let k|q − 1 be an integer, A1 A2 ⊆ Fq, and let N denote the
number of solutions of the equation

x+ y = zk (x ∈ A1, y ∈ A2, z ∈ F×q ).

Then ∣∣∣∣N − |A1||A2|(q − 1)
q

∣∣∣∣ < k
√
|A1||A2|q. (63)

Proof: Let A3 = {ak : a ∈ F×q } = H(q, k), and let N ′ denote the number of
solutions of the equation

x+ y = u (x ∈ A1, y ∈ A2, u ∈ A3).

Note that |A3| = (q− 1)/k. Since Fq contains k kth roots of unity, the equation
zk = u has precisely k solutions for every u ∈ A3. Consequently, N = kN ′.

By Theorem 4.1,∣∣∣∣N ′ − |A1||A2|(q − 1)
kq

∣∣∣∣ < Φ(A3)
√
|A1||A2| <

√
|A1||A2|q,

where the last inequality follows from Theorem 6.7. �
Now, let li = (q − 1)/|Ai| (not necessarily integers) and assume inequality

(2) holds:
q ≥ k2l1l2 + 4.

Under this assumption it is easy to verify that the error bound in (63) is less
than the main term. This implies N 6= 0, proving Theorem 0.2.
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Here is what we have to verify:

k
(q − 1)

√
q

√
l1l2

<
(q − 1)3

l1l2q
,

or equivalently,

k2l1l2 < q · (1− 1
q

)4.

But q · (1− 1
q )4 > q − 4 ≥ k2l1l2 indeed. �

Strictly speaking, this proof verifies Theorem 0.2 for the case k|q − 1 only.
The general case reduces to this one via Exercise 6.4(ii):

{ak : a ∈ F×q } = {ad : a ∈ F×q },

where d = g.c.d.(q − 1, k). �

8 Some literature

The methods discussed have a long history, going back to the work of Gauss,
Jacobi, and Eisenstein in the first half of the 19th century. An accessible source
of substantial material on the subject is

K. Ireland and M. Rosen: A Classical Introduction to Modern Number Theory,
Springer 1982,

esp. Chapters 8, 10, 11. Each chapter is followed by an illuminating discussion of
the literature. This includes a brief outlook on A. Weil’s conjectures regarding
the zeta function of certain algebraic hypersurfaces over finite fields (stated
in 1949 and proved by B. Dwork (1959) and P. Deligne (1973)), the key to
estimating the number of solutions of polynomial equations over finite fields.
No elementary treatment of this subject is known; for an exposition, see

N. Katz: An overview of Deligne’s proof of the Riemann hypothesis for varieties
over finite fields, Proc. Symp. in Pure Math. 28 (1976), pp. 275-305.

With the use of algebraic geometry, A. Weil solved the case of a nonsingular
algebraic curve in a paper, published in 1948. An elementary treatment of this
result originated with the work of S. A. Stepanov (1972). A complete account
of the method is given by

W. M. Schmidt: Equations over Finite Fields: An Elementary Approach, Lect.
Notes in Math. Vol. 536, Springer 1976.

The development of the method of trigonometric sums has been motivated by
its applications to age-old problems of additive number theory; most notably to
the Waring problem in the work of Hardy, Ramanujan, Littlewood, Vinogradov,
Davenport, Hasse, Hua L-K. during the first half of this century. An exposition
of their methods along with more recent results is given in
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R. C. Vaughan: The Hardy–Littlewood Method, Cambridge University Press,
1981.

This monograph lists over 400 items of literature, and comments on a substantial
portion of them.

The Cauchy-Schwarz trick is apparently folklore and it is difficult to pinpoint
an original reference. Variants of it appear for instance in the following papers:

G. A. Freiman: What is the structure of K if K + K is small? Lecture Notes
in Math. Vol. 1240 (1987), pp. 109-134.

I. Z. Ruzsa: Essential components, Proc. London Math. Soc. 54 (1987), 38-56.
See “Statement 7.1.”

The result, in the compact form stated in Theorem 4.1, was described to me by
Endre Szemerédi. I owe him gratitude for this classic gem, which provided the
inspiration for these notes.

An application of Theorem 4.1 in the theory of computing (to the analysis
of the computational model called “branching program”) appears in the paper

M. Ajtai, L. Babai, P. Hajnal, J. Komlós, P. Pudlák, V. Rödl, E. Szemerédi, G.
Turán: Two lower bounds for branching programs, Proc. 18th ACM Symp. on
Theory of Computing, Berkeley CA 1986, pp. 30-38.

A very elegant proof of Azuma’s Inequality, which we needed for the proof of
Theorem 5.6, can be found in Appendix A of

N. Alon, J. Spencer, P. Erdős: The Probabilistic Method. John Wiley &
Sons, Inc. New York.

This is a must-read book for any combinatorist.
The original source for Azuma’s inequality is

K. Azuma: Weighted Sums of Certain Dependent Random Variables. Tôhoku
Math. Journ. 19 (1967) 357–367.

The extension of Azuma’s Inequality to martingales in higher dimensional
spaces, referred to in Section 5, can be found in

T. Hayes: A Large-Deviation Inequality for Vector-valued Martingales, to ap-
pear in Combinatorics, Probability and Computing. (see
http://www.cs.uchicago.edu/research/publications/techreports/TR-2001-24 )
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