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Chapter 0

Integration theory

This is a short summary of Lebesgue integration theory, which will be used in

the course.

Fact 0.1. Some subsets (=“delmängder”) E ⊂ R = (−∞,∞) are “measurable”

(=“mätbara”) in the Lebesgue sense, others are not.

General Assumption 0.2. All the subsets E which we shall encounter in this

course are measurable.

Fact 0.3. All measurable subsets E ⊂ R have a measure (=“m̊att”) m(E), which

in simple cases correspond to “ the total length” of the set. E.g., the measure of

the interval (a, b) is b− a (and so is the measure of [a, b] and [a, b)).

Fact 0.4. Some sets E have measure zero, i.e., m(E) = 0. True for example if

E consists of finitely many (or countably many) points. (“m̊attet noll”)

The expression a.e. = “almost everywhere” (n.ö. = nästan överallt) means that

something is true for all x ∈ R, except for those x which belong to some set E

with measure zero. For example, the function

f(x) =

{
1, |x| ≤ 1

0, |x| > 1

is continuous almost everywhere. The expression fn(x) → f(x) a.e. means that

the measure of the set x ∈ R for which fn(x) 9 f(x) is zero.

Think: “In all but finitely many points” (this is a simplification).

3



CHAPTER 0. INTEGRATION THEORY 4

Notation 0.5. R = (−∞,∞), C = complex plane.

The set of Riemann integrable functions f : I 7→ C (I ⊆ R is an interval) such

that ∫

I

|f(x)|pdx <∞, 1 ≤ p <∞,

though much larger than the space C(I) of continuous functions on I, is not

big enough for our purposes. This defect can be remedied by the use of the

Lebesgue integral instead of the Riemann integral. The Lebesgue integral is

more complicated to define and develop than the Riemann integral, but as a tool

it is easier to use as it has better properties. The main difference between the

Riemann and the Lebesgue integral is that the former uses intervals and their

lengths while the latter uses more general point sets and their measures.

Definition 0.6. A function f : I 7→ C (I ∈ R is an interval) is measurable if

there exists a sequence of continuous functions fn so that

fn(x) → f(x) for almost all x ∈ I

(i.e., the set of points x ∈ I for which fn(x) 9 f(x) has measure zero).

General Assumption 0.7. All the functions that we shall encounter in this

course are measurable.

Thus, the word “measurable” is understood throughout (when needed).

Definition 0.8. Let 1 ≤ p < ∞, and I ⊂ R an interval. We write f ∈ Lp(I) if

(f is measurable and) ∫

I

|f(x)|pdx <∞.

We define the norm of f in Lp(I) to be

‖f‖Lp(I) =

(∫

I

|f(x)|pdx
)1/p

.

Physical interpretation:

p = 1 ‖f‖L1(I) =

∫

I

|f(x)|dx
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= “the total mass”. “Probability density” if f(x) ≥ 0, or a “size of the total

population”.

p = 2 ‖f‖L2(I) =

(∫

I

|f(x)|2dx
)1/2

= “total energy” (e.g. in an electrical signal, such as alternating current).

These two cases are the two important ones (we ignore the rest). The third

important case is p = ∞.

Definition 0.9. f ∈ L∞(I) if (f is measurable and) there exists a number

M <∞ such that

|f(x)| < M a.e.

The norm of f is

‖f‖L∞(I) = inf{M : |f(x)| ≤M a.e.},

and it is denoted by

‖f‖L∞(I) = ess sup
x∈I

|f(x)|

(“essential supremum”, ”väsentligt supremum”).

Think: ‖f‖L∞(I) = “the largest value of f in I if we ignore a set of measure

zero”. For example:

f(x) =





0, x < 0

2, x = 0

1, x > 0

⇒ ‖f‖L∞(I) = 1.

Definition 0.10. C∞
C (R) = D = the set of (real or complex-valued) functions

on R which can be differentiated as many times as you wish, and which vanish

outside of a bounded interval (such functions do exist!). C∞
C (I) = the same

thing, but the function vanish outside of I.

I

= 0 = 0

Infinitely many
derivatives
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Theorem 0.11. Let I ⊂ R be an interval. Then C∞
C (I) is dense in Lp(I) for

all p, 1 ≤ p < ∞ (but not in L∞(I)). That is, for every f ∈ Lp(I) it is possible

to find a sequence fn ∈ C∞
C (I) so that

lim
n→∞

‖fn − f‖Lp(I) = 0.

Proof. “Straightforward” (but takes a lot of work). �

Theorem 0.12 (Fatou’s lemma). Let fn(x) ≥ 0 and let fn(x) → f(x) a.e. as

n→ ∞. Then ∫

I

f(x)dx ≤ lim
n→∞

∫

I

fn(x)dx

(if the latter limit exists). Thus,
∫

I

[
lim
n→∞

fn(x)
]
dx ≤ lim

n→∞

∫

I

fn(x)dx

if fn ≥ 0 (“f can have no more total mass than fn, but it may have less”). Often

we have equality, but not always.

Ex.

fn(x) =

{
n, 0 ≤ x ≤ 1/n

0, otherwise.

Homework: Compute the limits above in this case.

Theorem 0.13 (Monotone Convergence Theorem). If

0 ≤ f1(x) ≤ f2(x) ≤ . . .

and fn(x) → f(x) a.e., then
∫

I

f(x)dx = lim
n→∞

∫

I

fn(x)dx (≤ ∞).

Thus, for a positive increasing sequence we have
∫

I

[
lim
n→∞

fn(x)
]
dx = lim

n→∞

∫

I

fn(x)dx

(the mass of the limit is the limit of the masses).

Theorem 0.14 (Lebesgue’s dominated convergence theorem). (Extremely use-

ful)

If fn(x) → f(x) a.e. and |fn(x)| ≤ g(x) a.e. and
∫

I

g(x)dx <∞ (i.e., g ∈ L1(I)),
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then ∫

I

f(x)dx =

∫

I

[
lim
n→∞

fn(x)
]
dx = lim

n→∞

∫

I

fn(x)dx.

Theorem 0.15 (Fubini’s theorem). (Very useful for multiple integrals).

If f (is measurable and)
∫

I

∫

J

|f(x, y)|dy dx <∞

then the double integral ∫∫

I×J
f(x, y)dy dx

is well-defined, and equal to

=

∫

x∈I

(∫

y∈J
f(x, y)dy

)
dx

=

∫

y∈J

(∫

x∈I
f(x, y)dx

)
dy

If f ≥ 0, then all three integrals are well-defined, possibly = ∞, and if one of

them is <∞, then so are the others, and they are equal.

Note: These theorems are very useful, and often easier to use than the corre-

sponding theorems based on the Rieman integral.

Theorem 0.16 (Integration by parts à la Lebesgue). Let [a, b]be a finite interval,

u ∈ L1([a, b]), v ∈ L1([a, b]),

U(t) = U(a) +

∫ t

a

u(s)ds, V (t) = V (a) +

∫ t

a

v(s)ds, t ∈ [a, b].

Then ∫ b

a

u(t)V (t)dt = [U(t)V (t)]ba −
∫ b

a

U(t)v(t)dt.

Proof.
∫ b

a

u(t)V (t) =

∫ b

a

u(t)

∫ t

a

v(s)dsdt

Fubini
=

(
U(b) − U(a)

)
V (a) +

∫ b

a

(∫ b

s

u(t)dt

)
v(s)ds.

Since
∫ b

s

u(t)dt =
(∫ b

a

−
∫ s

a

)
u(t)dt = U(b) − U(a) −

∫ s

a

u(t)dt = U(b) − U(s),
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we get
∫ b

a

u(t)V (t)dt =
(
U(b) − U(a)

)
V (a) +

∫ b

a

(U(b) − U(s)) v(s)ds

=
(
U(b) − U(a)

)
V (a) + U(b)

(
V (b) − V (a)

)
−
∫ b

a

U(s)v(s)ds

= U(b)V (b) − U(a)V (a) −
∫ b

a

U(s)v(s)ds. �

Example 0.17. Sometimes we need test functions with special properties. Let

us take a look how one can proceed.

1 t

b(t)

b(t) =

{
e−

1
t(1−t) , 0 < t < 1

0 , otherwise.

Then we can show that b ∈ C∞(R), and b is a test function with compact support.

Let B(t) =
∫ t
−∞ b(s)ds and norm it F (t) = B(t)

B(1)
.

1

1
F(t)

t

F (t) =





0 , t ≤ 0

1 , t ≥ 1

increase , 0 < t < 1.

Further F (t) + F (t− 1) = 1, ∀t ∈ R, clearly true for t ≤ 0 and t ≥ 1.

For 0 < t < 1 we check the derivative

d

dt
(F (t) − F (1 − t)) =

1

B(1)
[B′(t) − B′(1 − t)] =

1

B(1)
[b(t) − b(1 − t)] = 0.
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F(t)F(1−t)

Let G(t) = F (Nt). Then G increases from 0 to 1 on the interval 0 ≤ t ≤ 1
N

.

G(t) +G(
1

N
− t) = F (Nt) − F (1 −Nt) = 1, ∀t ∈ R.

1/N 1

G(t)G(1/N−t)



Chapter 1

The Fourier Series of a Periodic

Function

1.1 Introduction

Notation 1.1. We use the letter T with a double meaning:

a) T = [0, 1)

b) In the notations Lp(T), C(T), Cn(T) and C∞(T) we use the letter T to

imply that the functions are periodic with period 1, i.e., f(t + 1) = f(t)

for all t ∈ R. In particular, in the continuous case we require f(1) = f(0).

Since the functions are periodic we know the whole function as soon as we

know the values for t ∈ [0, 1).

Notation 1.2. ‖f‖Lp(T) =
(∫ 1

0
|f(t)|pdt

)1/p

, 1 ≤ p <∞. ‖f‖C(T) = maxt∈T |f(t)|
(f continuous).

Definition 1.3. f ∈ L1(T) has the Fourier coefficients

f̂(n) =

∫ 1

0

e−2πintf(t)dt, n ∈ Z,

where Z = {0,±1,±2, . . .}. The sequence {f̂(n)}n∈Z is the (finite) Fourier

transform of f .

Note:

f̂(n) =

∫ s+1

s

e−2πintf(t)dt ∀s ∈ R,

10
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since the function inside the integral is periodic with period 1.

Note: The Fourier transform of a periodic function is a discrete sequence.

Theorem 1.4.

i) |f̂(n)| ≤ ‖f‖L1(T), ∀n ∈ Z

ii) limn→±∞ f̂(n) = 0.

Note: ii) is called the Riemann–Lebesgue lemma.

Proof.

i) |f̂(n)| = |
∫ 1

0
e−2πintf(t)dt| ≤

∫ 1

0
|e−2πintf(t)|dt =

∫ 1

0
|f(t)|dt = ‖f‖L1(T) (by

the triangle inequality for integrals).

ii) First consider the case where f is continuously differentiable, with f(0) = f(1).

Then integration by parts gives

f̂(n) =

∫ 1

0

e−2πintf(t)dt

=
1

−2πin

[
e−2πintf(t)

]1
0
+

1

2πin

∫ 1

0

e−2πintf ′(t)dt

= 0 +
1

2πin
f̂ ′(n), so by i),

|f̂(n)| =
1

2πn
|f̂ ′(n)| ≤ 1

2πn

∫ 1

0

|f ′(s)|ds→ 0 as n→ ∞.

In the general case, take f ∈ L1(T) and ε > 0. By Theorem 0.11 we can

choose some g which is continuously differentiable with g(0) = g(1) = 0 so

that

‖f − g‖L1(T) =

∫ 1

0

|f(t) − g(t)|dt ≤ ε/2.

By i),

|f̂(n)| = |f̂(n) − ĝ(n) + ĝ(n)|
≤ |f̂(n) − ĝ(n)| + |ĝ(n)|
≤ ‖f − g‖L1(T) + |ĝ(n)|
≤ ǫ/2 + |ĝ(n)|.

By the first part of the proof, for n large enough, |ĝ(n)| ≤ ε/2, and so

|f̂(n)| ≤ ε.

This shows that |f̂(n)| → 0 as n→ ∞. �
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Question 1.5. If we know {f̂(n)}∞n=−∞ then can we reconstruct f(t)?

Answer: is more or less ”Yes”.

Definition 1.6. Cn(T) = n times continuously differentiable functions, periodic

with period 1. (In particular, f (k)(1) = f (k)(0) for 0 ≤ k ≤ n.)

Theorem 1.7. For all f ∈ C1(T) we have

f(t) = lim
N→∞
M→∞

N∑

n=−M
f̂(n)e2πint, t ∈ R. (1.1)

We shall see later that the convergence is actually uniform in t.

Proof. Step 1. We shift the argument of f by replacing f(s) by g(s) = f(s+t).

Then

ĝ(n) = e2πintf̂(n),

and (1.1) becomes

f(t) = g(0) = lim
N→∞
M→∞

N∑

n=−M
f̂(n)e2πint.

Thus, it suffices to prove the case where t = 0 .

Step 2: If g(s) is the constant function g(s) ≡ g(0) = f(t), then (1.1) holds since

ĝ(0) = g(0) and ĝ(n) = 0 for n 6= 0 in this case. Replace g(s) by

h(s) = g(s) − g(0).

Then h satisfies all the assumptions which g does, and in addition, h(0) = 0.

Thus it suffices to prove the case where both t = 0 and f(0) = 0. For simplicity

we write f instead of h, but we suppose below that t = 0 and f(0) = 0

Step 2: Define

g(s) =

{
f(s)

e−2πis−1
, s 6= integer (=“heltal”)

if ′(0)
2π

, s = integer.

For s = n = integer we have e−2πis − 1 = 0, and by l’Hospital’s rule

lim
s→n

g(s) = lim
s→0

f ′(s)

−2πie−2πis
=
f ′(s)

−2πi
= g(n)
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(since e−i2πn = 1). Thus g is continuous. We clearly have

f(s) =
(
e−2πis − 1

)
g(s), (1.2)

so

f̂(n) =

∫

T

e−2πinsf(s)ds (use (1.2))

=

∫

T

e−2πins(e−2πis − 1)g(s)ds

=

∫

T

e−2πi(n+1)sg(s)ds−
∫

T

e−2πinsg(s)ds

= ĝ(n+ 1) − ĝ(n).

Thus,
N∑

n=−M
f̂(n) = ĝ(N + 1) − ĝ(−M) → 0

by the Rieman–Lebesgue lemma (Theorem 1.4) �

By working a little bit harder we get the following stronger version of Theorem

1.7:

Theorem 1.8. Let f ∈ L1(T), t0 ∈ R, and suppose that

∫ t0+1

t0−1

∣∣∣f(t) − f(t0)

t− t0

∣∣∣dt <∞. (1.3)

Then

f(t0) = lim
N→∞
M→∞

N∑

n=−M
f̂(n)e2πint0 t ∈ R

Proof. We can repeat Steps 1 and 2 of the preceding proof to reduce the The-

orem to the case where t0 = 0 and f(t0) = 0. In Step 3 we define the function

g in the same way as before for s 6= n, but leave g(s) undefined for s = n.

Since lims→0 s
−1(e−2πis − 1) = −2πi 6= 0, the function g belongs to L1(T) if and

only if condition (1.3) holds. The continuity of g was used only to ensure that

g ∈ L1(T), and since g ∈ L1(T) already under the weaker assumption (1.3), the

rest of the proof remains valid without any further changes. �
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Summary 1.9. If f ∈ L1(T), then the Fourier transform {f̂(n)}∞n=−∞ of f is

well-defined, and f̂(n) → 0 as n → ∞. If f ∈ C1(T), then we can reconstruct f

from its Fourier transform through

f(t) =

∞∑

n=−∞
f̂(n)e2πint

(
= lim

N→∞
M→∞

N∑

n=−M
f̂(n)e2πint

)
.

The same reconstruction formula remains valid under the weaker assumption of

Theorem 1.8.

1.2 L2-Theory (“Energy theory”)

This theory is based on the fact that we can define an inner product (scalar

product) in L2(T), namely

〈f, g〉 =

∫ 1

0

f(t)g(t)dt, f, g ∈ L2(T).

Scalar product means that for all f, g, h ∈ L2(T)

i) 〈f + g, h〉 = 〈f, h〉 + 〈g, h〉

ii) 〈λf, g〉 = λ〈f, g〉 ∀λ ∈ C

iii) 〈g, f〉 = 〈f, g〉 (complex conjugation)

iv) 〈f, f〉 ≥ 0, and = 0 only when f ≡ 0.

These are the same rules that we know from the scalar products in Cn. In

addition we have

‖f‖2
L2(T) =

∫

T

|f(t)|2dt =

∫

T

f(t)f(t)dt = 〈f, f〉.

This result can also be used to define the Fourier transform of a function f ∈
L2(T), since L2(T) ⊂ L1(T).

Lemma 1.10. Every function f ∈ L2(T) also belongs to L1(T), and

‖f‖L1(T) ≤ ‖f‖L2(T).
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Proof. Interpret
∫

T
|f(t)|dt as the inner product of |f(t)| and g(t) ≡ 1. By

Schwartz inequality (see course on Analysis II),

|〈f, g〉| =
∫

T

|f(t)| · 1dt ≤ ‖f‖L2 · ‖g‖L2 = ‖f‖L2(T)

∫

T

12dt = ‖f‖L2(T).

Thus, ‖f‖L1(T) ≤ ‖f‖L2(T). Therefore:

f ∈ L2(t) =⇒
∫

T

|f(t)|dt <∞

=⇒ f̂(n) =

∫

T

e−2πintf(t)dt is defined for all n.

It is not true that L2(R) ⊂ L1(R). Counter example:

f(t) =
1√

1 + t2





∈ L2(R)

/∈ L1(R)

∈ C∞(R)

(too large at ∞).

Notation 1.11. en(t) = e2πint, n ∈ Z, t ∈ R.

Theorem 1.12 (Plancherel’s Theorem). Let f ∈ L2(T). Then

i)
∑∞

n=−∞|f̂(n)|2 =
∫ 1

0
|f(t)|2dt = ‖f‖2

L2(T),

ii) f =
∑∞

n=−∞ f̂(n)en in L2(T) (see explanation below).

Note: This is a very central result in, e.g., signal processing.

Note: It follows from i) that the sum
∑∞

n=−∞|f̂(n)|2 always converges if f ∈ L2(T)

Note: i) says that

∞∑

n=−∞
|f̂(n)|2 = the square of the total energy of the Fourier coefficients

= the square of the total energy of the original signal f

=

∫

T

|f(t)|2dt

Note: Interpretation of ii): Define

fM,N =

N∑

n=−M
f̂(n)en =

N∑

n=−M
f̂(n)e2πint.
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Then

lim
M→∞
N→∞

‖f − fM,N‖2 = 0 ⇐⇒

lim
M→∞
N→∞

∫ 1

0

|f(t) − fM,N(t)|2dt = 0

(fM,N(t) need not converge to f(t) at every point, and not even almost every-

where).

The proof of Theorem 1.12 is based on some auxiliary results:

Theorem 1.13. If gn ∈ L2(T), fN =
∑N

n=0 gn, gn ⊥ gm, and
∑∞

n=0‖gn‖2
L2(T) <∞,

then the limit

f = lim
N→∞

N∑

n=0

gn

exists in L2.

Proof. Course on “Analysis II” and course on “Hilbert Spaces”. �

Interpretation: Every orthogonal sum with finite total energy converges.

Lemma 1.14. Suppose that
∑∞

n=−∞|c(n)| <∞. Then the series

∞∑

n=−∞
c(n)e2πint

converges uniformly to a continuous limit function g(t).

Proof.

i) The series
∑∞

n=−∞ c(n)e2πint converges absolutely (since |e2πint| = 1), so

the limit

g(t) =

∞∑

n=−∞
c(n)e2πint

exist for all t ∈ R.

ii) The convergens is uniform, because the error

|
m∑

n=−m
c(n)e2πint − g(t)| = |

∑

|n|>m
c(n)e2πint|

≤
∑

|n|>m
|c(n)e2πint|

=
∑

|n|>m
|c(n)| → 0 as m→ ∞.
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iii) If a sequence of continuous functions converge uniformly, then the limit is

continuous (proof “Analysis II”).

proof of Theorem 1.12. (Outline)

0 ≤ ‖f − fM,N‖2 = 〈f − fM,N , f − fM,N〉
= 〈f, f〉︸ ︷︷ ︸

I

−〈fM,N , f〉︸ ︷︷ ︸
II

−〈f, fM,N〉︸ ︷︷ ︸
III

+ 〈fM,N , fM,N〉︸ ︷︷ ︸
IV

I = 〈f, f〉 = ‖f‖2
L2(T).

II = 〈
N∑

n=−M
f̂(n)en, f〉 =

N∑

n=−M
f̂(n)〈en, f〉

=
N∑

n=−M
f̂(n)〈f, en〉 =

N∑

n=−M
f̂(n)f̂(n)

=

N∑

n=−M
|f̂(n)|2.

III = (the complex conjugate of II) = II.

IV =
〈 N∑

n=−M
f̂(n)en,

N∑

m=−M
f̂(m)em

〉

=
N∑

n=−M
f̂(n)f̂(m) 〈en, em〉︸ ︷︷ ︸

δm
n

=
N∑

n=−M
|f̂(n)|2 = II = III.

Thus, adding I − II − III + IV = I − II ≥ 0, i.e.,

‖f‖2
L2(T) −

N∑

n=−M
|f̂(n)|2 ≥ 0.

This proves Bessel’s inequality

∞∑

n=−∞
|f̂(n)|2 ≤ ‖f‖2

L2(T). (1.4)

How do we get equality?

By Theorem 1.13, applied to the sums

N∑

n=0

f̂(n)en and

−1∑

n=−M
f̂(n)en,
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the limit

g = lim
M→∞
N→∞

fM,N = lim
M→∞
N→∞

N∑

n=−M
f̂(n)en (1.5)

does exist. Why is f = g? (This means that the sequence en is complete!). This

is (in principle) done in the following way

i) Argue as in the proof of Theorem 1.4 to show that if f ∈ C2(T), then

|f̂(n)| ≤ 1/(2πn)2‖f ′′‖L1 for n 6= 0. In particular, this means that
∑∞

n=−∞|f̂(n)| < ∞. By Lemma 1.14, the convergence in (1.5) is actually

uniform, and by Theorem 1.7, the limit is equal to f . Uniform convergence

implies convergence in L2(T), so even if we interpret (1.5) in the L2-sense,

the limit is still equal to f a.e. This proves that fM,N → f in L2(T) if

f ∈ C2(T).

ii) Approximate an arbitrary f ∈ L2(T) by a function h ∈ C2(T) so that

‖f − h‖L2(T) ≤ ε.

iii) Use i) and ii) to show that ‖f − g‖L2(T) ≤ ε, where g is the limit in (1.5).

Since ε is arbitrary, we must have g = f . �

Definition 1.15. Let 1 ≤ p <∞.

ℓp(Z) = set of all sequences {an}∞n=−∞ satisfying
∞∑

n=−∞
|an|p <∞.

The norm of a sequence a ∈ ℓp(Z) is

‖a‖ℓp(Z) =

( ∞∑

n=−∞
|an|p

)1/p

Analogous to Lp(I):

p = 1 ‖a‖ℓ1(Z) = ”total mass” (probability),

p = 2 ‖a‖ℓ2(Z) = ”total energy”.

In the case of p = 2 we also define an inner product

〈a, b〉 =

∞∑

n=−∞
anbn.
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Definition 1.16. ℓ∞(Z) = set of all bounded sequences {an}∞n=−∞. The norm

in ℓ∞(Z) is

‖a‖ℓ∞(Z) = sup
n∈Z

|an|.

For details: See course in ”Analysis II”.

Definition 1.17. c0(Z) = the set of all sequences {an}∞n=−∞ satisfying limn→±∞ an = 0.

We use the norm

‖a‖c0(Z) = max
n∈Z

|an|

in c0(Z).

Note that c0(Z) ⊂ ℓ∞(Z), and that

‖a‖c0(Z) = ‖a‖ℓ∞(Z)

if {a}∞n=−∞ ∈ c0(Z).

Theorem 1.18. The Fourier transform maps L2(T) one to one onto ℓ2(Z), and

the Fourier inversion formula (see Theorem 1.12 ii) maps ℓ2(Z) one to one onto

L2(T). These two transforms preserves all distances and scalar products.

Proof. (Outline)

i) If f ∈ L2(T) then f̂ ∈ ℓ2(Z). This follows from Theorem 1.12.

ii) If {an}∞n=−∞ ∈ ℓ2(Z), then the series

N∑

n=−M
ane

2πint

converges to some limit function f ∈ L2(T). This follows from Theorem

1.13.

iii) If we compute the Fourier coefficients of f , then we find that an = f̂(n).

Thus, {an}∞n=−∞ is the Fourier transform of f . This shows that the Fourier

transform maps L2(T) onto ℓ2(Z).

iv) Distances are preserved. If f ∈ L2(T), g ∈ L2(T), then by Theorem 1.12

i),

‖f − g‖L2(T) = ‖f̂(n) − ĝ(n)‖ℓ2(Z),

i.e., ∫

T

|f(t) − g(t)|2dt =

∞∑

n=−∞
|f̂(n) − ĝ(n)|2.
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v) Inner products are preserved:

∫

T

|f(t) − g(t)|2dt = 〈f − g, f − g〉

= 〈f, f〉 − 〈f, g〉 − 〈g, f〉 + 〈g, g〉
= 〈f, f〉 − 〈f, g〉 − 〈f, g〉 + 〈g, g〉
= 〈f, f〉 + 〈g, g〉 − 2ℜRe〈f, g〉.

In the same way,

∞∑

n=−∞
|f̂(n) − ĝ(n)|2 = 〈f̂ − ĝ, f̂ − ĝ〉

= 〈f̂ , f̂〉 + 〈ĝ, ĝ〉 − 2ℜ〈f̂ , ĝ〉.

By iv), subtracting these two equations from each other we get

ℜ〈f, g〉 = ℜ〈f̂ , ĝ〉.

If we replace f by if , then

Im〈f, g〉 = Re i〈f, g〉 = ℜ〈if, g〉
= ℜ〈if̂ , ĝ〉 = Re i〈f̂ , ĝ〉
= Im〈f̂ , ĝ〉.

Thus, 〈f, g〉L2(R) = 〈f̂ , ĝ〉ℓ2(Z), or more explicitely,

∫

T

f(t)g(t)dt =

∞∑

n=−∞
f̂(n)ĝ(n). (1.6)

This is called Parseval’s identity.

Theorem 1.19. The Fourier transform maps L1(T) into c0(Z) (but not onto),

and it is a contraction, i.e., the norm of the image is ≤ the norm of the original

function.

Proof. This is a rewritten version of Theorem 1.4. Parts i) and ii) say that

{f̂(n)}∞n=−∞ ∈ c0(Z), and part i) says that ‖f̂(n)‖c0(Z) ≤ ‖f‖L1(T). �

The proof that there exist sequences in c0(Z) which are not the Fourier transform

of some function f ∈ L1(T) is much more complicated.



CHAPTER 1. FINITE FOURIER TRANSFORM 21

1.3 Convolutions (”Faltningar”)

Definition 1.20. The convolution (”faltningen”) of two functions f, g ∈ L1(T)

is

(f ∗ g)(t) =

∫

T

f(t− s)g(s)ds,

where
∫

T
=
∫ α+1

α
for all α ∈ R, since the function s 7→ f(t− s)g(s) is periodic.

Note: In this integral we need values of f and g outside of the interval [0, 1), and

therefore the periodicity of f and g is important.

Theorem 1.21. If f, g ∈ L1(T), then (f ∗ g)(t) is defined almost everywhere,

and f ∗ g ∈ L1(T). Furthermore,

∥∥f ∗ g
∥∥
L1(T)

≤
∥∥f
∥∥
L1(T)

∥∥g
∥∥
L1(T)

(1.7)

Proof. (We ignore measurability)

We begin with (1.7)

∥∥f ∗ g
∥∥
L1(T)

=

∫

T

|(f ∗ g)(t)| dt

=

∫

T

∣∣
∫

T

f(t− s)g(s) ds
∣∣ dt

△-ineq.

≤
∫

t∈T

∫

s∈T
|f(t− s)g(s)| ds dt

Fubini
=

∫

s∈T

(∫

t∈T
|f(t− s)| dt

)
|g(s)| ds

Put v=t−s,dv=dt
=

∫

s∈T

(∫

v∈T
|f(v)| dv

)

︸ ︷︷ ︸
=‖f‖L1(T)

|g(s)| ds

= ‖f‖L1(T)

∫

s∈T
|g(s)| ds = ‖f‖L1(T)‖g‖L1(T)

This integral is finite. By Fubini’s Theorem 0.15
∫

T

f(t− s)g(s)ds

is defined for almost all t. �

Theorem 1.22. For all f, g ∈ L1(T) we have

(f̂ ∗ g)(n) = f̂(n)ĝ(n), n ∈ Z
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Proof. Homework.

Thus, the Fourier transform maps convolution onto pointwise multiplication.

Theorem 1.23. If k ∈ Cn(T) (n times continuously differentiable) and f ∈ L1(T),

then k ∗ f ∈ Cn(T), and (k ∗ f)(m)(t) = (k(m) ∗ f)(t) for all m = 0, 1, 2, . . . , n.

Proof. (Outline) We have for all h > 0

1

h
[(k ∗ f) (t+ h) − (k ∗ f)(t)] =

1

h

∫ 1

0

[k(t+ h− s) − k(t− s)] f(s)ds.

By the mean value theorem,

k(t+ h− s) = k(t− s) + hk′(ξ),

for some ξ ∈ [t−s, t−s+h], and 1
h
[k(t+h−s)−k(t−s)] = f(ξ) → k′(t−s) as

h→ 0, and
∣∣ 1
h
[k(t+h−s)−k(t−s)]

∣∣ = |f ′(ξ)| ≤M, where M = supT |k′(s)|. By

the Lebesgue dominated convergence theorem (which is true also if we replace

n→ ∞ by h→ 0)(take g(x) = M |f(x)|)

lim
h→0

∫ 1

0

1

h
[k(t+ h− s) − k(t− s)]f(s) ds =

∫ 1

0

k′(t− s)f(s) ds,

so k ∗ f is differentiable, and (k ∗ f)′ = k′ ∗ f . By repeating this n times we find

that k ∗ f is n times differentiable, and that (k ∗ f)(n) = k(n) ∗ f . We must still

show that k(n) ∗ f is continuous. This follows from the next lemma. �

Lemma 1.24. If k ∈ C(T) and f ∈ L1(T), then k ∗ f ∈ C(T).

Proof. By Lebesgue dominated convergence theorem (take g(t) = 2‖k‖C(T)f(t)),

(k ∗ f)(t+ h) − (k ∗ f)(t) =

∫ 1

0

[k(t+ h− s) − k(t− s)]f(s)ds→ 0 as h→ 0.

Corollary 1.25. If k ∈ C1(T) and f ∈ L1(T), then for all t ∈ R

(k ∗ f)(t) =

∞∑

n=−∞
e2πintk̂(n)f̂(n).

Proof. Combine Theorems 1.7, 1.22 and 1.23.

Interpretation: This is a generalised inversion formula. If we choose k̂(n) so

that
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i) k̂(n) ≈ 1 for small |n|

ii) k̂(n) ≈ 0 for large |n|,

then we set a “filtered” approximation of f , where the “high frequences” (= high

values of |n|) have been damped but the “low frequences” (= low values of |n|)
remain. If we can take k̂(n) = 1 for all n then this gives us back f itself, but this

is impossible because of the Riemann-Lebesgue lemma.

Problem: Find a “good” function k ∈ C1(T) of this type.

Solution: “The Fejer kernel” is one possibility. Choose k̂(n) to be a “triangular

function”:

n = 0 n = 4

F (n)
4

Fix m = 0, 1, 2 . . . , and define

F̂m(n) =

{
m+1−|n|
m+1

, |n| ≤ m

0 , |n| > m

( 6= 0 in 2m+ 1 points.)

We get the corresponding time domain function Fm(t) by using the invertion

formula:

Fm(t) =

m∑

n=−m
F̂m(n)e2πint.

Theorem 1.26. The function Fm(t) is explicitly given by

Fm(t) =
1

m+ 1

sin2 ((m+ 1)πt)

sin2(πt)
.

Proof. We are going to show that

m∑

j=0

j∑

n=−j
e2πint =

(sin(π(m+ 1)t)

sin πt

)2
when t 6= 0.
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Let z = e2πit, z = e−2πit, for t 6= n, n = 0, 1, 2, . . . . Also z 6= 1, and

j∑

n=−j
e2πint =

j∑

n=0

e2πint +

j∑

n=1

e−2πint =

j∑

n=0

zn +

j∑

n=1

zn

=
1 − zj+1

1 − z
+
z(1 − zj)

1 − z
=

1 − zj+1

1 − z
+

=1︷︸︸︷
z · z(1 − zj)

z − z · z︸︷︷︸
=1

=
zj − zj+1

1 − z
.

Hence

m∑

j=0

j∑

n=−j
e2πint =

m∑

j=0

zj − zj+1

1 − z
=

1

1 − z

(
m∑

j=0

zj −
m∑

j=0

zj+1

)

=
1

1 − z

(
1 − zm+1

1 − z
− z

(
1 − zm+1

1 − z

))

=
1

1 − z

[1 − zm+1

1 − z
−

=1︷︸︸︷
z · z(1 − zm+1

z(1 − z)

]

=
1

1 − z

[1 − zm+1

1 − z
− 1 − zm+1

z − 1

]

=
−zm+1 + 2 − zm+1

|1 − z|2 .

sin t = 1
2i

(eit − e−it), cos t = 1
2
(eit + e−it). Now

|1 − z| = |1 − e2πit| = |eiπt(e−iπt − eiπt)| = |e−iπt − eiπt| = 2|sin(πt)|

and

zm+1 − 2 + zm+1 = e2πi(m+1) − 2 + e−2πi(m+1)

=
(
eπi(m+1) − e−πi(m+1)

)2
=
(
2i sin(π(m+ 1))

)2
.

Hence
m∑

j=0

j∑

n=−j
e2πint =

4(sin(π(m+ 1)))2

4(sin(πt))2
=
(sin(π(m+ 1))

sin(πt)

)2

Note also that

m∑

j=0

j∑

n=−j
e2πint =

m∑

n=−m

m∑

j=|n|
e2πint =

m∑

n=−m
(m+ 1 − |n|)e2πint.



CHAPTER 1. FINITE FOURIER TRANSFORM 25

-2 -1 1 2

1

2

3

4

5

6

Comment 1.27.

i) Fm(t) ∈ C∞(T) (infinitely many derivatives).

ii) Fm(t) ≥ 0.

iii)
∫

T
|Fm(t)|dt =

∫
T
Fm(t)dt = F̂m(0) = 1,

so the total mass of Fm is 1.

iv) For all δ, 0 < δ < 1
2
,

lim
m→∞

∫ 1−δ

δ

Fm(t)dt = 0,

i.e. the mass of Fm gets concentrated to the integers t = 0,±1,±2 . . .

as m→ ∞.

Definition 1.28. A sequence of functions Fm with the properties i)-iv) above is

called a (periodic) approximate identity. (Often i) is replaced by Fm ∈ L1(T).)

Theorem 1.29. If f ∈ L1(T), then, as m→ ∞,

i) Fm ∗ f → f in L1(T), and

ii) (Fm ∗ f)(t) → f(t) for almost all t.

Here i) means that
∫

T
|(Fm ∗ f)(t) − f(t)|dt→ 0 as m→ ∞

Proof. See page 27.

By combining Theorem 1.23 and Comment 1.27 we find that Fm ∗ f ∈ C∞(T).

This combined with Theorem 1.29 gives us the following periodic version of

Theorem 0.11:
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Corollary 1.30. For every f ∈ L1(T) and ε > 0 there is a function g ∈ C∞(T)

such that ‖g − f‖L1(T) ≤ ε.

Proof. Choose g = Fm ∗ f where m is large enough. �

To prove Theorem 1.29 we need a number of simpler results:

Lemma 1.31. For all f, g ∈ L1(T) we have f ∗ g = g ∗ f

Proof.

(f ∗ g)(t) =

∫

T

f(t− s)g(s)ds

t−s=v,ds=−dv
=

∫

T

f(v)g(t− v)dv = (g ∗ f)(t) �

We also need:

Theorem 1.32. If g ∈ C(T), then Fm ∗ g → g uniformly as m→ ∞, i.e.

max
t∈R

|(Fm ∗ g)(t) − g(t)| → 0 as m→ ∞.

Proof.

(Fm ∗ g)(t) − g(t)
Lemma 1.31

= (g ∗ Fm)(t) − g(t)

Comment 1.27
= (g ∗ Fm)(t) − g(t)

∫

T

Fm(s)ds

=

∫

T

[g(t− s) − g(t)]Fm(s)ds.

Since g is continuous and periodic, it is uniformly continuous, and given ε > 0

there is a δ > 0 so that |g(t − s) − g(t)| ≤ ε if |s| ≤ δ. Split the intgral above

into (choose the interval of integration to be [−1
2
, 1

2
])

∫ 1
2

− 1
2

[g(t− s) − g(t)]Fm(s)ds =
(∫ −δ

− 1
2︸︷︷︸
I

+

∫ δ

−δ︸︷︷︸
II

+

∫ 1
2

δ︸︷︷︸
III

)
[g(t− s) − g(t)]Fm(s)ds

Let M = supt∈R
|g(t)|. Then |g(t− s) − g(t)| ≤ 2M , and

|I + III| ≤
(∫ −δ

− 1
2

+

∫ 1
2

δ

)
2MFm(s)ds

= 2M

∫ 1−δ

δ

Fm(s)ds
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and by Comment 1.27iv) this goes to zero as m→ ∞. Therefore, we can choose

m so large that

|I + III| ≤ ε (m ≥ m0, and m0 large.)

|II| ≤
∫ δ

−δ
|g(t− s) − g(t)|Fm(s)ds

≤ ε

∫ δ

−δ
Fm(s)ds

≤ ε

∫ 1
2

− 1
2

Fm(s)ds = ε

Thus, for m ≥ m0 we have

|(Fm ∗ g)(t) − g(t)| ≤ 2ε (for all t).

Thus, limm→∞ supt∈R
|(Fm ∗ g)(t) − g(t)| = 0, i.e., (Fm ∗ g)(t) → g(t) uniformly

as m→ ∞. �

The proof of Theorem 1.29 also uses the following weaker version of Lemma 0.11:

Lemma 1.33. For every f ∈ L1(T) and ε > 0 there is a function g ∈ C(T) such

that ‖f − g‖L1(T) ≤ ε.

Proof. Course in Lebesgue integration theory. �

(We already used a stronger version of this lemma in the proof of Theorem 1.12.)

Proof of Theorem 1.29, part i): (The proof of part ii) is bypassed, typically

proved in a course on integration theory.)

Let ε > 0, and choose some g ∈ C(T) with ‖f − g‖L1(T) ≤ ε. Then

‖Fm ∗ f − f‖L1(T) ≤ ‖Fm ∗ g − g + Fm ∗ (f − g) − (f − g)‖L1(t)

≤ ‖Fm ∗ g − g‖L1(T) + ‖Fm ∗ (f − g)‖L1(T) + ‖(f − g)‖L1(T)

Thm 1.21
≤ ‖Fm ∗ g − g‖L1(T) + (‖Fm‖L1(T) + 1︸ ︷︷ ︸

=2

) ‖f − g‖L1(T)︸ ︷︷ ︸
≤ε

= ‖Fm ∗ g − g‖L1(T) + 2ε.
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Now ‖Fm ∗ g − g‖L1(T) =

∫ 1

0

|(Fm ∗ g(t) − g(t)| dt

≤
∫ 1

0

max
s∈[0,1]

|(Fm ∗ g(s) − g(s)| dt

= max
s∈[0,1]

|(Fm ∗ g(s) − g(s)| ·
∫ 1

0

dt

︸ ︷︷ ︸
=1

.

By Theorem 1.32, this tends to zero as m→ ∞. Thus for large enough m,

‖Fm ∗ f − f‖L1(T) ≤ 3ε,

so Fm ∗ f → f in L1(T) as m→ ∞. �

(Thus, we have “almost” proved Theorem 1.29 i): we have reduced it to a proof

of Lemma 1.33 and other “standard properties of integrals”.)

In the proof of Theorem 1.29 we used the “trivial” triangle inequality in L1(T):

‖f + g‖L1(T) =

∫
|f(t) + g(t)| dt ≤

∫
|f(t)| + |g(t)| dt

= ‖f‖L1(T) + ‖g‖L1(T)

Similar inequalities are true in all Lp(T), 1 ≤ p ≤ ∞, and a more “sophisticated”

version of the preceding proof gives:

Theorem 1.34. If 1 ≤ p < ∞ and f ∈ Lp(T), then Fm ∗ f → f in Lp(T) as

m→ ∞, and also pointwise a.e.

Proof. See Gripenberg.

Note: This is not true in L∞(T). The correct “L∞-version” is given in Theorem

1.32.

Corollary 1.35. (Important!) If f ∈ Lp(T), 1 ≤ p <∞, or f ∈ Cn(T), then

lim
m→∞

m∑

n=−m

m+ 1 − |n|
m+ 1

f̂(n)e2πint = f(t),

where the convergence is in the norm of Lp, and also pointwise a.e. In the case

where f ∈ Cn(T) we have uniform convergence, and the derivatives of order ≤ n

also converge uniformly.



CHAPTER 1. FINITE FOURIER TRANSFORM 29

Proof. By Corollary 1.25 and Comment 1.27,

m∑

n=−m

m+ 1 − |n|
m+ 1

f̂(n)e2πint = (Fm ∗ f)(t)

The rest follows from Theorems 1.34, 1.32, and 1.23, and Lemma 1.31. �

Interpretation: We improve the convergence of the sum

∞∑

n=−∞
f̂(n)e2πint

by multiplying the coefficients by the “damping factors” m+1−|n|
m+1

, |n| ≤ m. This

particular method is called Césaro summability. (Other “summability” methods

use other damping factors.)

Theorem 1.36. (Important!) The Fourier coefficients f̂(n), n ∈ Z of a func-

tion f ∈ L1(T) determine f uniquely a.e., i.e., if f̂(n) = ĝ(n) for all n, then

f(t) = g(t) a.e.

Proof. Suppose that ĝ(n) = f̂(n) for all n. Define h(t) = f(t) − g(t). Then

ĥ(n) = f̂(n) − ĝ(n) = 0, n ∈ Z. By Theorem 1.29,

h(t) = lim
m→∞

m∑

n=−m

m+ 1 − |n|
m+ 1

ĥ(n)︸︷︷︸
=0

e2πint = 0

in the “L1-sense”, i.e.

‖h‖ =

∫ 1

0

|h(t)| dt = 0

This implies h(t) = 0 a.e., so f(t) = g(t) a.e. �

Theorem 1.37. Suppose that f ∈ L1(T) and that
∑∞

n=−∞|f̂(n)| <∞. Then the

series ∞∑

n=−∞
f̂(n)e2πint

converges uniformly to a continuous limit function g(t), and f(t) = g(t) a.e.

Proof. The uniform convergence follows from Lemma 1.14. We must have

f(t) = g(t) a.e. because of Theorems 1.29 and 1.36.

The following theorem is much more surprising. It says that not every sequence

{an}n∈Z is the set of Fourier coefficients of some f ∈ L1(T).
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Theorem 1.38. Let f ∈ L1(T), f̂(n) ≥ 0 for n ≥ 0, and f̂(−n) = −f̂(n) (i.e.

f̂(n) is an odd function). Then

i)

∞∑

n=1

1

n
f̂(n) <∞

ii)
∞∑

n=−∞
n 6=0

| 1
n
f̂(n)| <∞.

Proof. Second half easy: Since f̂ is odd,
∑

n 6=0
n∈Z

| 1
n
f̂(n)| =

∑

n>0

| 1
n
f̂(n)| +

∑

n<0

| 1
n
f̂(−n)|

= 2

∞∑

n=1

| 1
n
f̂(n)| <∞ if i) holds.

i): Note that f̂(n) = −f̂(−n) gives f̂(0) = 0. Define g(t) =
∫ t
0
f(s)ds. Then

g(1)− g(0) =
∫ 1

0
f(s)ds = f̂(0) = 0, so that g is continuous. It is not difficult to

show (=homework) that

ĝ(n) =
1

2πin
f̂(n), n 6= 0.

By Corollary 1.35,

g(0) = ĝ(0) e2πi·0·0︸ ︷︷ ︸
=1

+ lim
m→∞

m∑

n=−m

m+ 1 − |n|
m+ 1︸ ︷︷ ︸

even

ĝ(n)︸︷︷︸
even

e2πin0
︸ ︷︷ ︸

=1

= ĝ(0) +
2

2πi
lim
m→∞

m∑

n=0

m+ 1 − n

m+ 1

f̂(n)

n︸ ︷︷ ︸
≥0

.

Thus

lim
m→∞

m∑

n=1

m+ 1 − n

m+ 1

f̂(n)

n
= K = a finite pos. number.

In particular, for all finite M ,

M∑

n=1

f̂(n)

n
= lim

m→∞

M∑

n=1

m+ 1 − n

m+ 1

f̂(n)

n
≤ K,

and so
∑∞

n=1
f̂(n)
n

≤ K <∞. �

Theorem 1.39. If f ∈ Ck(T) and g = f (k), then ĝ(n) = (2πin)kf̂(n), n ∈ Z.

Proof. Homework.

Note: True under the weaker assumption that f ∈ Ck−1(T), g ∈ L1(T), and

fk−1(t) = fk−1(0) +
∫ t
0
g(s)ds.
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1.4 Applications

1.4.1 Wirtinger’s Inequality

Theorem 1.40 (Wirtinger’s Inequality). Suppose that f ∈ L2(a, b), and that “f

has a derivative in L2(a, b)”, i.e., suppose that

f(t) = f(a) +

∫ t

a

g(s)ds

where g ∈ L2(a, b). In addition, suppose that f(a) = f(b) = 0. Then

∫ b

a

|f(t)|2dt ≤
(
b− a

π

)2 ∫ b

a

|g(t)|2dt (1.8)

(
=

(
b− a

π

)2 ∫ b

a

|f ′(t)|2dt
)
.

Comment 1.41. A function f which can be written in the form

f(t) = f(a) +

∫ t

a

g(s)ds,

where g ∈ L1(a, b) is called absolutely continuous on (a, b). This is the “Lebesgue

version of differentiability”. See, for example, Rudin’s “Real and Complex Anal-

ysis”.

Proof. i) First we reduce the interval (a, b) to (0, 1/2): Define

F (s) = f(a+ 2(b− a)s)

G(s) = F ′(s) = 2(b− a)g(a+ 2(b− a)s).

Then F (0) = F (1/2) = 0 and F (t) =
∫ t
0
G(s)ds. Change variable in the integral:

t = a+ 2(b− a)s, dt = 2(b− a)ds,

and (1.8) becomes

∫ 1/2

0

|F (s)|2ds ≤ 1

4π2

∫ 1/2

0

|G(s)|2ds. (1.9)

We extend F and G to periodic functions, period one, so that F is odd and G

is even: F (−t) = −F (t) and G(−t) = G(t) (first to the interval (−1/2, 1/2) and
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then by periodicity to all of R). The extended function F is continuous since

F (0) = F (1/2) = 0. Then (1.9) becomes
∫

T

|F (s)|2ds ≤ 1

4π2

∫

T

|G(s)|2ds ⇔

‖F‖L2(T) ≤ 1

2π
‖G‖L2(T)

By Parseval’s identity, equation (1.6) on page 20, and Theorem 1.39 this is

equivalent to
∞∑

n=−∞
|F̂ (n)|2 ≤ 1

4π2

∞∑

n=−∞
|2πnF̂ (n)|2. (1.10)

Here

F̂ (0) =

∫ 1/2

−1/2

F (s)ds = 0.

since F is odd, and for n 6= 0 we have (2πn)2 ≥ 4π2. Thus (1.10) is true. �

Note: The constant
(
b−a
π

)2
is the best possible: we get equality if we take

F̂ (1) 6= 0, F̂ (−1) = −F̂ (1), and all other F̂ (n) = 0. (Which function is this?)

1.4.2 Weierstrass Approximation Theorem

Theorem 1.42 (Weierstrass Approximation Theorem). Every continuous func-

tion on a closed interval [a, b] can be uniformly approximated by a polynomial:

For every ε > 0 there is a polynomial P so that

max
t∈[a,b]

|P (t) − f(t)| ≤ ε (1.11)

Proof. First change the variable so that the interval becomes [0, 1/2] (see

previous page). Then extend f to an even function on [−1/2, 1/2] (see previous

page). Then extend f to a continuous 1-periodic function. By Corollary 1.35,

the sequence

fm(t) =
m∑

n=−m
F̂m(n)f̂(n)e2πint

(Fm = Fejer kernel) converges to f uniformly. Choose m so large that

|fm(t) − f(t)| ≤ ε/2

for all t. The function fm(t) is analytic, so by the course in analytic functions,

the series
∞∑

k=0

f
(k)
m (0)

k!
tk
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converges to fm(t), uniformly for t ∈ [−1/2, 1/2]. By taking N large enough we

therefore have

|PN(t) − fm(t)| ≤ ε/2 for t ∈ [−1/2, 1/2],

where PN(t) =
∑N

k=0
f
(k)
m (0)
k!

tk. This is a polynomial, and |PN(t) − f(t)| ≤ ε

for t ∈ [−1/2, 1/2]. Changing the variable t back to the original one we get a

polynomial satisfying (1.11). �

1.4.3 Solution of Differential Equations

There are many ways to use Fourier series to solve differential equations. We

give only two examples.

Example 1.43. Solve the differential equation

y′′(x) + λy(x) = f(x), 0 ≤ x ≤ 1, (1.12)

with boundary conditions y(0) = y(1), y′(0) = y′(1). (These are periodic bound-

ary conditions.) The function f is given, and λ ∈ C is a constant.

Solution. Extend y and f to all of R so that they become periodic, period

1. The equation + boundary conditions then give y ∈ C1(T). If we in addition

assume that f ∈ L2(T), then (1.12) says that y′′ = f − λy ∈ L2(T) (i.e. f ′ is

“absolutely continuous”).

Assuming that f ∈ C1(T) and that f ′ is absolutely continuous we have by one

of the homeworks

(̂y′′)(n) = (2πin)2ŷ(n),

so by transforming (1.12) we get

−4π2n2ŷ(n) + λŷ(n) = f̂(n), n ∈ Z, or (1.13)

(λ− 4π2n2)ŷ(n) = f̂(n), n ∈ Z.

Case A: λ 6= 4π2n2 for all n ∈ Z. Then (1.13) gives

ŷ(n) =
f̂(n)

λ− 4π2n2
.

The sequence on the right is in ℓ1(Z), so ŷ(n) ∈ ℓ1(Z). (i.e.,
∑

|ŷ(n)| < ∞). By

Theorem 1.37,

y(t) =

∞∑

n=−∞

f̂(n)

λ− 4π2n2︸ ︷︷ ︸
=ŷ(n)

e2πint, t ∈ R.
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Thus, this is the only possible solution of (1.12).

How do we know that it is, indeed, a solution? Actually, we don’t, but by working

harder, and using the results from Chapter 0, it can be shown that y ∈ C1(T),

and

y′(t) =

∞∑

n=−∞
2πinŷ(n)e2πint,

where the sequence

2πinŷ(n) =
2πinŷ(n)

λ− 4π2n2

belongs to ℓ1(Z) (both 2πin
λ−4π2n2 and ŷ(n) belongs to ℓ2(Z), and the product of two

ℓ2-sequences is an ℓ1-sequence; see Analysis II). The sequence

(2πin)2ŷ(n) =
−4π2n2

λ− 4π2n2
f̂(n)

is an ℓ2-sequence, and

∞∑

n=−∞

−4π2n2

λ− 4π2n2
f̂(n) → f ′′(t)

in the L2-sense. Thus, f ∈ C1(T), f ′ is “absolutely continuous”, and equation

(1.12) holds in the L2-sense (but not necessary everywhere). (It is called a mild

solution of (1.12)).

Case B: λ = 4π2k2 for some k ∈ Z. Write

λ− 4π2n2 = 4π2(k2 − n2) = 4π2(k − n)(k + n).

We get two additional necessary conditions: f̂(±k) = 0. (If this condition is not

true then the equation has no solutions.)

If f̂(k) = f̂(−k) = 0, then we get infinitely many solutions: Choose ŷ(k) and

ŷ(−k) arbitrarily, and

ŷ(n) =
f̂(n)

4π2(k2 − n2)
, n 6= ±k.

Continue as in Case A.

Example 1.44. Same equation, but new boundary conditions: Interval is [0, 1/2],

and

y(0) = 0 = y(1/2).
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Extend y and f to [−1/2, 1/2] as odd functions

y(t) = −y(−t), −1/2 ≤ t ≤ 0

f(t) = −f(−t), −1/2 ≤ t ≤ 0

and then make them periodic, period 1. Continue as before. This leads to a

Fourier series with odd coefficients, which can be rewritten as a sinus-series.

Example 1.45. Same equation, interval [0, 1/2], boundary conditions

y′(0) = 0 = y′(1/2).

Extend y and f to even functions, and continue as above. This leads to a solution

with even coefficients ŷ(n), and it can be rewritten as a cosinus-series.

1.4.4 Solution of Partial Differential Equations

See course on special functions.



Chapter 2

Fourier Integrals

2.1 L1-Theory

Repetition: R = (−∞,∞),

f ∈ L1(R) ⇔
∫ ∞

−∞
|f(t)|dt <∞ (and f measurable)

f ∈ L2(R) ⇔
∫ ∞

−∞
|f(t)|2dt <∞ (and f measurable)

Definition 2.1. The Fourier transform of f ∈ L1(R) is given by

f̂(ω) =

∫ ∞

−∞
e−2πiωtf(t)dt, ω ∈ R

Comparison to chapter 1:

f ∈ L1(T) ⇒ f̂(n) defined for all n ∈ Z

f ∈ L1(R) ⇒ f̂(ω) defined for all ω ∈ R

Notation 2.2. C0(R) = “continuous functions f(t) satisfying f(t) → 0 as

t→ ±∞”. The norm in C0 is

‖f‖C0(R) = max
t∈R

|f(t)| (= sup
t∈R

|f(t)|).

Compare this to c0(Z).

Theorem 2.3. The Fourier transform F maps L1(R) → C0(R), and it is a

contraction, i.e., if f ∈ L1(R), then f̂ ∈ C0(R) and ‖f̂‖C0(R) ≤ ‖f‖L1(R), i.e.,

36
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i) f̂ is continuous

ii) f̂(ω) → 0 as ω → ±∞

iii) |f̂(ω)| ≤
∫∞
−∞|f(t)|dt, ω ∈ R.

Note: Part ii) is again the Riemann-Lesbesgue lemma.

Proof. iii) “The same” as the proof of Theorem 1.4 i).

ii) “The same” as the proof of Theorem 1.4 ii), (replace n by ω, and prove this

first in the special case where f is continuously differentiable and vanishes outside

of some finite interval).

i) (The only “new” thing):

|f̂(ω + h) − f̂(ω)| =
∣∣
∫

R

(
e−2πi(ω+h)t − e−2πiωt

)
f(t)dt

∣∣

=
∣∣
∫

R

(
e−2πiht − 1

)
e−2πiωtf(t)dt

∣∣

△-ineq.

≤
∫

R

|e−2πiht − 1||f(t)| dt→ 0 as h→ 0

(use Lesbesgue’s dominated convergens Theorem, e−2πiht → 1 as h → 0, and

|e−2πiht − 1| ≤ 2). �

Question 2.4. Is it possible to find a function f ∈ L1(R) whose Fourier trans-

form is the same as the original function?

Answer: Yes, there are many. See course on special functions. All functions

which are eigenfunctions with eigenvalue 1 are mapped onto themselves.

Special case:

Example 2.5. If h0(t) = e−πt
2
, t ∈ R, then ĥ0(ω) = e−πω

2
, ω ∈ R

Proof. See course on special functions.

Note: After rescaling, this becomes the normal (Gaussian) distribution function.

This is no coincidence!

Another useful Fourier transform is:

Example 2.6. The Fejer kernel in L1(R) is

F (t) =
(sin(πt)

πt

)2
.
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The transform of this function is

F̂ (ω) =

{
1 − |ω| , |ω| ≤ 1,

0 , otherwise.

Proof. Direct computation. (Compare this to the periodic Fejer kernel on page

23.)

Theorem 2.7 (Basic rules). Let f ∈ L1(R), τ, λ ∈ R

a) g(t) = f(t− τ) ⇒ ĝ(ω) = e−2πiωτ f̂(ω)

b) g(t) = e2πiτtf(t) ⇒ ĝ(ω) = f̂(ω − τ)

c) g(t) = f(−t) ⇒ ĝ(ω) = f̂(−ω)

d) g(t) = f(t) ⇒ ĝ(ω) = f̂(−ω)

e) g(t) = λf(λt) ⇒ ĝ(ω) = f̂(ω
λ
) (λ > 0)

f) g ∈ L1 and h = f ∗ g ⇒ ĥ(ω) = f̂(ω)ĝ(ω)

g)
g(t) = −2πitf(t)

and g ∈ L1

}
⇒

{
f̂ ∈ C1(R), and

f̂ ′(ω) = ĝ(ω)

h)
f is “absolutely continuous“

and f ′ = g ∈ L1(R)

}
⇒ ĝ(ω) = 2πiωf̂(ω).

Proof. (a)-(e): Straightforward computation.

(g)-(h): Homework(?) (or later).

The formal inversion for Fourier integrals is

f̂(ω) =

∫ ∞

−∞
e−2πiωtf(t)dt

f(t)
?
=

∫ ∞

−∞
e2πiωtf̂(ω)dω

This is true in “some cases” in “some sense”. To prove this we need some

additional machinery.

Definition 2.8. Let f ∈ L1(R) and g ∈ Lp(R), where 1 ≤ p ≤ ∞. Then we

define

(f ∗ g)(t) =

∫

R

f(t− s)g(s)ds

for all those t ∈ R for which this integral converges absolutely, i.e.,
∫

R

|f(t− s)g(s)|ds <∞.
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Lemma 2.9. With f and p as above, f ∗ g is defined a.e., f ∗ g ∈ Lp(R), and

‖f ∗ g‖Lp(R) ≤ ‖f‖L1(R)‖g‖Lp(R).

If p = ∞, then f ∗ g is defined everywhere and uniformly continuous.

Conclusion 2.10. If ‖f‖L1(R) ≤ 1, then the mapping g 7→ f ∗ g is a contraction

from Lp(R) to itself (same as in periodic case).

Proof. p = 1: “same” proof as we gave on page 21.

p = ∞: Boundedness of f ∗ g easy. To prove continuity we approximate f by a

function with compact support and show that ‖f(t)− f(t+h)‖L1 → 0 as h→ 0.

p 6= 1,∞: Significantly harder, case p = 2 found in Gasquet.

Notation 2.11. BUC(R) = “all bounded and continuous functions on R”. We

use the norm

‖f‖BUC(R) = sup
t∈R

|f(t)|.

Theorem 2.12 (“Approximate identity”). Let k ∈ L1(R), k̂(0) =
∫∞
−∞ k(t)dt =

1, and define

kλ(t) = λk(λt), t ∈ R, λ > 0.

If f belongs to one of the function spaces

a) f ∈ Lp(R), 1 ≤ p <∞ (note: p 6= ∞),

b) f ∈ C0(R),

c) f ∈ BUC(R),

then kλ ∗ f belongs to the same function space, and

kλ ∗ f → f as λ→ ∞

in the norm of the same function space, i.e.,

‖kλ ∗ f − f‖Lp(R) → 0 as λ→ ∞ if f ∈ Lp(R)

supt∈R
|(kλ ∗ f)(t) − f(t)| → 0 as λ→ ∞

{
if f ∈ BUC(R),

or f ∈ C0(R).

It also conveges a.e. if we assume that
∫∞
0

(sups≥|t||k(s)|)dt <∞.
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Proof. “The same” as the proofs of Theorems 1.29, 1.32 and 1.33. That is,

the computations stay the same, but the bounds of integration change (T → R),

and the motivations change a little (but not much). �

Example 2.13 (Standard choices of k).

i) The Gaussian kernel

k(t) = e−πt
2

, k̂(ω) = e−πω
2

.

This function is C∞ and nonnegative, so

‖k‖L1 =

∫

R

|k(t)|dt =

∫

R

k(t)dt = k̂(0) = 1.

ii) The Fejer kernel

F (t) =
sin(πt)2

(πt)2
.

It has the same advantages, and in addition

F̂ (ω) = 0 for |ω| > 1.

The transform is a triangle:

F̂ (ω) =

{
1 − |ω|, |ω| ≤ 1

0, |ω| > 1

−1                                      1

F(   )ω

iii) k(t) = e−2|t| (or a rescaled version of this function. Here

k̂(ω) =
1

1 + (πω)2
, ω ∈ R.

Same advantages (except C∞)).
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Comment 2.14. According to Theorem 2.7 (e), k̂λ(ω) → k̂(0) = 1 as λ →
∞, for all ω ∈ R. All the kernels above are “low pass filters” (non causal).

It is possible to use “one-sided” (“causal”) filters instead (i.e., k(t) = 0 for

t < 0). Substituting these into Theorem 2.12 we get “approximate identities”,

which “converge to a δ-distribution”. Details later.

Theorem 2.15. If both f ∈ L1(R) and f̂ ∈ L1(R), then the inversion formula

f(t) =

∫ ∞

−∞
e2πiωtf̂(ω)dω (2.1)

is valid for almost all t ∈ R. By redefining f on a set of measure zero we can

make it hold for all t ∈ R (the right hand side of (2.1) is continuous).

Proof. We approximate
∫

R
e2πiωtf̂(ω)dω by

∫
R
e2πiωte−ε

2πω2
f̂(ω)dω (where ε > 0 is small)

=
∫

R
e2πiωt−ε

2πω2 ∫
R
e−2πiωsf(s)dsdω (Fubini)

=
∫
s∈R

f(s)

∫

ω∈R

e−2πiω(s−t) e−ε
2πω2

︸ ︷︷ ︸
k(εω2)

dωds

︸ ︷︷ ︸
(⋆)

(Ex. 2.13 last page)

(⋆) The Fourier transform of k(εω2) at the point s− t. By Theorem 2.7 (e) this

is equal to

=
1

ε
k̂(
s− t

ε
) =

1

ε
k̂(
t− s

ε
)

(since k̂(ω) = e−πω
2

is even).

The whole thing is

∫

s∈R

f(s)
1

ε
k

(
t− s

ε

)
ds = (f ∗ k 1

ε
)(t) → f ∈ L1(R)

as ε→ 0+ according to Theorem 2.12. Thus, for almost all t ∈ R,

f(t) = lim
ε→0

∫

R

e2πiωte−ε
2πω2

f̂(ω)dω.

On the other hand, by the Lebesgue dominated convergence theorem, since

|e2πiωte−ε2πω2

f̂(ω)| ≤ |f̂(ω)| ∈ L1(R),

lim
ε→0

∫

R

e2πiωte−ε
2πω2

f̂(ω)dω =

∫

R

e2πiωtf̂(ω)dω.
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Thus, (2.1) holds a.e. The proof of the fact that

∫

R

e2πiωtf̂(ω)dω ∈ C0(R)

is the same as the proof of Theorem 2.3 (replace t by −t). �

The same proof also gives us the following “approximate inversion formula”:

Theorem 2.16. Suppose that k ∈ L1(R), k̂ ∈ L1(R), and that

k̂(0) =

∫

R

k(t)dt = 1.

If f belongs to one of the function spaces

a) f ∈ Lp(R), 1 ≤ p <∞

b) f ∈ C0(R)

c) f ∈ BUC(R)

then ∫

R

e2πiωtk̂(εω)f̂(ω)dω → f(t)

in the norm of the given space (i.e., in Lp-norm, or in the sup-norm), and also

a.e. if
∫∞
0

(sups≥|t||k(s)|)dt <∞.

Proof. Almost the same as the proof given above. If k is not even, then we

end up with a convolution with the function kε(t) = 1
ε
k(−t/ε) instead, but we

can still apply Theorem 2.12 with k(t) replaced by k(−t). �

Corollary 2.17. The inversion in Theorem 2.15 can be interpreted as follows:

If f ∈ L1(R) and f̂ ∈ L1(R), then,

ˆ̂
f(t) = f(−t) a.e.

Here
ˆ̂
f(t) = the Fourier transform of f̂ evaluated at the point t.

Proof. By Theorem 2.15,

f(t) =

∫

R

e−2πi(−t)ω f̂(ω)dω

︸ ︷︷ ︸
Fourier transform of f̂ at the point (−t)

a.e.
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Corollary 2.18.
ˆ̂
ˆ̂
f(t) = f(t) (If we repeat the Fourier transform 4 times, then

we get back the original function). (True at least if f ∈ L1(R) and f̂ ∈ L1(R). )

As a prelude (=preludium) to the L2-theory we still prove some additional results:

Lemma 2.19. Let f ∈ L1(R) and g ∈ L1(R). Then

∫

R

f(t)ĝ(t)dt =

∫

R

f̂(s)g(s)ds

Proof.

∫

R

f(t)ĝ(t)dt =

∫

t∈R

f(t)

∫

s∈R

e−2πitsg(s)dsdt (Fubini)

=

∫

s∈R

(∫

t∈R

f(t)e−2πistdt

)
g(s)ds

=

∫

s∈R

f̂(s)g(s)ds. �

Theorem 2.20. Let f ∈ L1(R), h ∈ L1(R) and ĥ ∈ L1(R). Then

∫

R

f(t)h(t)dt =

∫

R

f̂(ω)ĥ(ω)dω. (2.2)

Specifically, if f = h, then (f ∈ L2(R) and)

‖f‖L2(R) = ‖f̂‖L2(R). (2.3)

Proof. Since h(t) =
∫
ω∈R

e2πiωtĥ(ω)dω we have

∫

R

f(t)h(t)dt =

∫

t∈R

f(t)

∫

ω∈R

e−2πiωtĥ(ω)dωdt (Fubini)

=

∫

s∈R

(∫

t∈R

f(t)e−2πistdt

)
ĥ(ω)dω

=

∫

R

f̂(ω)ĥ(ω)dω. �

2.2 Rapidly Decaying Test Functions

(“Snabbt avtagande testfunktioner”).

Definition 2.21. S = the set of functions f with the following properties

i) f ∈ C∞(R) (infinitely many times differentiable)
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ii) tkf (n)(t) → 0 as t→ ±∞ and this is true for all

k, n ∈ Z+ = {0, 1, 2, 3, . . .}.

Thus: Every derivative of f → 0 at infinity faster than any negative power of t.

Note: There is no natural norm in this space (it is not a “Banach” space).

However, it is possible to find a complete, shift-invariant metric on this space (it

is a Frechet space).

Example 2.22. f(t) = P (t)e−πt
2 ∈ S for every polynomial P (t). For example,

the Hermite functions are of this type (see course in special functions).

Comment 2.23. Gripenberg denotes S by C∞
↓ (R). The functions in S are called

rapidly decaying test functions.

The main result of this section is

Theorem 2.24. f ∈ S ⇐⇒ f̂ ∈ S

That is, both the Fourier transform and the inverse Fourier transform maps this

class of functions onto itself. Before proving this we prove the following

Lemma 2.25. We can replace condition (ii) in the definition of the class S by

one of the conditions

iii)
∫

R
|tkf (n)(t)|dt <∞, k, n ∈ Z+ or

iv) |
(
d
dt

)n
tkf(t)| → 0 as t→ ±∞, k, n ∈ Z+

without changing the class of functions S.

Proof. If ii) holds, then for all k, n ∈ Z+,

sup
t∈R

|(1 + t2)tkf (n)(t)| <∞

(replace k by k + 2 in ii). Thus, for some constant M,

|tkf (n)(t)| ≤ M

1 + t2
=⇒

∫

R

|tkf (n)(t)|dt <∞.

Conversely, if iii) holds, then we can define g(t) = tk+1f (n)(t) and get

g′(t) = (k + 1)tkf (n)(t)︸ ︷︷ ︸
∈L1

+ tk+1f (n+1)(t)︸ ︷︷ ︸
∈L1

,
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so g′ ∈ L1(R), i.e., ∫ ∞

−∞
|g′(t)|dt <∞.

This implies

|g(t)| ≤ |g(0) +

∫ t

0

g′(s)ds|

≤ |g(0)| +
∫ t

0

|g′(s)|ds

≤ |g(0)| +
∫ ∞

−∞
|g′(s)|ds = |g(0)| + ‖g′‖L1 ,

so g is bounded. Thus,

tkf (n)(t) =
1

t
g(t) → 0 as t→ ±∞.

The proof that ii) ⇐⇒ iv) is left as a homework. �

Proof of Theorem 2.24. By Theorem 2.7, the Fourier transform of

(−2πit)kf (n)(t) is

(
d

dω

)k
(2πiω)nf̂(ω).

Therefore, if f ∈ S, then condition iii) on the last page holds, and by Theorem

2.3, f̂ satisfies the condition iv) on the last page. Thus f̂ ∈ S. The same ar-

gument with e−2πiωt replaced by e+2πiωt shows that if f̂ ∈ S, then the Fourier

inverse transform of f̂ (which is f) belongs to S. �

Note: Theorem 2.24 is the basis for the theory of Fourier transforms of distribu-

tions. More on this later.

2.3 L2-Theory for Fourier Integrals

As we saw earlier in Lemma 1.10, L2(T) ⊂ L1(T). However, it is not true that

L2(R) ⊂ L1(R). Counter example:

f(t) =
1√

1 + t2





∈ L2(R)

6∈ L1(R)

∈ C∞(R)

(too large at ∞).

So how on earth should we define f̂(ω) for f ∈ L2(R), if the integral
∫

R

e−2πintf(t)dt
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does not converge?

Recall: Lebesgue integral converges ⇐⇒ converges absolutely ⇐⇒
∫
|e−2πintf(t)|dt <∞ ⇐⇒ f ∈ L1(R).

We are saved by Theorem 2.20. Notice, in particular, condition (2.3) in that

theorem!

Definition 2.26 (L2-Fourier transform).

i) Approximate f ∈ L2(R) by a sequence fn ∈ S which converges to f in

L2(R). We do this e.g. by “smoothing” and “cutting” (“utjämning” och

“klippning”): Let k(t) = e−πt
2
, define

kn(t) = nk(nt), and

fn(t) = k

(
t

n

)

︸ ︷︷ ︸
⋆

(kn ∗ f)(t)︸ ︷︷ ︸
⋆⋆

︸ ︷︷ ︸
the product belongs to S

(⋆) this tends to zero faster than any polynomial as t→ ∞.

(⋆⋆) “smoothing” by an approximate identity, belongs toC∞ and is bounded.

By Theorem 2.12 kn ∗ f → f in L2 as n → ∞. The functions k
(
t
n

)
tend

to k(0) = 1 at every point t as n → ∞, and they are uniformly bounded

by 1. By using the appropriate version of the Lesbesgue convergence we

let fn → f in L2(R) as n→ ∞.

ii) Since fn converges in L2, also f̂n must converge to something in L2. More

about this in “Analysis II”. This follows from Theorem 2.20. (fn → f ⇒
fn Cauchy sequence ⇒ f̂n Cauchy seqence ⇒ f̂n converges.)

iii) Call the limit to which fn converges “The Fourier transform of f”, and

denote it f̂ .

Definition 2.27 (Inverse Fourier transform). We do exactly as above, but re-

place e−2πiωt by e+2πiωt.

Final conclusion:
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Theorem 2.28. The “extended” Fourier transform which we have defined above

has the following properties: It maps L2(R) one-to-one onto L2(R), and if f̂ is the

Fourier transform of f , then f is the inverse Fourier transform of f̂ . Moreover,

all norms, distances and inner products are preserved.

Explanation:

i) “Normes preserved” means
∫

R

|f(t)|2dt =

∫

R

|f̂(ω)|2dω,

or equivalently, ‖f‖L2(R) = ‖f̂‖L2(R).

ii) “Distances preserved” means

‖f − g‖L2(R) = ‖f̂ − ĝ‖L2(R)

(apply i) with f replaced by f − g)

iii) “Inner product preserved” means
∫

R

f(t)g(t)dt =

∫

R

f̂(ω)ĝ(ω)dω,

which is often written as

〈f, g〉L2(R) = 〈f̂ , ĝ〉L2(R).

This was theory. How to do in practice?

One answer: We saw earlier that if [a, b] is a finite interval, and if f ∈ L2[a, b] ⇒
f ∈ L1[a, b], so for each T > 0, the integral

f̂T (ω) =

∫ T

−T
e−2πiωtf(t)dt

is defined for all ω ∈ R. We can try to let T → ∞, and see what happens. (This

resembles the theory for the inversion formula for the periodical L2-theory.)

Theorem 2.29. Suppose that f ∈ L2(R). Then

lim
T→∞

∫ T

−T
e−2πiωtf(t)dt = f̂(ω)

in the L2-sense as T → ∞, and likewise

lim
T→∞

∫ T

−T
e2πiωtf̂(ω)dω = f(t)

in the L2-sense.
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Proof. Much too hard to be presented here. Another possibility: Use the Fejer

kernel or the Gaussian kernel, or any other kernel, and define

f̂(ω) = limn→∞
∫

R
e−2πiωtk

(
t
n

)
f(t)dt,

f(t) = limn→∞
∫

R
e+2πiωtk̂

(
ω
n

)
f̂(ω)dω.

We typically have the same type of convergence as we had in the Fourier inversion

formula in the periodic case. (This is a well-developed part of mathematics, with

lots of results available.) See Gripenberg’s compendium for some additional

results.

2.4 An Inversion Theorem

From time to time we need a better (= more useful) inversion theorem for the

Fourier transform, so let us prove one here:

Theorem 2.30. Suppose that f ∈ L1(R) + L2(R) (i.e., f = f1 + f2, where

f1 ∈ L1(R) and f2 ∈ L2(R)). Let t0 ∈ R, and suppose that

∫ t0+1

t0−1

∣∣∣f(t) − f(t0)

t− t0

∣∣∣dt <∞. (2.4)

Then

f(t0) = lim
S→∞
T→∞

∫ T

−S
e2πiωt0 f̂(ω)dω, (2.5)

where f̂(ω) = f̂1(ω) + f̂2(ω).

Comment: Condition (2.4) is true if, for example, f is differentiable at the point

t0.

Proof. Step 1. First replace f(t) by g(t) = f(t+ t0). Then

ĝ(ω) = e2πiωt0 f̂(ω),

and (2.5) becomes

g(0) = lim
S→∞
T→∞

∫ T

−S
ĝ(ω)dω,

and (2.4) becomes ∫ 1

−1

∣∣∣g(t− t0) − g(0)

t− t0

∣∣∣dt <∞.

Thus, it suffices to prove the case where t0 = 0 .
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Step 2: We know that the theorem is true if g(t) = e−πt
2

(See Example 2.5 and

Theorem 2.15). Replace g(t) by

h(t) = g(t) − g(0)e−πt
2

.

Then h satisfies all the assumptions which g does, and in addition, h(0) = 0.

Thus it suffices to prove the case where both (⋆) t0 = 0 and f(0) = 0 .

For simplicity we write f instead of h but assume (⋆). Then (2.4) and (2.5)

simplify:

∫ 1

−1

∣∣∣f(t)

t

∣∣∣dt < ∞, (2.6)

lim
S→∞
T→∞

∫ T

−S
f̂(ω)dω = 0. (2.7)

Step 3: If f ∈ L1(R), then we argue as follows. Define

g(t) =
f(t)

−2πit
.

Then g ∈ L1(R). By Fubini’s theorem,

∫ T

−S
f̂(ω)dω =

∫ T

−S

∫ ∞

−∞
e−2πiωtf(t)dtdω

=

∫ ∞

−∞

∫ T

−S
e−2πiωtdωf(t)dt

=

∫ ∞

−∞

[
1

−2πit
e−2πiωt

]T

−S
f(t)dt

=

∫ ∞

−∞

[
e−2πiT t − e−2πi(−S)t

] f(t)

−2πit
dt

= ĝ(T ) − ĝ(−S),

and this tends to zero as T → ∞ and S → ∞ (see Theorem 2.3). This proves

(2.7).

Step 4: If instead f ∈ L2(R), then we use Parseval’s identity

∫ ∞

−∞
f(t)h(t)dt =

∫ ∞

−∞
f̂(ω)ĥ(ω)dω

in a clever way: Choose

ĥ(ω) =

{
1, −S ≤ t ≤ T,

0, otherwise.



CHAPTER 2. FOURIER INTEGRALS 50

Then the inverse Fourier transform h(t) of ĥ is

h(t) =

∫ T

−S
e2πiωtdω

=

[
1

2πit
e2πiωt

]T

−S
=

1

2πit

[
e2πiT t − e2πi(−S)t

]

so Parseval’s identity gives

∫ T

−S
f̂(ω)dω =

∫ ∞

−∞
f(t)

1

−2πit

[
e−2πiT t − e−2πi(−S)t

]
dt

= (with g(t) as in Step 3)

=

∫ ∞

−∞

[
e−2πiT t − e−2πi(S)t

]
g(t)dt

= ĝ(T ) − ĝ(−S) → 0 as

{
T → ∞,

S → ∞.

Step 5: If f = f1 + f2, where f1 ∈ L1(R) and f2 ∈ L2(R), then we apply Step 3

to f1 and Step 4 to f2, and get in both cases (2.7) with f replaced by f1 and f2.

�

Note: This means that in “most cases” where f is continuous at t0 we have

f(t0) = lim
S→∞
T→∞

∫ T

−S
e2πiωt0 f̂(ω)dω.

(continuous functions which do not satisfy (2.4) do exist, but they are difficult

to find.) In some cases we can even use the inversion formula at a point where

f is discontinuous.

Theorem 2.31. Suppose that f ∈ L1(R) + L2(R). Let t0 ∈ R, and suppose that

the two limits

f(t0+) = lim
t↓t0

f(t)

f(t0−) = lim
t↑t0

f(t)

exist, and that

∫ t0+1

t0

∣∣∣f(t) − f(t0+)

t− t0

∣∣∣dt < ∞,

∫ t0

t0−1

∣∣∣f(t) − f(t0−)

t− t0

∣∣∣dt < ∞.
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Then

lim
T→∞

∫ T

−T
e2πiωt0 f̂(ω)dω =

1

2
[f(t0+) + f(t0−)].

Note: Here we integrate
∫ T
−T , not

∫ T
−S, and the result is the average of the right

and left hand limits.

Proof. As in the proof of Theorem 2.30 we may assume that

Step 1: t0 = 0 , (see Step 1 of that proof)

Step 2: f(t0+) + f(t0−) = 0 , (see Step 2 of that proof).

Step 3: The claim is true in the special case where

g(t) =

{
e−t, t > 0,

−et, t < 0,

because g(0+) = 1, g(0−) = −1, g(0+) + g(0−) = 0, and
∫ T

−T
ĝ(ω)dω = 0 for all T,

since f is odd =⇒ ĝ is odd.

Step 4: Define h(t) = f(t)−f(0+) · g(t), where g is the function in Step 3. Then

h(0+) = f(0+) − f(0+) = 0 and

h(0−) = f(0−) − f(0+)(−1) = 0, so

h is continuous. Now apply Theorem 2.30 to h. It gives

0 = h(0) = lim
T→∞

∫ T

−T
ĥ(ω)dω.

Since also

0 = f(0+)[g(0+) + g(0−)] = lim
T→∞

∫ T

−T
ĝ(ω)dω,

we therefore get

0 = f(0+) + f(0−) = lim
T→∞

∫ T

−T
[ĥ(ω) + ĝ(ω)]dω = lim

T→∞

∫ T

−T
f̂(ω)dω. �

Comment 2.32. Theorems 2.30 and 2.31 also remain true if we replace

lim
T→∞

∫ T

−T
e2πiωtf̂(ω)dω

by

lim
ε→0

∫ ∞

−∞
e2πiωte−π(εω)2 f̂(ω)dω (2.8)

(and other similar “summability” formulas). Compare this to Theorem 2.16. In

the case of Theorem 2.31 it is important that the “cutoff kernel” (= e−π(εω)2 in

(2.8)) is even.
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2.5 Applications

2.5.1 The Poisson Summation Formula

Suppose that f ∈ L1(R) ∩ C(R), that
∑∞

n=−∞|f̂(n)| < ∞ (i.e., f̂ ∈ ℓ1(Z)), and

that
∑∞

n=−∞ f(t+n) converges uniformly for all t in some interval (−δ, δ). Then

∞∑

n=−∞
f(n) =

∞∑

n=−∞
f̂(n) (2.9)

Note: The uniform convergence of
∑
f(t + n) can be difficult to check. One

possible way out is: If we define

εn = sup
−δ<t<δ

|f(t+ n)|,

and if
∑∞

n=−∞ εn < ∞, then
∑∞

n=−∞ f(t + n) converges (even absolutely), and

the convergence is uniform in (−δ, δ). The proof is roughly the same as what we

did on page 29.

Proof of (2.9). We first construct a periodic function g ∈ L1(T) with the

Fourier coefficients f̂(n):

f̂(n) =

∫ ∞

−∞
e−2πintf(t)dt

=
∞∑

k=−∞

∫ k+1

k

e−2πintf(t)dt

t=k+s
=

∞∑

k=−∞

∫ 1

0

e−2πinsf(s+ k)ds

Thm 0.14
=

∫ 1

0

e−2πins

( ∞∑

k=−∞
f(s+ k)

)
ds

= ĝ(n), where g(t) =

∞∑

n=−∞
f(t+ n).

(For this part of the proof it is enough to have f ∈ L1(R). The other conditions

are needed later.)

So we have ĝ(n) = f̂(n). By the inversion formula for the periodic Fourier

transform:

g(0) =

∞∑

n=−∞
e2πin0ĝ(n) =

∞∑

n=−∞
ĝ(n) =

∞∑

n=−∞
f̂(n),



CHAPTER 2. FOURIER INTEGRALS 53

provided (=förutsatt) that we are allowed to use the Fourier inversion formula.

This is allowed if g ∈ C[−δ, δ] and ĝ ∈ ℓ1(Z) (Theorem 1.37). This was part of

our assumption.

In addition we need to know that the formula

g(t) =

∞∑

n=−∞
f(t+ n)

holds at the point t = 0 (almost everywhere is no good, we need it in exactly

this point). This is OK if
∑∞

n=−∞ f(t + n) converges uniformly in [−δ, δ] (this

also implies that the limit function g is continuous).

Note: By working harder in the proof, Gripenberg is able to weaken some of the

assumptions. There are also some counter-examples on how things can go wrong

if you try to weaken the assumptions in the wrong way.

2.5.2 Is L̂1(R) = C0(R) ?

That is, is every function g ∈ C0(R) the Fourier transform of a function f ∈
L1(R)?

The answer is no, as the following counter-example shows. Take

g(ω) =





ω
ln 2

, |ω| ≤ 1,
1

ln(1+ω)
, ω > 1,

− 1
ln(1−ω)

, ω < −1.

Suppose that this would be the Fourier transform of a function f ∈ L1(R). As

in the proof on the previous page, we define

h(t) =
∞∑

n=−∞
f(t+ n).

Then (as we saw there), h ∈ L1(T), and ĥ(n) = f̂(n) for n = 0,±1,±2, . . ..

However, since
∑∞

n=1
1
n
ĥ(n) = ∞, this is not the Fourier sequence of any h ∈

L1(T) (by Theorem 1.38). Thus:

Not every h ∈ C0(R) is the Fourier transform of some f ∈ L1(R).

But:

f ∈ L1(R) ⇒ f̂ ∈ C0(R) ( Page 36)

f ∈ L2(R) ⇔ f̂ ∈ L2(R) ( Page 47)

f ∈ S ⇔ f̂ ∈ S ( Page 44)
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2.5.3 The Euler-MacLauren Summation Formula

Let f ∈ C∞(R+) (where R+ = [0,∞)), and suppose that

f (n) ∈ L1(R+)

for all n ∈ Z+ = {0, 1, 2, 3 . . .}. We define f(t) for t < 0 so that f(t) is even.

Warning: f is continuous at the origin, but f ′ may be discontinuous! For exam-

ple, f(t) = e−|2t|

f(t)=e −2|t|

We want to use Poisson summation formula. Is this allowed?

By Theorem 2.7, f̂ (n) = (2πiω)nf̂(ω), and f̂ (n) is bounded, so

sup
ω∈R

|(2πiω)n||f̂(ω)| <∞ for all n ⇒
∞∑

n=−∞
|f̂(n)| <∞.

By the note on page 52, also
∑∞

n=−∞ f(t+n) converges uniformly in (−1, 1). By

the Poisson summation formula:

∞∑

n=0

f(n) =
1

2
f(0) +

1

2

∞∑

n=−∞
f(n)

=
1

2
f(0) +

1

2

∞∑

n=−∞
f̂(n)

=
1

2
f(0) +

1

2
f̂(0) +

1

2

∞∑

n=1

[
f̂(n) + f̂(−n)

]

=
1

2
f(0) +

1

2
f̂(0) +

∞∑

n=1

∫ ∞

−∞

1

2

(
e2πint + e−2πint

)
︸ ︷︷ ︸

cos(2πnt)

f(t)dt

=
1

2
f(0) +

∫ ∞

0

f(t)dt+

∞∑

n=1

∫ ∞

0

cos(2πnt)f(t)dt

Here we integrate by parts several times, always integrating the cosine-function

and differentiating f . All the substitution terms containing odd derivatives of
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f vanish since sin(2πnt) = 0 for t = 0. See Gripenberg for details. The result

looks something like

∞∑

n=0

f(n) =

∫ ∞

0

f(t)dt+
1

2
f(0) − 1

12
f ′(0) +

1

720
f ′′′(0) − 1

30240
f (5)(0) + . . .

2.5.4 Schwartz inequality

The Schwartz inequality will be used below. It says that

|〈f, g〉| ≤ ‖f‖L2‖g‖L2

(true for all possible L2-spaces, both L2(R) and L2(T) etc.)

2.5.5 Heisenberg’s Uncertainty Principle

For all f ∈ L2(R), we have

(∫ ∞

−∞
t2|f(t)|2dt

)(∫ ∞

−∞
ω2|f̂(ω)|2dω

)
≥ 1

16π2

∥∥f
∥∥4

L2(R)

Interpretation: The more concentrated f is in the neighborhood of zero, the

more spread out must f̂ be, and conversely. (Here we must think that ‖f‖L2(R)

is fixed, e.g. ‖f‖L2(R) = 1.)

In quantum mechanics: The product of “time uncertainty” and “space uncer-

tainty” cannot be less than a given fixed number.
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Proof. We begin with the case where f ∈ S. Then

16π

∫

R

|tf(t)|dt
∫

R

|ωf̂(ω)|dω = 4

∫

R

|tf(t)|dt
∫

R

|f ′(t)|dt

(f̂ ′(ω) = 2πiωf̂(ω) and Parseval’s iden. holds). Now use Scwartz ineq.

≥ 4

(∫

R

|tf(t)||f ′(t)|dt
)

= 4

(∫

R

|tf(t)||f ′(t)|dt
)

≥ 4

(∫

R

Re[tf(t)f ′(t)]dt

)

= 4

(∫

R

t

[
1

2

(
f(t)f ′(t) + f(t)f ′(t)

)]
dt

)2

=

∫

R

t
d

dt
(f(t)f(t))︸ ︷︷ ︸

=|f(t)|

dt (integrate by parts)

=
(
[t|f(t)|]∞−∞︸ ︷︷ ︸

=0

−
∫ ∞

−∞
|f(t)|dt

)

=

(∫ ∞

−∞
|f(t)|dt

)

This proves the case where f ∈ S. If f ∈ L(R), but f ∈ S, then we choose a

sequence of functions fn ∈ S so that

∫ ∞

−∞
|fn(t)|dt →

∫ ∞

−∞
|f(t)|dt and

∫ ∞

−∞
|tfn(t)|dt →

∫ ∞

−∞
|tf(t)|dt and

∫ ∞

−∞
|ωf̂n(ω)|dω →

∫ ∞

−∞
|ωf̂(ω)|dω

(This can be done, not quite obvious). Since the inequality holds for each fn, it

must also hold for f .

2.5.6 Weierstrass’ Non-Differentiable Function

Define σ(t) =
∑∞

k=0 a
k cos(2πbkt), t ∈ R where 0 < a < 1 and ab≥ 1.

Lemma 2.33. This sum defines a continuous function σ which is not differ-

entiable at any point.
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Proof. Convergence easy: At each t,

∞∑

k=0

|ak cos(2πbkt)| ≤
∞∑

k=0

ak =
1

1 − a
<∞,

and absolute convergence ⇒ convergence. The convergence is even uniform: The

error is

∣∣
∞∑

k=K

ak cos(2πbkt)
∣∣ ≤

∞∑

k=K

|ak cos(2πbkt)| ≤
∞∑

k=K

ak =
aK

1 − a
→ 0 as K → ∞

so by choosing K large enough we can make the error smaller than ε, and the

same K works for all t.

By “Analysis II”: If a sequence of continuous functions converges uniformly, then

the limit function is continuous. Thus, σ is continuous.

Why is it not differentiable? At least does the formal derivative not converge:

Formally we should have

σ′(t) =

∞∑

k=0

ak · 2πbk(−1) sin(2πbkt),

and the terms in this serie do not seem to go to zero (since (ab)k ≥ 1). (If a sum

converges, then the terms must tend to zero.)

To prove that σ is not differentiable we cut the sum appropriatly: Choose some

function ϕ ∈ L1(R) with the following properties:

i) ϕ̂(1) = 1

ii) ϕ̂(ω) = 0 for ω ≤ 1
b

and ω > b

iii)
∫∞
−∞|tϕ(t)|dt <∞.

 0          1/b          1            b

ϕ(ω)

We can get such a function from the Fejer kernel: Take the square of the Fejer

kernel (⇒ its Fourier transform is the convolution of f̂ with itself), squeeze it

(Theorem 2.7(e)), and shift it (Theorem 2.7(b)) so that it vanishes outside of
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(1
b
, b), and ϕ̂(1) = 1. (Sort of like approximate identity, but ϕ̂(1) = 1 instead of

ϕ̂(0) = 1.)

Define ϕj(t) = bjϕ(bjt), t ∈ R. Then ϕ̂j(ω) = ϕ̂(ωb−j), so ϕ̂(bj) = 1 and

ϕ̂(ω) = 0 outside of the interval (bj−1, bj+1).

ϕ 0ϕ 1ϕ 2ϕ 3

b4 b3 b2 b 1 1/b

Put fj = σ ∗ ϕj . Then

fj(t) =

∫ ∞

−∞
σ(t− s)ϕj(s)ds

=

∫ ∞

−∞

∞∑

k=0

ak
1

2

[
e2πib

k(t−s) + e−2πibk(t−s)
]
ϕj(s)ds

(by the uniform convergence)

=
∞∑

k=0

ak

2


e2πibkt︸ ︷︷ ︸

=δk
j

ϕj(b
k) + e−2πibktϕj(−bk)︸ ︷︷ ︸

=0




=
1

2
aje2πib

kt.

(Thus, this particular convolution picks out just one of the terms in the series.)

Suppose (to get a contradiction) that σ can be differentiated at some point t ∈ R.

Then the function

η(s) =

{
σ(t+s)−σ(t)

s
− σ′(t) , s 6= 0

0 , s = 0

is (uniformly) continuous and bounded, and η(0) = 0. Write this as

σ(t− s) = −sη(−s) + σ(t) − sσ′(t)
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i.e.,

fj(t) =

∫

R

σ(t− s)ϕj(s)ds

=

∫

R

−sη(−s)ϕj(s)ds+ σ(t)

∫

R

ϕj(s)ds

︸ ︷︷ ︸
=ϕ̂j(0)=0

−σ′(t)

∫

R

sϕj(s)ds

︸ ︷︷ ︸
ϕ̂′

j
(0)

−2πi
=0

= −
∫

R

sη(−s)bjϕ(bjs)ds

bjs=t
= −bj

∫

R

η(
−s
bj

)
︸ ︷︷ ︸

→0 pointwise

sϕ(s)ds︸ ︷︷ ︸
∈L1

→ 0 by the Lesbesgue dominated convergence theorem as j → ∞.

Thus,

b−jfj(t) → 0 as j → ∞ ⇔ 1

2

(a
b

)j
e2πib

jt → 0 as j → ∞.

As |e2πibjt| = 1, this is ⇔
(
a
b

)j → 0 as j → ∞. Impossible, since a
b
≥ 1. Our

assumption that σ is differentiable at the point t must be wrong ⇒ σ(t) is not

differentiable in any point!

2.5.7 Differential Equations

Solve the differential equation

u′′(t) + λu(t) = f(t), t ∈ R (2.10)

where we require that f ∈ L2(R), u ∈ L2(R), u ∈ C1(R), u′ ∈ L2(R) and that u′

is of the form

u′(t) = u′(0) +

∫ t

0

v(s)ds,

where v ∈ L2(R) (that is, u′ is “absolutely continuous” and its “generalized

derivative” belongs to L2).

The solution of this problem is based on the following lemmas:

Lemma 2.34. Let k = 1, 2, 3, . . .. Then the following conditions are equivalent:

i) u ∈ L2(R)∩Ck−1(R), u(k−1) is “absolutely continuous” and the “generalized

derivative of u(k−1)” belongs to L2(R).
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ii) û ∈ L2(R) and
∫

R
|ωkû(k)|2dω <∞.

Proof. Similar to the proof of one of the homeworks, which says that the same

result is true for L2-Fourier series. (There ii) is replaced by
∑

|nf̂(n)|2 <∞.)

Lemma 2.35. If u is as in Lemma 2.34, then

û(k)(ω) = (2πiω)kû(ω)

(compare this to Theorem 2.7(g)).

Proof. Similar to the same homework.

Solution: By the two preceding lemmas, we can take Fourier transforms in (2.10),

and get the equivalent equation

(2πiω)2û(ω)+λû(ω) = f̂(ω), ω ∈ R ⇔ (λ−4π2ω2)û(ω) = f̂(ω), ω ∈ R (2.11)

Two cases:

Case 1: λ−4π2ω2 6= 0, for all ω ∈ R, i.e., λ must not be zero and not a positive

number (negative is OK, complex is OK). Then

û(ω) =
f̂(ω)

λ− 4π2ω2
, ω ∈ R

so u = k ∗ f , where k = the inverse Fourier transform of

k̂(ω) =
1

λ− 4π2ω2
.

This can be computed explicitly. It is called “Green’s function” for this problem.

Even without computing k(t), we know that

• k ∈ C0(R) (since k̂ ∈ L1(R).)

• k has a generalized derivative in L2(R) (since
∫

R
|ωk̂(ω)|2dω <∞.)

• k does not have a second generalized derivative in L2 (since
∫

R
|ω2k̂(ω)|2dω = ∞.)

How to compute k? Start with a partial fraction expansion. Write

λ = α2 for some α ∈ C
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(α = pure imaginary if λ < 0). Then

1

λ− 4π2ω2
=

1

α2 − 4π2ω2
=

1

α− 2πω
· 1

α+ 2πω

=
A

α− 2πω
+

B

α + 2πω

=
Aα + 2πωA+Bα− 2πωB

(α− 2πω)(α+ 2πω)

⇒ (A+B)α = 1

(A− B)2πω = 0

}
⇒ A = B =

1

2α

Now we must still invert 1
α+2πω

and 1
α−2πω

. This we do as follows:

Auxiliary result 1: Compute the transform of

f(t) =

{
e−zt , t ≥ 0,

0 , t < 0,

where Re(z) > 0 (⇒ f ∈ L2(R) ∩L1(R), but f /∈ C(R) because of the jump at

the origin). Simply compute:

f̂(ω) =

∫ ∞

0

e−2πiωte−ztdt

=

[
e−(z+2πiω)t

−(z + 2πiω)

]∞

0

=
1

2πiω + z
.

Auxiliary result 2: Compute the transform of

f(t) =

{
ezt , t ≤ 0,

0 , t > 0,

where Re(z) > 0 (⇒ f ∈ L2(R) ∩ L1(R), but f /∈ C(R))

⇒ f̂(ω) =

∫ 0

−∞
e2πiωteztdt

=

[
e(z−2πiω)t

(z − 2πiω)t

]0

−∞
=

1

z − 2πiω
.

Back to the function k:

k̂(ω) =
1

2α

(
1

α− 2πω
+

1

α + 2πω

)

=
1

2α

(
i

iα− 2πiω
+

i

iα + 2πiω

)
.
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We defined α by requiring α2 = λ. Choose α so that Im(α) < 0 (possible because

α is not a positive real number).

⇒ Re(iα) > 0, and k̂(ω) =
1

2α

(
i

iα− 2πiω
+

i

iα + 2πiω

)

The auxiliary results 1 and 2 gives:

k(t) =

{
i

2α
e−iαt , t ≥ 0

i
2α
eiαt , t < 0

and

u(t) = (k ∗ f)(t) =

∫ ∞

−∞
k(t− s)f(s)ds

Special case: λ = negative number = −a2, where a > 0. Take α = −ia
⇒ iα = i(−i)a = a, and

k(t) =

{
− 1

2a
e−at , t ≥ 0

− 1
2a
eat , t < 0 i.e.

k(t) = − 1

2a
e−|at|, t ∈ R

Thus, the solution of the equation

u′′(t) − a2u(t) = f(t), t ∈ R,

where a > 0, is given by

u = k ∗ f where

k(t) = − 1

2a
e−a|t|, t ∈ R

This function k has many names, depending on the field of mathematics you are

working in:

i) Green’s function (PDE-people)

ii) Fundamental solution (PDE-people, Functional Analysis)

iii) Resolvent (Integral equations people)
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Case 2: λ = a2 = a nonnegative number. Then

f̂(ω) = (a2 − 4π2ω2)û(ω) = (a− 2πω)(a+ 2πω)û(ω).

As û(ω) ∈ L2(R) we get a necessary condition for the existence of a solution: If

a solution exists then

∫

R

∣∣ f̂(ω)

(a− 2πω)(a+ 2πω)

∣∣2dω <∞. (2.12)

(Since the denominator vanishes for ω = ± a
2π

, this forces f̂ to vanish at ± a
2π

,

and to be “small” near these points.)

If the condition (2.12) holds, then we can continue the solution as before.

Sideremark: These results mean that this particular problem has no “eigenval-

ues” and no “eigenfunctions”. Instead it has a “contionuous spectrum” consisting

of the positive real line. (Ignore this comment!)

2.5.8 Heat equation

This equation:





∂
∂t
u(t, x) = ∂2

∂x2u(t, x) + g(t, x),

{
t > 0

x ∈ R

u(0, x) = f(x) (initial value)

is solved in the same way. Rather than proving everything we proceed in a formal

mannor (everything can be proved, but it takes a lot of time and energy.)

Transform the equation in the x-direction,

û(t, γ) =

∫

R

e−2πiγxu(t, x)dx.

Assuming that
∫

R
e−2πiγx ∂

∂t
u(t, x) = ∂

∂t

∫
R
e−2πiγxu(t, x)dx we get

{
∂
∂t
û(t, γ) = (2πiγ)2û(t, γ) + ĝ(t, γ)

û(0, γ) = f̂(γ)

⇔{
∂
∂t
û(t, γ) = −4π2γ2û(t, γ) + ĝ(t, γ)

û(0, γ) = f̂(γ)
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We solve this by using the standard “variation of constants lemma”:

û(t, γ) = f̂(γ)e−4π2γ2t

︸ ︷︷ ︸ +

∫ t

0

e−4π2γ2(t−s)ĝ(s, γ)ds

︸ ︷︷ ︸
= û1(t, γ) + û2(t, γ)

We can invert e−4π2γ2t = e−π(2
√
πtγ)2 = e−π(γ/λ)2 where λ = (2

√
πt)−1:

According to Theorem 2.7 and Example 2.5, this is the transform of

k(t, x) =
1

2
√
πt
e
−π( x

2
√

πt
)2

=
1

2
√
πt
e−

x2

4t

We know that f̂(γ)k̂(γ) = k̂ ∗ f(γ), so

u1(t, x) =
∫∞
−∞

1
2
√
πt
e−(x−y)2/4tf(y)dy,

(By the same argument:

s and t− s are fixed when we transform.)

u2(t, x) =
∫ t
0
(k ∗ g)(s)ds

=
∫ t
0

∫∞
−∞

1

2
√
π(t−s)

e−(x−y)2/4(t−s)g(s, y)dyds,

u(t, x) = u1(t, x) + u2(t, x)

The function

k(t, x) =
1

2
√
πt
e−

x2

4t

is the Green’s function or the fundamental solution of the heat equation on the

real line R = (−∞,∞), or the heat kernel.

Note: To prove that this “solution” is indeed a solution we need to assume that

- all functions are in L2(R) with respect to x, i.e.,
∫ ∞

−∞
|u(t, x)|2dx <∞,

∫ ∞

−∞
|g(t, x)|2dx <∞,

∫ ∞

−∞
|f(x)|2dx <∞,

- some (weak) continuity assumptions with respect to t.

2.5.9 Wave equation




∂2

∂t2
u(t, x) = ∂2

∂x2u(t, x) + k(t, x),

{
t > 0,

x ∈ R.

u(0, x) = f(x), x ∈ R

∂
∂t
u(0, x) = g(x), x ∈ R
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Again we proceed formally. As above we get





∂2

∂t2
û(t, γ) = −4π2γ2û(t, γ) + k̂(t, γ),

û(0, γ) = f̂(γ),
∂
∂t
û(0, γ) = ĝ(γ).

This can be solved by “the variation of constants formula”, but to simplify the

computations we assume that k(t, x) ≡ 0, i.e., ĥ(t, γ) ≡ 0. Then the solution is

(check this!)

û(t, γ) = cos(2πγt)f̂(γ) +
sin(2πγt)

2πγ
ĝ(γ). (2.13)

To invert the first term we use Theorem 2.7, and get

1

2
[f(x+ t) + f(x− t)].

The second term contains the “Dirichlet kernel”, which is inverted as follows:

Ex. If

k(x) =

{
1/2, |t| ≤ 1

0, otherwise,

then k̂(ω) = 1
2πω

sin(2πω).

Proof.

k̂(ω) =
1

2

∫ 1

−1

e−2πiωtdt = . . . =
1

2πω
sin(ωt).

Thus, the inverse Fourier transform of

sin(2πγ)

2πγ
is k(x) =

{
1/2, |x| ≤ 1,

0, |x| > 1,

(inverse transform = ordinary transform since the function is even), and the

inverse Fourier transform (with respect to γ) of

sin(2πγt)

2πγ
= t

sin(2πγt)

2πγt
is

k(
x

t
) =

{
1/2, |x| ≤ t,

0, |x| > t.

This and Theorem 2.7(f), gives the inverse of the second term in (2.13): It is

1

2

∫ x+t

x−t
g(y)dy.
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Conclusion: The solution of the wave equation with h(t, x) ≡ 0 seems to be

u(t, x) =
1

2
[f(x+ t) + f(x− t)] +

1

2

∫ x+t

x−t
g(y)dy,

a formula known as d’Alembert’s formula.

Interpretation: This is the sum of two waves: u(t, x) = u+(t, x)+u−(t, x), where

u+(t, x) =
1

2
f(x+ t) +

1

2
G(x+ t)

moves to the left with speed one, and

u−(t, x) =
1

2
f(x− t) − 1

2
G(x− t)

moves to the right with speed one. Here

G(x) =

∫ x

0

g(y)dy, x ∈ R.



Chapter 3

Fourier Transforms of

Distributions

Questions

1) How do we transform a function f /∈ L1(R), f /∈ L2(R), for example

Weierstrass function

σ(t) =

∞∑

k=0

ak cos(2πbkt),

where b 6= integer (if b is an integer, then σ is periodic and we can use

Chapter I)?

2) Can we interpret both the periodic F -transform (on L1(T)) and the Fourier

integral (on L1(R)) as special cases of a “more general” Fourier transform?

3) How do you differentiate a discontinuous function?

The answer: Use “distribution theory”, developed in France by Schwartz in

1950’s.

3.1 What is a Measure?

We start with a simpler question: what is a “δ-function”? Typical definition:




δ(x) = 0, x 6= 0

δ(0) = ∞
∫ ε
−ε δ(x)dx = 1, (for ε > 0).

67
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We observe: This is pure nonsense. We observe that δ(x) = 0 a.e., so
∫ ε
−ε δ(x)dx = 0.

Thus: The δ-function is not a function! What is it?

Normally a δ-function is used in the following way: Suppose that f is continuous

at the origin. Then

∫ ∞

−∞
f(x)δ(x)dx =

∫ ∞

−∞
[f(x) − f(0)]︸ ︷︷ ︸

=0
when x=0

δ(x)︸︷︷︸
=0

when x 6=0

dx+ f(0)

∫ ∞

−∞
δ(x)dx

= f(0)

∫ ∞

−∞
δ(x)dx = f(0).

This gives us a new interpretation of δ:

The δ-function is the “operator” which evaluates a continuous function at the

point zero.

Principle: You feed a function f(x) to δ, and δ gives you back the number

f(0) (forget about the integral formula).

Since the formal integral
∫∞
−∞ f(x)δ(x)dx resembles an inner product, we often

use the notation 〈δ, f〉. Thus

〈δ, f〉 = f(0)

Definition 3.1. The δ-operator is the (bounded linear) operator which maps

f ∈ C0(R) into the number f(0). Also called Dirac’s delta .

This is a special case of measure:

Definition 3.2. A measure µ is a bounded linear operator which maps func-

tions f ∈ C0(R) into the set of complex numbers C (or real). We denote this

number by 〈µ, f〉.

Example 3.3. The operator which maps f ∈ C0(R) into the number

f(0) + f(1) +

∫ 1

0

f(s)ds

is a measure.

Proof. Denote 〈G, f〉 = f(0) + f(1) +
∫ 1

0
f(s)ds. Then
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i) G maps C0(R) → C.

ii) G is linear :

〈G, λf + µg〉 = λf(0) + µg(0) + λf(1) + µg(1)

+

∫ 1

0

(λf(s) + µg(s))ds

= λf(0) + λf(1) +

∫ 1

0

λf(s)ds

+µg(0) + µg(1) +

∫ 1

0

µg(s)ds

= λ〈G, f〉 + µ〈G, g〉.

iii) G is continuous : If fn → f in C0(R), then maxt∈R|fn(t) − f(t)| → 0 as

n→ ∞, so

fn(0) → f(0), fn(1) → f(1) and

∫ 1

0

fn(s)ds→
∫ 1

0

f(s)ds,

so

〈G, fn〉 → 〈G, f〉 as n→ ∞.

Thus, G is a measure. �

Warning 3.4. 〈G, f〉 is linear in f , not conjugate linear:

〈G, λf〉 = λ〈G, f〉, and not = λ〈G, f〉.

Alternative notation 3.5. Instead of 〈G, f〉 many people write G(f) or Gf

(for example , Gripenberg). See Gasquet for more details.

3.2 What is a Distribution?

Physisists often also use “the derivative of a δ-function”, which is defined as

〈δ′, f〉 = −f ′(0),

here f ′(0) = derivative of f at zero. This is not a measure: It is not defined

for all f ∈ C0(R) (only for those that are differentiable at zero). It is linear,

but it is not continuous (easy to prove). This is an example of a more general

distribution.
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Definition 3.6. A tempered distribution (=tempererad distribution) is a

continuous linear operator from S to C. We denote the set of such distributions

by S ′. (The set S was defined in Section 2.2).

Theorem 3.7. Every measure is a distribution.

Proof.

i) Maps S into C, since S ⊂ C0(R).

ii) Linearity is OK.

iii) Continuity is OK: If fn → f in S, then fn → f in C0(R), so 〈µ, fn〉 → 〈µ, f〉
(more details below!) �

Example 3.8. Define 〈δ′, ϕ〉 = −ϕ′(0), ϕ ∈ S. Then δ′ is a tempered distribu-

tion

Proof.

i) Maps S → C? Yes!

ii) Linear? Yes!

iii) Continuous? Yes!

(See below for details!) �

What does ϕn → ϕ in S mean?

Definition 3.9. ϕn → ϕ in S means the following: For all positive integers k, m,

tkϕ(m)
n (t) → tkϕ(m)(t)

uniformly in t, i.e.,

lim
n→∞

max
t∈R

|tk(ϕ(m)
n (t) − ϕ(m)(t))| = 0.

Lemma 3.10. If ϕn → ϕ in S, then

ϕ(m)
n → ϕ(m) in C0(R)

for all m = 0, 1, 2, . . .

Proof. Obvious.

Proof that δ′ is continuous: If ϕn → ϕ in S, then maxt∈R|ϕ′
n(t) − ϕ′(t)| → 0

as n→ ∞, so

〈δ′, ϕn〉 = −ϕ′
n(0) → ϕ′(0) = 〈δ′, ϕ〉. �
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3.3 How to Interpret a Function as a Distribu-

tion?

Lemma 3.11. If f ∈ L1(R) then the operator which maps ϕ ∈ S into

〈F, ϕ〉 =

∫ ∞

−∞
f(s)ϕ(s)ds

is a continuous linear map from S to C. (Thus, F is a tempered distribution).

Note: No complex conjugate on ϕ!

Note: F is even a measure.

Proof.

i) For every ϕ ∈ S, the integral converges (absolutely), and defines a number

in C. Thus, F maps S → C.

ii) Linearity : for all ϕ, ψ ∈ S and λ, µ ∈ C,

〈F, λϕ+ µψ〉 =

∫

R

f(s)[λϕ(s) + µψ(s)]ds

= λ

∫

R

f(s)ϕ(s)ds+ µ

∫

R

f(s)ψ(s)ds

= λ〈F, ϕ〉 + µ〈F, ψ〉.

iii) Continuity : If ϕn → ϕ in S, then ϕn → ϕ in C0(R), and by Lebesgue’s

dominated convergence theorem,

〈F, ϕn〉 =

∫

R

f(s)ϕn(s)ds→
∫

R

f(s)ϕ(s)ds = 〈F, ϕ〉. �

The same proof plus a little additional work proves:

Theorem 3.12. If ∫ ∞

−∞

|f(t)|
1 + |t|ndt <∞

for some n = 0, 1, 2, . . ., then the formula

〈F, ϕ〉 =

∫ ∞

−∞
f(s)ϕ(s)ds, ϕ ∈ S,

defines a tempered distribution F .
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Definition 3.13. We call the distribution F in Lemma 3.11 and Theorem 3.12

the distribution induced by f , and often write 〈f, ϕ〉 instead of 〈F, ϕ〉. Thus,

〈f, ϕ〉 =

∫ ∞

−∞
f(s)ϕ(s)ds, ϕ ∈ S.

This is sort of like an inner product, but we cannot change places of f and ϕ: f

is “the distribution” and ϕ is “the test function” in 〈f, ϕ〉.
Does “the distribution f” determine “the function f” uniquely? Yes!

Theorem 3.14. Suppose that the two functions f1 and f2 satisfy
∫

R

|fi(t)|
1 + |t|ndt <∞ (i = 1 or i = 2),

and that they induce the same distribution, i.e., that
∫

R

f1(t)ϕ(t)dt =

∫

R

f2(t)ϕ(t)dt, ϕ ∈ S.

Then f1(t) = f2(t) almost everywhere.

Proof. Let g = f1 − f2. Then

∫

R

g(t)ϕ(t)dt = 0 for all ϕ ∈ S ⇐⇒
∫

R

g(t)

(1 + t2)n/2
(1 + t2)n/2ϕ(t)dt = 0 ∀ϕ ∈ S.

Easy to show that (1 + t2)n/2ϕ(t)︸ ︷︷ ︸
ψ(t)

∈ S ⇐⇒ ϕ ∈ S. If we define h(t) = g(t)

(1+t2)n/2 ,

then h ∈ L1(R), and
∫ ∞

−∞
h(s)ψ(s)ds = 0 ∀ψ ∈ S.

If ψ ∈ S then also the function s 7→ ψ(t− s) belongs to S, so

∫

R

h(s)ψ(t− s)ds = 0

{
∀ψ ∈ S,
∀t ∈ R.

(3.1)

Take ψn(s) = ne−π(ns)2 . Then ψn ∈ S, and by 3.1,

ψn ∗ h ≡ 0.

On the other hand, by Theorem 2.12, ψn ∗ h → h in L1(R) as n → ∞, so this

gives h(t) = 0 a.e. �
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Corollary 3.15. If we know “the distribution f”, then from this knowledge we

can reconstruct f(t) for almost all t.

Proof. Use the same method as above. We know that h(t) ∈ L1(R), and that

(ψn ∗ h)(t) → h(t) =
f(t)

(1 + t2)n/2
.

As soon as we know “the distribution f”, we also know the values of

(ψn ∗ h)(t) =

∫ ∞

−∞

f(s)

(1 + s2)n/2
(1 + s2)n/2ψn(t− s)ds

for all t. �

3.4 Calculus with Distributions

(=Räkneregler)

3.16 (Addition). If f and g are two distributions, then f + g is the distribution

〈f + g, ϕ〉 = 〈f, ϕ〉 + 〈g, ϕ〉, ϕ ∈ S.

(f and g distributions ⇐⇒ f ∈ S ′ and g ∈ S ′).

3.17 (Multiplication by a constant). If λ is a constant and f ∈ S ′, then λf is

the distribution

〈λf, ϕ〉 = λ〈f, ϕ〉, ϕ ∈ S.

3.18 (Multiplication by a test function). If f ∈ S ′ and η ∈ S, then ηf is the

distribution

〈ηf, ϕ〉 = 〈f, ηϕ〉 ϕ ∈ S.

Motivation: If f would be induced by a function, then this would be the natural

definition, because
∫

R

[η(s)f(s)]ϕ(s)ds =

∫

R

f(s)[η(s)ϕ(s)]ds = 〈f, ηϕ〉.

Warning 3.19. In general, you cannot multiply two distributions. For example,

δ2 = δδ is nonsense
(δ = “δ-function”)

=Dirac’s delta
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However, it is possible to multiply distributions by a larger class of “test func-

tions”:

Definition 3.20. By the class C∞
pol(R) of tempered test functions we mean the

following:

ψ ∈ C∞
pol(R) ⇐⇒ f ∈ C∞(R),

and for every k = 0, 1, 2, . . . there are two numbers M and n so that

|ψ(k)(t)| ≤M(1 + |t|n), t ∈ R.

Thus, f ∈ C∞
pol(R) ⇐⇒ f ∈ C∞(R), and every derivative of f grows at most as

a polynomial as t→ ∞.

Repetition:





S = “rapidly decaying test functions”

S ′ = “tempered distributions”

C∞
pol(R) = “tempered test functions”.

Example 3.21. Every polynomial belongs to C∞
pol. So do the functions

1

1 + x2
, (1 + x2)±m (m need not be an integer)

Lemma 3.22. If ψ ∈ C∞
pol(R) and ϕ ∈ S, then

ψϕ ∈ S.

Proof. Easy (special case used on page 72).

Definition 3.23. If ψ ∈ C∞
pol(R) and f ∈ S ′, then ψf is the distribution

〈ψf, ϕ〉 = 〈f, ψϕ〉, ϕ ∈ S

(O.K. since ψϕ ∈ S).

Now to the big surprise : Every distribution has a derivative, which is another

distribution!

Definition 3.24. Let f ∈ S ′. Then the distribution derivative of f is the

distribution defined by

〈f ′, ϕ〉 = −〈f, ϕ′〉, ϕ ∈ S

(This is O.K., because ϕ ∈ S =⇒ ϕ′ ∈ S, so −〈f, ϕ′〉 is defined).
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Motivation: If f would be a function in C1(R) (not too big at ∞), then

〈f, ϕ′〉 =

∫ ∞

−∞
f(s)ϕ′(s)ds (integrate by parts)

= [f(s)ϕ(s)]∞−∞︸ ︷︷ ︸
=0

−
∫ ∞

−∞
f ′(s)ϕ(s)ds

= −〈f ′, ϕ〉. �

Example 3.25. Let

f(t) =

{
e−t, t ≥ 0,

−et, t < 0.

Interpret this as a distribution, and compute its distribution derivative.

Solution:

〈f ′, ϕ〉 = −〈f, ϕ′〉 = −
∫ ∞

−∞
f(s)ϕ′(s)ds

=

∫ 0

−∞
esϕ′(s)ds−

∫ ∞

0

e−sϕ′(s)ds

= [esϕ(s)]0−∞ −
∫ 0

−∞
esϕ(s)ds−

[
e−sϕ(s)

]∞
0
−
∫ ∞

0

e−sϕ(s)ds

= 2ϕ(0) −
∫ ∞

−∞
e−|s|ϕ(s)ds.

Thus, f ′ = 2δ + h, where h is the “function” h(s) = −e−|s|, s ∈ R, and δ = the

Dirac delta (note that h ∈ L1(R) ∩ C(R)).

Example 3.26. Compute the second derivative of the function in Example 3.25!

Solution: By definition, 〈f ′′, ϕ〉 = −〈f ′, ϕ′〉. Put ϕ′ = ψ, and apply the rule

〈f ′, ψ〉 = −〈f, ψ′〉. This gives

〈f ′′, ϕ〉 = 〈f, ϕ′′〉.

By the preceding computation

−〈f, ϕ′〉 = −2ϕ′(0) −
∫ ∞

−∞
e−|s|ϕ′(s)ds

= (after an integration by parts)

= −2ϕ′(0) +

∫ ∞

−∞
f(s)ϕ(s)ds
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(f = original function). Thus,

〈f ′′, ϕ〉 = −2ϕ′(0) +

∫ ∞

−∞
f(s)ϕ(s)ds.

Conclusion: In the distribution sense,

f ′′ = 2δ′ + f,

where 〈δ′, ϕ〉 = −ϕ′(0). This is the distribution derivative of Dirac’s delta. In

particular: f is a distribution solution of the differential equation

f ′′ − f = 2δ′.

This has something to do with the differential equation on page 59. More about

this later.

3.5 The Fourier Transform of a Distribution

Repetition: By Lemma 2.19, we have

∫ ∞

−∞
f(t)ĝ(t)dt =

∫ ∞

−∞
f̂(t)g(t)dt

if f, g ∈ L1(R). Take g = ϕ ∈ S. Then ϕ̂ ∈ S (See Theorem 2.24), so we can

interpret both f and f̂ in the distribution sense and get

Definition 3.27. The Fourier transform of a distribution f ∈ S is the distribu-

tion defined by

〈f̂ , ϕ〉 = 〈f, ϕ̂〉, ϕ ∈ S.

Possible, since ϕ ∈ S ⇐⇒ ϕ̂ ∈ S.

Problem: Is this really a distribution? It is well-defined and linear, but is it

continuous? To prove this we need to know that

ϕn → ϕ in S ⇐⇒ ϕ̂n → ϕ̂ in S.

This is a true statement (see Gripenberg or Gasquet for a proof), and we get

Theorem 3.28. The Fourier transform maps the class of tempered distributions

onto itself:

f ∈ S ′ ⇐⇒ f̂ ∈ S ′.
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There is an obvious way of computing the inverse Fourier transform:

Theorem 3.29. The inverse Fourier transform f of a distribution f̂ ∈ S ′ is

given by

〈f, ϕ〉 = 〈f̂ , ψ〉, ϕ ∈ S,

where ψ = the inverse Fourier transform of ϕ, i.e., ψ(t) =
∫∞
−∞ e2πitωϕ(ω)dω.

Proof. If ψ = the inverse Fourier transform of ϕ, then ϕ = ψ̂ and the formula

simply says that 〈f, ψ̂〉 = 〈f̂ , ψ〉. �

3.6 The Fourier Transform of a Derivative

Problem 3.30. Let f ∈ S ′. Then f ′ ∈ S ′. Find the Fourier transform of f ′.

Solution: Define η(t) = 2πit, t ∈ R. Then η ∈ C∞
pol, so we can multiply a

tempered distribution by η. By various definitions (start with 3.27)

〈(̂f ′), ϕ〉 = 〈f ′, ϕ̂〉 (use Definition 3.24)

= −〈f, (ϕ̂)′〉 (use Theorem 2.7(g))

= −〈f, ψ̂〉 (where ψ(s) = −2πisϕ(s))

= −〈f̂ , ψ〉 (by Definition 3.27)

= 〈f̂ , ηϕ〉 (see Definition above of η)

= 〈ηf̂ , ϕ〉 (by Definition 3.23).

Thus, (̂f ′) = ηf̂ where η(ω) = 2πiω, ω ∈ R.

This proves one half of:

Theorem 3.31.

(̂f ′) = (i2πω)f̂ and

̂(−2πitf) = (f̂)′

More precisely, if we define η(t) = 2πit, then η ∈ C∞
pol, and

(̂f ′) = ηf̂ , (̂ηf) = −f̂ ′.

By repeating this result several times we get

Theorem 3.32.

(̂f (k)) = (2πiω)kf̂ k ∈ Z+

( ̂(−2πit)kf) = f̂ (k).
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Example 3.33. Compute the Fourier transform of

f(t) =

{
e−t, t > 0,

−et, t < 0.

Smart solution: By the Examples 3.25 and 3.26.

f ′′ = 2δ′ + f (in the distribution sense).

Transform this:

[(2πiω)2 − 1]f̂ = 2(̂δ′) = 2(2πiω)δ̂

(since δ′ is the derivative of δ). Thus, we need δ̂:

〈δ̂, ϕ〉 = 〈δ, ϕ̂〉 = ϕ̂(0) =

∫

R

ϕ(s)ds

=

∫

R

1 · ϕ(s)ds =

∫

R

f(s)ϕ(s)ds,

where f(s) ≡ 1. Thus δ̂ is the distribution which is induced by the function

f(s) ≡ 1, i.e., we may write δ̂ ≡ 1 .

Thus, −(4π2ω2 + 1)f̂ = 4πiω, so f̂ is induced by the function 4πiω
−(1+4π2ω2)

. Thus,

f̂(ω) =
4πiω

−(1 + 4π2ω2)
.

In particular:

Lemma 3.34.

δ̂(ω) ≡ 1 and

1̂ = δ.

(The Fourier transform of δ is the function ≡ 1, and the Fourier transform of

the function ≡ 1 is the Dirac delta.)

Combining this with Theorem 3.32 we get

Lemma 3.35.

δ̂(k) = (2πiω)k, k ∈ Z+ = 0, 1, 2, . . .[
̂(−2πit)k

]
= δ(k)
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3.7 Convolutions (”Faltningar”)

It is sometimes (but not always) possible to define the convolution of two distri-

butions. One possibility is the following: If ϕ, ψ ∈ S, then we know that

̂(ϕ ∗ ψ) = ϕ̂ψ̂,

so we can define ϕ ∗ψ to be the inverse Fourier transform of ϕ̂ψ̂. The same idea

applies to distributions in some cases:

Definition 3.36. Let f ∈ S ′ and suppose that g ∈ S ′ happens to be such that

ĝ ∈ C∞
pol(R) (i.e., ĝ is induced by a function in C∞

pol(R), i.e., g is the inverse

F -transform of a function in C∞
pol). Then we define

f ∗ g = the inverse Fourier transform of f̂ ĝ,

i.e. (cf. page 77):

〈f ∗ g, ϕ〉 = 〈f̂ ĝ, ϕ̌〉

where ϕ̌ is the inverse Fourier transform of ϕ:

ϕ̌(t) =

∫ ∞

−∞
e2πiωtϕ(ω)dω.

This is possible since ĝ ∈ C∞
pol, so that f̂ ĝ ∈ S ′; see page 74

To get a direct interpretation (which does not involve Fourier transforms) we

need two more definitions:

Definition 3.37. Let t ∈ R, f ∈ S ′, ϕ ∈ S. Then the translations τtfand τtϕ

are given by

(τtϕ)(s) = ϕ(s− t), s ∈ R

〈τtf, ϕ〉 = 〈f, τ−tϕ〉

Motivation: τtϕ translates ϕ to the right by the amount t (if t > 0, to the left if

t < 0).

For ordinary functions f we have
∫ ∞

−∞
(τtf)(s)ϕ(s)ds =

∫ ∞

−∞
f(s− t)ϕ(s)ds (s− t = v)

=

∫ ∞

−∞
f(v)ϕ(v + t)dv

=

∫ ∞

−∞
f(v)τ−tϕ(v)dv,
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t

τ ϕt

ϕ

so the distribution definition coincides with the usual definition for functions

interpreted as distributions.

Definition 3.38. The reflection operator R is defined by

(Rϕ)(s) = ϕ(−s), ϕ ∈ S,
〈Rf, ϕ〉 = 〈f, Rϕ〉, f ∈ S ′, ϕ ∈ S

Motivation: Extra homework. If f ∈ L1(R) and η ∈ S, then we can write f ∗ ϕ

0

0

f

Rf

in the form

(f ∗ ϕ)(t) =

∫

R

f(s)η(t− s)ds

=

∫

R

f(s)(Rη)(s− t)ds

=

∫

R

f(s)(τtRη)(s)ds,

and we get an alternative formula for f ∗ η in this case.

Theorem 3.39. If f ∈ S ′ and η ∈ S, then f ∗ η as defined in Definition 3.36,

is induced by the function

t 7→ 〈f, τtRη〉,

and this function belongs to C∞
pol(R).
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We shall give a partial proof of this theorem (skipping the most complicated

part). It is based on some auxiliary results which will be used later, too.

Lemma 3.40. Let ϕ ∈ S, and let

ϕε(t) =
ϕ(t+ ε) − ϕ(t)

ε
, t ∈ R.

Then ϕε → ϕ′ in S as ε→ 0.

Proof. (Outline) Must show that

lim
ε→0

sup
t∈R

|t|k|ϕ(m)
ε (t) − ϕ(m+1)(t)| = 0

for all t,m ∈ Z+. By the mean value theorem,

ϕ(m)(t+ ε) = ϕ(m)(t) + εϕ(m+1)(ξ)

where t < ξ < t+ ε (if ε > 0). Thus

|ϕ(m)
ε (t) − ϕ(m+1)(t)| = |ϕ(m+1)(ξ) − ϕ(m+1)(t)|

= |
∫ t

ξ

ϕ(m+2)(s)ds|
(

where t < ξ < t+ ε if ε > 0

or t+ ε < ξ < t if ε < 0

)

≤
∫ t+|ε|

t−|ε|
|ϕ(m+2)(s)|ds,

and this multiplied by |t|k tends uniformly to zero as ε→ 0. (Here I am skipping

a couple of lines). �

Lemma 3.41. For every f ∈ S ′ there exist two numbers M > 0 and N ∈ Z+ so

that

|〈f, ϕ〉| ≤M max
0≤j,k≤N
t∈R

|tjϕ(k)(t)|. (3.2)

Interpretation: Every f ∈ S ′ has a finite order (we need only derivatives ϕ(k)

where k ≤ N) and a finite polynomial growth rate (we need only a finite power

tj with j ≤ N).

Proof. Assume to get a contradiction that (3.2) is false. Then for all n ∈ Z+,

there is a function ϕn ∈ S so that

|〈f, ϕn〉| ≥ n max
0≤j,k≤n
t∈R

|tjϕ(k)
n (t)|.
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Multiply ϕn by a constant to make 〈f, ϕn〉 = 1. Then

max
0≤j,k≤n
t∈R

|tjϕ(k)
n (t)| ≤ 1

n
→ 0 as n→ ∞,

so ϕn → 0 in S as n → ∞. As f is continuous, this implies that 〈f, ϕn〉 → 0

as n → ∞. This contradicts the assumption 〈f, ϕn〉 = 1. Thus, (3.2) cannot be

false. �

Theorem 3.42. Define ϕ(t) = 〈f, τtRη〉. Then ϕ ∈ C∞
pol, and for all n ∈ Z+,

ϕ(n)(t) = 〈f (n), τtRη〉 = 〈f, τtRη(n)〉.

Note: As soon as we have proved Theorem 3.39, we may write this as

(f ∗ η)(n) = f (n) ∗ η = f ∗ η(n).

Thus, to differentiate f ∗η it suffices to differentiate either f or η (but not both).

The derivatives may also be distributed between f and η:

(f ∗ η)(n) = f (k) ∗ η(n−k), 0 ≤ k ≤ n.

Motivation: A formal differentiation of

(f ∗ ϕ)(t) =

∫

R

f(t− s)ϕ(s)ds gives

(f ∗ ϕ)′ =

∫

R

f ′(t− s)ϕ(s)ds = f ′ ∗ ϕ,

and a formal differentiation of

(f ∗ ϕ)(t) =

∫

R

f(s)ϕ(t− s)ds gives

(f ∗ ϕ)′ =

∫

R

f(s)ϕ′(t− s)ds = f ∗ ϕ′.

Proof of Theorem 3.42.

i) 1
ε
[ϕ(t+ ε) − ϕ(t)] = 〈f, 1

ε
(τt+εRη − τtRη)〉. Here

1

ε
(τt+εRη − τtRη)(s) =

1

ε
[(Rη)(s− t− ε) − Rη(s− t)]

=
1

ε
[η(t+ ε− s) − η(t− s)] (by Lemma 3.40)

→ η′(t− s) = (Rη′)(s− t) = τtRη
′.
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Thus, the following limit exists:

lim
ε→0

1

ε
[ϕ(t+ ε) − ϕ(t)] = 〈f, τtRη′〉.

Repeating the same argument n times we find that ϕ is n times differen-

tiable, and that

ϕ(n) = 〈f, τtRη(n)〉

(or written differently, (f ∗ η)(n) = f ∗ η(n).)

ii) A direct computation shows: If we put

ψ(s) = η(t− s) = (Rη)(s− t) = (τtRη)(s),

then ψ′(s) = −η′(t − s) = −τtRη′. Thus 〈f, τtRη′〉 = −〈f, ψ′〉 = 〈f ′, ψ〉 =

〈f ′, τtRη〉 (by the definition of distributed derivative). Thus, ϕ′ = 〈f, τtRη′〉 =

〈f ′, τtRη〉 (or written differently, f ∗ η′ = f ′ ∗ η). Repeating this n times

we get

f ∗ η(n) = f (n) ∗ η.

iii) The estimate which shows that ϕ ∈ C∞
pol: By Lemma 3.41,

|ϕ(n)(t)| = |〈f (n), τtRη〉|
≤ M max

0≤j,k≤N
s∈R

|sj(τtRη)(k)(s)| (ψ as above)

= M max
0≤j,k≤N
s∈R

|sjη(k)(t− s)| (t− s = v)

= M max
0≤j,k≤N
v∈R

|(t− v)jη(k)(s)|

≤ a polynomial in |t|. �

To prove Theorem 3.39 it suffices to prove the following lemma (if two distribu-

tions have the same Fourier transform, then they are equal):

Lemma 3.43. Define ϕ(t) = 〈f, τtRη〉. Then ϕ̂ = f̂ η̂.

Proof. (Outline) By the distribution definition of ϕ̂:

〈ϕ̂, ψ〉 = 〈ϕ, ψ̂〉 for all ψ ∈ S.
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We compute this:

〈ϕ, ψ̂〉 =

∫ ∞

−∞
ϕ(s)︸︷︷︸

function
in C∞

pol

ψ̂(s)ds

=

∫ ∞

−∞
〈f, τsRη〉ψ̂(s)ds

= (this step is too difficult : To show that we may move

the integral to the other side of f requires more theory

then we have time to present)

= 〈f,
∫ ∞

−∞
τsRηϕ̂(s)ds〉 = (⋆)

Here τsRη is the function

(τsRη)(t) = (Rη)(t− s) = η(s− t) = (τtη)(s),

so the integral is
∫ ∞

−∞
η(s− t)ψ̂(s)ds =

∫ ∞

−∞
(τtη)(s)ψ̂(s)ds (see page 43)

=

∫ ∞

−∞
(̂τtη)(s)ψ(s)ds (see page 38)

=

∫ ∞

−∞
e−2πitsη̂(s)ψ(s)ds

︸ ︷︷ ︸
F-transform of η̂ψ

(⋆) = 〈f, ̂̂ηψ〉 = 〈f̂ , η̂ψ〉
= 〈f̂ η̂, ψ〉. Thus, ϕ̂ = f̂ η̂. �

Using this result it is easy to prove:

Theorem 3.44. Let f ∈ S ′, ϕ, ψ ∈ S. Then

(f ∗ ϕ)︸ ︷︷ ︸
in C∞

pol

∗ ψ︸︷︷︸
in S

︸ ︷︷ ︸
in C∞

pol

= f︸︷︷︸
in S′

∗ (ϕ ∗ ψ)︸ ︷︷ ︸
in S︸ ︷︷ ︸

in C∞
pol

Proof. Take the Fourier transforms:

(f ∗ ϕ)︸ ︷︷ ︸
↓
f̂ ϕ̂

∗ ψ︸︷︷︸
↓
ψ̂︸ ︷︷ ︸

(f̂ ϕ̂)ψ̂

= f︸︷︷︸
↓
f̂

∗ (ϕ ∗ ψ)︸ ︷︷ ︸
↓
ϕ̂ψ̂︸ ︷︷ ︸

f̂(ϕ̂ψ̂)

.
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The transforms are the same, hence so are the original distributions (note that

both (f ∗ϕ) ∗ψ and f ∗ (ϕ ∗ψ) are in C∞
pol so we are allowed to take distribution

Fourier transforms).

3.8 Convergence in S ′

We define convergence in S ′ by means of test functions in S. (This is a special

case of “weak” or “weak*”-convergence).

Definition 3.45. fn → f in S ′ means that

〈fn, ϕ〉 → 〈f, ϕ〉 for all ϕ ∈ S.

Lemma 3.46. Let η ∈ S with η̂(0) = 1, and define ηλ(t) = λη(λt), t ∈ R, λ > 0.

Then, for all ϕ ∈ S,

ηλ ∗ ϕ→ ϕ in S as λ→ ∞.

Note: We had this type of ”δ-sequences” also in the L1-theory on page 36.

Proof. (Outline.) The Fourier transform is continuous S → S (which we have

not proved, but it is true). Therefore

ηλ ∗ ϕ→ ϕ in S ⇐⇒ η̂λ ∗ ϕ→ ϕ̂ in S
⇐⇒ η̂λϕ̂→ ϕ̂ in S
⇐⇒ η̂(ω/λ)ϕ̂(ω) → ϕ̂(ω) in S as λ→ ∞.

Thus, we must show that

sup
ω∈R

∣∣∣ωk
(
d

dω

)j
[η̂(ω/λ) − 1]ϕ̂(ω)

∣∣∣→ 0 as λ→ ∞.

This is a “straightforward” mechanical computation (which does take some time). �

Theorem 3.47. Define ηλ as in Lemma 3.46. Then

ηλ → δ in S ′ as λ→ ∞.

Comment: This is the reason for the name ”δ-sequence”.

Proof. The claim (=”p̊ast̊aende”) is that for all ϕ ∈ S,
∫

R

ηλ(t)ϕ(t)dt→ 〈δ, ϕ〉 = ϕ(0) as λ→ ∞.
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(Or equivalently,
∫
R
λη(λt)ϕ(t)dt→ ϕ(0) as λ→ ∞). Rewrite this as

∫

R

ηλ(t)(Rϕ)(−t)dt = (ηλ ∗Rϕ)(0),

and by Lemma 3.46, this tends to (Rϕ)(0) = ϕ(0) as λ→ ∞. Thus,

〈ηλ, ϕ〉 → 〈δ, ϕ〉 for all ϕ ∈ S as λ→ ∞,

so ηλ → δ in S ′. �

Theorem 3.48. Define ηλ as in Lemma 3.46. Then, for all f ∈ S ′, we have

ηλ ∗ f → f in S ′ as λ→ ∞.

Proof. The claim is that

〈ηλ ∗ f, ϕ〉 → 〈f, ϕ〉 for all ϕ ∈ S.

Replace ϕ with the reflected

ψ = Rϕ =⇒ 〈ηλ ∗ f, Rψ〉 → 〈f, Rψ〉 for all ϕ ∈ S
⇐⇒ (by Thm 3.39) ((ηλ ∗ f) ∗ ψ)(0) → (f ∗ ψ)(0) (use Thm 3.44)

⇐⇒ f ∗ (ηλ ∗ ψ)(0) → (f ∗ ψ)(0) (use Thm 3.39)

⇐⇒ 〈f, R(ηλ ∗ ψ)〉 → 〈f, Rψ〉.

This is true because f is continuous and ηλ ∗ ψ → ψ in S, according to Lemma

3.46.

There is a General Rule about distributions:

Metatheorem: All reasonable claims about distribution convergence are true.

Problem: What is “reasonable”?

Among others, the following results are reasonable:

Theorem 3.49. All the operations on distributions and test functions which we

have defined are continuous. Thus, if

fn → f in S ′, gn → g in S ′,

ψn → ψ in C∞
pol (which we have not defined!),

ϕn → ϕ in S,
λn → λ in C, then, among others,
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i) fn + gn → f + g in S ′

ii) λnfn → λf in S ′

iii) ψnfn → ψf in S ′

iv) ψ̌n ∗ fn → ψ̌ ∗ f in S ′ (ψ̌ =inverse F-transform of ψ)

v) ϕn ∗ fn → ϕ ∗ f in C∞
pol

vi) f ′
n → f ′ in S ′

vii) f̂n → f̂ in S ′ etc.

Proof. “Easy” but long.

3.9 Distribution Solutions of ODE:s

Example 3.50. Find the function u ∈ L2(R+) ∩ C1(R+) with an “absolutely

continuous” derivative u′ which satisfies the equation

{
u′′(x) − u(x) = f(x), x > 0,

u(0) = 1.

Here f ∈ L2(R+) is given.

Solution. Let v be the solution of homework 22. Then
{
v′′(x) − v(x) = f(x), x > 0,

v(0) = 0.
(3.3)

Define w = u− v. Then w is a solution of
{
w′′(x) − w(x) = 0, x ≥ 0,

w(0) = 1.
(3.4)

In addition we require w ∈ L2(R+).

Elementary solution. The characteristic equation is

λ2 − 1 = 0, roots λ = ±1,

general solution

w(x) = c1e
x + c2e

−x.
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The condition w(x) ∈ L2(R+) forces c1 = 0. The condition w(0) = 1 gives

w(0) = c2e
0 = c2 = 1. Thus: w(x) = e−x, x ≥ 0.

Original solution: u(x) = e−x + v(x), where v is a solution of homework 22, i.e.,

u(x) = e−x +
1

2
e−x

∫ ∞

0

e−yf(y)dy − 1

2

∫ ∞

0

e−|x−y|f(y)dy.

Distribution solution. Make w an even function, and differentiate: we

denote the distribution derivatives by w(1) and w(2). Then

w(1) = w′ (since w is continuous at zero)

w(2) = w′′ + 2w′(0)︸ ︷︷ ︸
due to jump
discontinuity
at zero in w′

δ0 (Dirac delta at the point zero)

The problem says: w′′ = w, so

w(2) − w = 2w′(0)δ0. Transform:

((2πiγ)2 − 1)ŵ(γ) = 2w′(0) (since δ̂0 ≡ 1)

=⇒ ŵ(γ) = 2w′(0)
1+4π2γ2 ,

whose inverse transform is −w′(0)e−|x| (see page 62). We are only interested in

values x ≥ 0 so

w(x) = −w′(0)e−x, x > 0.

The condition w(0) = 1 gives −w′(0) = 1, so

w(x) = e−x, x ≥ 0.

Example 3.51. Solve the equation

{
u′′(x) − u(x) = f(x), x > 0,

u′(0) = a,

where a =given constant, f(x) given function.

Many different ways exist to attack this problem:

Method 1. Split u in two parts: u = v + w, where

{
v′′(x) − v(x) = f(x), x > 0

v′(0) = 0,
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and {
w′′(x) − w(x) = 0, x > 0

w′(0) = a,

We can solve the first equation by making an even extension of v. The second

equation can be solved as above.

Method 2. Make an even extension of u and transform. Let u(1) and u(2) be

the distribution derivatives of u. Then as above,

u(1) = u′ (u is continuous)

u(2) = u′′ + 2 u′(0)︸︷︷︸
=a

δ0 (u′ discontinuous)

By the equation: u′′ = u+ f , so

u(2) − u = 2aδ0 + f

Transform this:
[(2πiγ)2 − 1]û = 2a+ f̂ , so

û = −2a
1+4π2γ2 − f̂

1+4π2γ2

Invert:

u(x) = −ae−|x| − 1

2

∫ ∞

−∞
e−|x−y|f(y)dy.

Since f is even, this becomes for x > 0:

u(x) = −ae−x − 1

2
e−x

∫ ∞

0

e−yf(y)dy − 1

2

∫ ∞

0

e−|x−y|f(y)dy.

Method 3. The method to make u and f even or odd works, but it is a “dirty

trick” which has to be memorized. A simpler method is to define u(t) ≡ 0 and

f(t) ≡ 0 for t < 0, and to continue as above. We shall return to this method in

connection with the Laplace transform.

Partial Differential Equations are solved in a similar manner. The computations

become slightly more complicated, and the motivations become much more com-

plicated. For example, we can replace all the functions in the examples on page

63 and 64 by distributions, and the results “stay the same”.

3.10 The Support and Spectrum of a Distribu-

tion

“Support” = “the piece of the real line on which the distribution stands”
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Definition 3.52. The support of a continuous function ϕ is the closure (=”slutna

höljet”) of the set {x ∈ R : ϕ(x) 6= 0}.

Note: The set {x ∈ R : ϕ(x) 6= 0} is open, but the support contains, in addition,

the boundary points of this set.

Definition 3.53. Let f ∈ S ′ and let U ⊂ R be an open set. Then f vanishes

on U (=”försvinner p̊a U”) if 〈f, ϕ〉 = 0 for all test functions ϕ ∈ S whose

support is contained in U .

U

ϕ

Interpretation: f has “no mass in U”, “no action on U”.

Example 3.54. δ vanishes on (0,∞) and on (−∞, 0). Likewise vanishes δ(k)

(k ∈ Z+ = 0, 1, 2, . . .) on (−∞, 0) ∪ (0,∞).

Proof. Obvious.

Example 3.55. The function

f(t) =

{
1 − |t|, |t| ≤ 1,

0, |t| > 1,

vanishes on (−∞,−1) and on (1,∞). The support of this function is [−1, 1]

(note that the end points are included).

Definition 3.56. Let f ∈ S ′. Then the support of f is the complement of the

largest set on which f vanishes. Thus,

supp(f) = M ⇔





M is closed, f vanishes on R \M , and

f does not vanish on any open set Ω

which is strictly bigger than R \M .

Example 3.57. The support of the distribution δ
(k)
a is the single point {a}. Here

k ∈ Z+, and δa is point evaluation at a:

〈δa, ϕ〉 = ϕ(a).
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Definition 3.58. The spectrum of a distribution f ∈ S ′ is the support of f̂ .

Lemma 3.59. If M ⊂ R is closed, then supp(f) ⊂M if and only if f vanishes

on R \M .

Proof. Easy.

Example 3.60. Interpret f(t) = tn as a distribution. Then f̂ = 1
(−2πi)n δ

(n), as

we saw on page 78. Thus the support of f̂ is {0}, so the spectrum of f is {0}.

By adding such functions we get:

Theorem 3.61. The spectrum of the function f(t) ≡ 0 is empty. The spectrum

of every other polynomial is the single point {0}.

Proof. f(t) ≡ 0 ⇐⇒ spectrum is empty follows from definition. The other

half is proved above. �

The converse is true, but much harder to prove:

Theorem 3.62. If f ∈ S ′ and if the spectrum of f is {0}, then f is a polynomial

( 6≡ 0).

This follows from the following theorem by taking Fourier transforms:

Theorem 3.63. If the support of f is one single point {a} then f can be written

as a finite sum

f =

n∑

k=0

anδ
(k)
a .

Proof. Too difficult to include. See e.g., Rudin’s “Functional Analysis”.

Possible homework: Show that

Theorem 3.64. The spectrum of f is {a} ⇐⇒ f(t) = e2πiatP (t), where P is a

polynomial, P 6≡ 0.

Theorem 3.65. Suppose that f ∈ S ′ has a bounded support, i.e., f vanishes on

(−∞,−T ) and on (T,∞) for some T > 0 ( ⇐⇒ supp(f) ⊂ [−T, T ]). Then f̂

can be interpreted as a function, namely as

f̂(ω) = 〈f, η(t)e−2πiωt〉,

where η ∈ S is an arbitrary function satifying η(t) ≡ 1 for t ∈ [−T−1, T+1] (or,

more generally, for t ∈ U where U is an open set containing supp(f)). Moreover,

f̂ ∈ C∞
pol(R).
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Proof. (Not quite complete)

Step 1. Define

ψ(ω) = 〈f, η(t)e−2πiωt〉,

where η is as above. If we choose two different η1 and η2, then η1(t) − η2(t) = 0

is an open set U containing supp(f). Since f vanishes on R\U , we have

〈f, η1(t)e
−2πiωt〉 = 〈f, η2(t)e

−2πiωt〉,

so ψ(ω) does not depend on how we choose η.

Step 2. For simplicity, choose η(t) so that η(t) ≡ 0 for |t| > T + 1 (where T as

in the theorem). A “simple” but boring computation shows that

1

ε
[e−2πi(ω+ε)t − e−2πiωt]η(t) → ∂

∂ω
e−2πiωtη(t) = −2πite−2πiωtη(t)

in S as ε → 0 (all derivatives converge uniformly on [−T−1, T+1], and everything

is ≡ 0 outside this interval). Since we have convergence in S, also the following

limit exists:

lim
ε→0

1

ε
(ψ(ω + ε) − ψ(ω)) = ψ′(ω)

= lim
ε→0

〈f, 1
ε
(e−2πi(ω+ε)t − e−2πiωt)η(t)〉

= 〈f,−2πite−2πiωtη(t)〉.

Repeating the same computation with η replaced by (−2πit)η(t), etc., we find

that ψ is infinitely many times differentiable, and that

ψ(k)(ω) = 〈f, (−2πit)ke−2πiωtη(t)〉, k ∈ Z+. (3.5)

Step 3. Show that the derivatives grow at most polynomially. By Lemma 3.41,

we have

|〈f, ϕ〉| ≤M max
0≤t,l≤N
t∈R

|tjϕ(l)(t)|.

Apply this to (3.5) =⇒

|ψ(k)(ω)| ≤ M max
0≤j,l≤N
t∈R

∣∣∣tj
(
d

dt

)l
(−2πit)ke−2πiωtη(t)

∣∣∣.

The derivative l = 0 gives a constant independent of ω.

The derivative l = 1 gives a constant times |ω|.



CHAPTER 3. FOURIER TRANSFORMS OF DISTRIBUTIONS 93

The derivative l = 2 gives a constant times |ω|2, etc.

Thus, |ψ(k)(ω)| ≤ const. x[1 + |w|N ], so ψ ∈ C∞
pol.

Step 4. Show that ψ = f̂ . That is, show that
∫

R

ψ(ω)ϕ(ω)dω = 〈f̂ , ϕ〉(= 〈f, ϕ̂〉).

Here we need the same “advanced” step as on page 83:
∫

R

ψ(ω)ϕ(ω)dω =

∫

R

〈f, e−2πiωtη(t)ϕ(ω)〉dω

= (why??) = 〈f,
∫

R

e−2πiωtη(t)ϕ(ω)dω〉

= 〈f, η(t)ϕ̂(t)〉
(

since η(t) ≡ 1 in a

neighborhood of supp(f)

)

= 〈f, ϕ̂〉.

A very short explanation of why “why??” is permitted: Replace the integral by

a Riemann sum, which converges in S, i.e., approximate

∫

R

e−2πiωtϕ(ω)dω = lim
n→∞

∞∑

k=−∞
e−2πiωktϕ(ωk)

1

n
,

where ωk = k/n.

3.11 Trigonometric Polynomials

Definition 3.66. A trigonometric polynomial is a sum of the form

ψ(t) =
m∑

j=1

cje
2πiωjt.

The numbers ωj are called the frequencies of ψ.

Theorem 3.67. If we interpret ψ as a polynomial then the spectrum of ψ is

{ω1, ω2, . . . , ωm}, i.e., the spectrum consists of the frequencies of the polynomial.

Proof. Follows from homework 27, since supp(δωj
) = {ωj}. �

Example 3.68. Find the spectrum of the Weierstrass function

σ(t) =
∞∑

k=0

ak cos(2πbkt),

where 0 < a < 1, ab ≥ 1.
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To solve this we need the following lemma

Lemma 3.69. Let 0 < a < 1, b > 0. Then

N∑

k=0

ak cos(2πbkt) →
∞∑

k=0

ak cos(2πbkt)

in S ′ as N → ∞.

Proof. Easy. Must show that for all ϕ ∈ S,

∫

R

(
N∑

k=0

−
∞∑

k=0

)
ak cos(2πbkt)ϕ(t)dt→ 0 as N → ∞.

This is true because

∫

R

∞∑

k=N+1

|ak cos(2πbkt)ϕ(t)|dt ≤
∫

R

∞∑

k=N+1

ak|ϕ(t)|dt

≤
∞∑

k=N+1

ak
∫ ∞

−∞
|ϕ(t)|dt

=
aN+1

1 − a

∫ ∞

−∞
|ϕ(t)|dt→ 0 as N → ∞.

Solution of 3.68: Since
∑N

k=0 →
∑∞

k=0 in S ′, also the Fourier transforms converge

in S ′, so to find σ̂ it is enough to find the transform of
∑N

k=0 a
k cos(2πbkt) and

to let N → ∞. This transform is

δ0 +
1

2
[a(δb + δ−b) + a2(δ−b2 + δb2) + . . .+ aN (δ−bN + δbN )].

Thus,

σ̂ = δ0 +
1

2

∞∑

n=1

an(δ−bn + δbn),

where the sum converges in S ′, and the support of this is {0,±b,±b2,±b3, . . .},
which is also the spectrum of σ.

Example 3.70. Let f be periodic with period 1, and suppose that f ∈ L1(T),

i.e.,
∫ 1

0
|f(t)|dt <∞. Find the Fourier transform and the spectrum of f .

Solution: (Outline) The inversion formula for the periodic transform says that

f =

∞∑

n=−∞
f̂(n)e2πint.
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Working as on page 86 (but a little bit harder) we find that the sum converges

in S ′, so we are allowed to take transforms:

f̂ =

∞∑

n=−∞
f̂(n)δn (converges still in S ′).

Thus, the spectrum of f is {n ∈ N : f̂(n) 6= 0}. Compare this to the theory of

Fourier series.

General Conclusion 3.71. The distribution Fourier transform contains all the

other Fourier transforms in this course. A “universal transform”.

3.12 Singular differential equations

Definition 3.72. A linear differential equation of the type

n∑

k=0

aku
(k) = f (3.6)

is regular if it has exactly one solution u ∈ S ′ for every f ∈ S ′. Otherwise it is

singular.

Thus: Singular means: For some f ∈ S ′ it has either no solution or more than

one solution.

Example 3.73. The equation u′ = f . Taking f = 0 we get many different so-

lutions, namely u =constant (different constants give different solutions). Thus,

this equation is singular.

Example 3.74. We saw earlier on page 59-63 that if we work with L2-functions

instead of distributions, then the equation

u′′ + λu = f

is singular iff λ > 0. The same result is true for distributions:

Theorem 3.75. The equation (3.6) is regular

⇔
n∑

k=0

ak(2πiω)k 6= 0 for all ω ∈ R.
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Before proving this, let us define

Definition 3.76. The function D(ω) =
∑n

k=0 a
k(2πiω)k is called the symbol of

(3.6)

Thus: Singular ⇔ the symbol vanishes for some ω ∈ R.

Proof of theorem 3.75. Part 1: Suppose that D(ω) 6= 0 for all ω ∈ R.

Transform (3.6):

n∑

k=0

ak(2πiω)kû = f̂ ⇔ D(ω)û = f̂ .

If D(ω) 6= 0 for all ω, then 1
D(ω)

∈ C∞
pol, so we can multiply by 1

D(ω)
:

û =
1

D(ω)
f̂ ⇔ u = K ∗ f

where K is the inverse distribution Fourier transform of 1
D(ω)

. Therefore, (3.6)

has exactly one solution u ∈ S ′ for every f ∈ S ′.

Part 2: Suppose that D(a) = 0 for some a ∈ R. Then

〈Dδa, ϕ〉 = 〈δa, Dϕ〉 = D(a)ϕ(a) = 0.

This is true for all ϕ ∈ S, so Dδa is the zero distribution: Dδa = 0.

⇔
n∑

k=0

ak(2πiω)kδa = 0.

Let v be the inverse transform of δa, i.e.,

v(t) = e2πiat ⇒
n∑

k=0

akv
(k) = 0.

Thus, v is one solution of (3.6) with f ≡ 0. Another solution is v ≡ 0. Thus,

(3.6) has at least two different solutions ⇒ the equation is singular. �

Definition 3.77. If (3.6) is regular, then we call K =inverse transform of 1
D(ω)

the Green’s function of (3.6). (Not defined for singular problems.)

How many solutions does a singular equation have? Find them all! (Solution

later!)
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Example 3.78. If f ∈ C(R) (and |f(t)| ≤M(1 + |t|k) for some M and k), then

the equation

u′ = f

has at least the solutions

u(x) =

∫ x

0

f(x)dx+ constant

Does it have more solutions?

Answer: No! Why?

Suppose that u′ = f and v′ = f ⇒ u′−v′ = 0. Transform this ⇒ (2πiω)(û−v̂) =

0.

Let ϕ be a test function which vanishes in some interval [−ε, ε](⇔ the support

of ϕ is in (−∞,−ε] ∪ [ε,∞)). Then

ψ(ω) =
ϕ(ω)

2πiω

is also a test function (it is ≡ 0 in [−ε, ε]), since (2πiω)(û− v̂) = 0 we get

0 = 〈(2πiω)(û− v̂), ψ〉
= 〈û− v̂, 2πiωψ(ω)〉 = 〈û− v̂, ϕ〉.

Thus, 〈û − v̂, ϕ〉 = 0 when supp(ϕ) ⊂ (−∞,−ε] ∪ [ε,∞), so by definition,

supp(û− v̂) ⊂ {0}. By theorem 3.63, û− v̂ is a polynomial. The only polynomial

whose derivative is zero is the constant function, so u− v is a constant. �

A more sophisticated version of the same argument proves the following theorem:

Theorem 3.79. Suppose that the equation

n∑

k=0

aku
(k) = f (3.7)

is singular, and suppose that the symbolD(ω) has exactly r simple zeros ω1, ω2, . . . , ωr.

If the equation (3.7) has a solution v, then every other solution u ∈ S ′ of (3.7)

is of the form

u = v +

r∑

j=1

bje
2πiωjt,

where the coefficients bj can be chosen arbitrarily.
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Compare this to example 3.78: The symbol of the equation u′ = f is 2πiω, which

has a simple zero at zero.

Comment 3.80. The equation (3.7) always has a distribution solution, for all

f ∈ S ′. This is proved for the equation u′ = f in [GW99, p. 277], and this can

be extended to the general case.

Comment 3.81. A zero ωj of order r ≥ 2 of D gives rise to terms of the type

P (t)e2πiωjt, where P (t) is a polynomial of degree ≤ r − 1.



Chapter 4

The Fourier Transform of a

Sequence (Discrete Time)

From our earlier results we very quickly get a Fourier transform theory for se-

quences {an}∞n=−∞. We interpret this sequence as the distribution

∞∑

n=−∞
anδn (δn = Dirac’s delta at the point n)

For example, this converges in S ′ if

|an| ≤M(1 + |n|N) for some M,N

and the Fourier transform is:

∞∑

n=−∞
ane

−2πiωn =

∞∑

k=−∞
a−ke

2πiωk

which also converges in S ′. This transform is identical to the inverse transform

discussed in Chapter 1 (periodic function!), except for the fact that we replace i

by −i (or equivalently, replace n by −n). Therefore:

Theorem 4.1. All the results listed in Chapter 1 can be applied to the theory

of Fourier transforms of sequences, provided that we intercharge the Fourier

transform and the inverse Fourier transform.

Notation 4.2. To simplify the notations we write the original sequence as f(n),

n ∈ Z, and denote the Fourier transform as f̂ . Then f̂ is periodic (function or

99
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distribution, depending on the size of |f(n)| as n→ ∞), and

f̂(ω) =
∞∑

n=−∞
f(n)e−2πiωn.

From Chapter 1 we can give e.g., the following results:

Theorem 4.3.

i) f ∈ ℓ2(Z) ⇔ f̂ ∈ L2(T),

ii) f ∈ ℓ1(Z) ⇒ f̂ ∈ C(T) (converse false),

iii) (f̂ g) = f̂ ∗ ĝ if e.g.

{
f̂ ∈ L1(T)

ĝ ∈ L1(T)
or

{
f ∈ ℓ2(Z)

g ∈ ℓ2(Z)

iv) Etc.

We can also define discrete convolutions:

Definition 4.4. (f ∗ g)(n) =
∑∞

k=−∞ f(n− k)g(k).

This is defined whenever the sum converges absolutely. For example, if f(k) 6= 0

only for finitely many k or if

f ∈ ℓ1(Z), g ∈ ℓ∞(Z), or if

f ∈ ℓ2(Z), g ∈ ℓ2(Z), etc.

Lemma 4.5.

i) f ∈ ℓ1(Z), g ∈ Lp(Z), 1 ≤ p ≤ ∞, ⇒ f ∗ g ∈ ℓp(Z)

ii) f ∈ ℓ1(Z), g ∈ c0(Z) ⇒ f ∗ g ∈ c0(Z).

Proof. “Same” as in Chapter 1 (replace all integrals by sums).

Theorem 4.6. If f ∈ ℓ1(Z) and g ∈ ℓ1(Z), then

(f̂ ∗ g)(ω) = f̂(ω)ĝ(ω).

Also true if e.g. f ∈ ℓ2(Z) and g ∈ ℓ2(Z).

Proof. ℓ1-case: “Same” as proof of Theorem 1.21 (replace integrals by sums).

In the ℓ2-case we first approximate by an ℓ1-sequence, use the ℓ1-theory, and pass

to the limit.
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Notation 4.7. Especially in the engineering literature, but also in mathematical

literature, one often makes a change of variable: we have

f̂(ω) =

∞∑

n=−∞
f(n)e−2πiωn =

∞∑

n=−∞
f(n)

(
e−2πiω

)n

=
∞∑

n=−∞
f(n)z−n,

where z = e2πiω.

Definition 4.8. Engineers define F (z) =
∑∞

n=−∞ f(n)z−n as the (bilateral)

(=“dubbelsidig”) Z-transformation of f .

Definition 4.9. Most mathematicians define F (z) =
∑∞

n=−∞ f(n)zn instead.

Note: If f(n) = 0 for n < 0 we get the onesided (=unilateral) transform

F (z) =

∞∑

n=0

f(n)z−n (or

∞∑

n=0

f(n)zn).

Note: The Z-transform is reduced to the Fourier transform by a change of vari-

able

z = e2πiω , so ω ∈ [0, 1] ⇔ |z| = 1

Thus, z takes values on the unit circle. In the case of one-sided sequences we can

also allow |z| > 1 (engineers) or |z| < 1 (mathematicians) and get power series

like those studied in the theory of analytic functions.

All Fourier transform results apply



Chapter 5

The Discrete Fourier Transform

We have studied four types of Fourier transforms:

i) Periodic functions on R ⇒ f̂ defined on Z.

ii) Non-periodic functions on R ⇒ f̂ defined on R.

iii) Distributions on R ⇒ f̂ defined on R.

iv) Sequences defined on Z ⇒ f̂ periodic on R.

The final addition comes now:

v) f a periodic sequence (on Z) ⇒ f̂ a periodic sequence.

5.1 Definitions

Definition 5.1. ΠN = {all periodic sequences F (m) with period N , i.e., F (m+

N) = F (m)}.

Note: These are in principle defined for all n ∈ Z, but the periodicity means

that it is enough to know F (0), F (1), . . . , F (N − 1) to know the whole sequence

(or any other set of N consecutive (= p̊a varandra följande) values).

Definition 5.2. The Fourier transform of a sequence F ∈ ΠN is given by

F̂ (m) =
1

N

N−1∑

k=0

e−
2πimk

N F (k), m ∈ Z.

102
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Warning 5.3. Some people replace the constant 1
N

in front of the sum by 1√
N

or

omit it completely. (This affects the inversion formula.)

Lemma 5.4. F̂ is periodic with the same period N as F .

Proof.

F̂ (m+N) =
1

N

∑

one period

e−
2πi(m+N)k

N F (k)

=
1

N

∑

one period

e−2πik
︸ ︷︷ ︸

=1

e−
2πimk

N F (k)

= F̂ (m). �

Thus, F ∈ ΠN ⇒ F̂ ∈ ΠN .

Theorem 5.5. F can be reconstructed from F̂ by the inversion formula

F (k) =

N−1∑

m=0

e
2πimk

N F̂ (m).

Note: No 1
N

in front here.

Note: Matlab puts the 1
N

in front of the inversion formula instead!

Proof.

∑

m

e
2πimk

N
1

N

∑

l

e−
2πiml

N F (l) =
1

N

N−1∑

l=0

F (l)

N−1∑

m=0

e
2πim(k−l)

N

︸ ︷︷ ︸

=

8

>

>

<

>

>

:

N, if l = k

0, if l 6= k

= F (k)

We know that
(
e

2πi
N

)N
= 1, so e

2πi
N is the N :th root of 1:

2πi/N
e

e2*2πi/N

2π/Ν 2π/Ν
1

We add N numbers, whose absolute value is one, and who point symmetrically

in all the different directions indicated above. For symmetry reasons, the sum
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must be zero (except when l = k). (You always jump an angle 2π(k−l)
N

for each

turn, and go k − l times around before you are done.)

Definition 5.6. The convolution F ∗G of two sequences in ΠN are defined by

(F ∗G)(m) =
∑

one period

F (m− k)G(k)

(Note: Some indeces get out of the interval [0, N−1]. You must use the periodicity

of F and G to get the corresponding values of F (m− k)G(k).).

Definition 5.7. The (ordinary) product F ·G is defined by

(F ·G)(m) = F (m)G(m), m ∈ Z.

Theorem 5.8. (F̂ ·G) = F̂ ∗ Ĝ and (F̂ ∗G) = NF̂ · Ĝ (note the extra factor

N).

Proof. Easy. (Homework?)

Definition 5.9. (RF )(n) = F (−n) (reflection operator).

As before: The inverse transform = the ususal transform plus reflection:

Theorem 5.10. F̌ = N(R̂F ) (note the extra factor N), where ˆ = Fourier

transform and ˇ= Inverse Fourier transform.

Proof. Easy. We could have avoided the factor N by a different scaling (but

then it shows up in other places instead).

5.2 FFT=the Fast Fourier Transform

Question 5.11. How many flops do we need to compute the Fourier transform

of F ∈ ΠN?

FLOP=FLoating Point Operation={multiplication or addition or combination

of both}.

1 Megaflop = 1 million flops/second (106)

1 Gigaflop = 1 billion flops/second (109)

(Used as speed measures of computers.)
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Task 5.12. Compute F̂ (m) = 1
N

∑N−1
k=0 e

− 2πimk
N F (k) with the minimum amount

of flops (=quickly).

Good Idea 5.13. Compute the coefficients
(
e−

2πi
N

)k
= ωk only once, and store

them in a table. Since ωk+N = ωk, we have e−
2πimk

N = ωmk = ωr where r =

remainder when we divide mk by N . Thus, only N numbers need to be stored.

Thus: We can ignore the number of flops needed to compute the coefficients

e−
2πimk

N (done in advance).

Trivial Solution 5.14. If we count multiplication and addition separetely, then

we need to compute N coefficients (as m = 0, 1, . . . , N − 1), and each coefficient

requires N muliplications and N − 1 additions. This totals

N(2N − 1) = 2N2 −N ≈ 2N2 flops .

This is too much.

Brilliant Idea 5.15. Regroup (=omgruppera) the terms, using the symmetry.

Start by doing even coefficients and odd coefficients separetely:

Suppose for simplicity that N is even. Then, for even m, (put N = 2n)

F̂ (2m) =
1

N

N−1∑

k=0

ω2mkF (k)

=
1

N

[n−1∑

k=0

ω2mkF (k) +

2n−1∑

k=n

ω2mkF (k)

︸ ︷︷ ︸
Replace k by k+n

]

=
1

N

[
n−1∑

k=0

ω2mkF (k) + ω2m(k+n)F (k + n)

]

=
2

N

n−1∑

k=0

e−
2πimk
(N/2)

1

2
[F (k) + F (k + n)] .

This is a new discrete time periodic Fourier transform of the sequence G(k) =

1
2
[F (k) + F (n+ k)] with period n =

N

2
.

A similar computation (see Gripenberg) shows that the odd coefficients can be

computed from

F̂ (2m+ 1) =
1

n

n−1∑

k=0

e−
2πimk

n H(k),
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where H(k) = 1
2
e−

iπk
n [F (k) − F (k + n)]. Thus, instead of one transform of order

N we get two transforms of order n = N
2
.

Number of flops: Computing the new transforms by brute force (as in 5.14 on

page 105) we need the following flops:

Even: n(2n− 1) = N2

2
− N

2
+ n additions = N2

2
flops.

Odd: The numbers e−
iπk
n = e−

2iπk
N are found in the table already computed.

We essentially again need the same amount, namely N2

2
+ N

2
(n extra multiplica-

tions).

Total: N2

2
+ N2

2
+ N

2
= N2+ N

2
≈ N2. Thus, this approximately halfed the number

of needed flops.

Repeat 5.16. Divide the new smaller transforms into two halfs, and again, and

again. This is possible if N = 2k for some integer k, e.g., N = 1024 = 210.

Final conclusion: After some smaller adjustments we get down to

3

2
2kk flops.

Here N = 2k, so k = log2N , and we get

Theorem 5.17. The Fast Fourier Transform with radius 2 outlined above needs

approximately 3
2
N log2N flops.

This is much smaller than 2N2 − N for large N . For example N = 210 = 1024

gives
3

2
N log2N ≈ 15000 ≪ 2000000 = 2N2 −N.

Definition 5.18. Fast Fourier transform with




radius 2 : split into 2 parts at each step N = 2k

radius 3 : split into 3 parts at each step N = 3k

radius m : split into m parts at each step N = mk

Note: Based on symmetries. “The same” computations repeat themselves, so by

combining them in a clever way we can do it quicker.

Note: The FFT is so fast that it caused a minor revolution to many branches of

numerical analysis. It made it possible to compute Fourier transforms in practice.

Rest of this chapter: How to use the FFT to compute the other transforms dis-

cussed earlier.
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5.3 Computation of the Fourier Coefficients of

a Periodic Function

Problem 5.19. Let f ∈ C(T). Compute

f̂(k) =

∫ 1

0

e−2πiktf(t)dt

as efficiently as possible.

Solution: Turn f into a periodic sequence and use FFT!

Conversion 5.20. Choose some N ∈ Z, and put

F (m) = f(
m

N
), m ∈ Z

(equidistant “sampling”). The periodicity of f makes F periodic with period N .

Thus, F ∈ ΠN .

Theorem 5.21 (Error estimte). If f ∈ C(T) and f̂ ∈ ℓ1(Z) (i.e.,
∑

|f̂(k)| <∞),

then

F̂ (m) − f̂(m) =
∑

k 6=0

f̂(m+ kN).

Proof. By the inversion formula, for all t,

f(t) =
∑

j∈Z

e2πijtf̂(j).

Put tk = k
N

⇒
f(tk) = F (k) =

∑

j∈Z

e
2πikj

N f̂(j)

(this series converges uniformly by Lemma 1.14). By the definition of F̂ :

F̂ (m) =
1

N

N−1∑

k=0

e−
2πimk

N F (k)

=
1

N

∑

j∈Z

f̂(j)
N−1∑

k=0

e
2πi(j−m)k

N

︸ ︷︷ ︸

=

8

>

>

<

>

>

:

N, if j−m
N

= integer

0, if j−m
N

6= integer

=
∑

l∈Z

f̂(m+Nl).
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Take away the term f̂(m) (l = 0) to get

F̂ (m) = f̂(m) +
∑

l 6=0

f̂(m+Nl).

Note: If N is “large” and if f̂(m) → 0 “quickly” as m→ ∞, then the error

∑

l 6=0

f̂(m+Nl) ≈ 0.

First Method 5.22. Put

i) f̂(m) ≈ F̂ (m) if |m| < N
2

ii) f̂(m) ≈ 1
2
F̂ (m) if |m| = N

2
(N even)

iii) f̂(m) ≈ 0 if |m| > N
2
.

Here ii) is not important. We could use f̂(N
2
) = 0 or f̂(N

2
) = F̂ (m) instead.

Here

F̂ (m) =
1

N

N−1∑

k=0

e−
2πimk

N F (k).

Notation 5.23. Let us denote (note the extra star)

∗∑

|k|≤N/2
ak =

∑

|k|≤N/2
ak

= the usual sum of ak if N odd (then we have exactly N terms), and

∗∑

|k|≤N/2
ak =

a sum where the first and last terms have been

divided by two (these are the same if the sequence

is periodic with period N , there is “one term too

many” in this case).

First Method 5.24 (Error). The first method gives the error:

i) |m| < N
2

gives the error

|f̂(m) − F̂ (m)| ≤
∑

k 6=0

|f̂(m+ kN)|

ii) |m| = N
2

gives the error

|f̂(m) − 1

2
F̂ (m)|
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iii) |m| > N
2

gives the error |f̂(m)|.

we can simplify this into the following crude (=”grov”) estimate:

sup
m∈Z

|f̂(m) − F̂ (m)| ≤
∗∑

|m|≥N/2
|f̂(m)| (5.1)

(because this sum is ≥ the actual error).

First Method 5.25 (Drawbacks).

1◦ Large error.

2◦ Inaccurate error estimate (5.1).

3◦ The error estimate based on f̂ and not on f .

We need a better method.

Second Method 5.26 (General Principle).

1◦ Evaluate t at the points tk = k
N

(as before), F (k) = f(tk)

2◦ Use the sequence F to construct a new function P ∈ C(T ) which “approx-

imates” f .

3◦ Compute the Fourier coefficients of P .

4◦ Approximate f̂(n) by P̂ (n).

For this to succeed we must choose P in a smart way. The final result will be

quite simple, but for later use we shall derive P from some “basic principles”.

Choice of P 5.27. Clearly P depends on F . To simplify the computations we

require P to satisfy (write P = P (F ))

A) P is linear: P (λF + µG) = λP (F ) + µP (G)

B) P is translation invariant: If we translate F , then P (F ) is translated by

the same amount: If we denote

(τjF )(m) = F (m− j), then

P (τjF ) = τj/NP (F )

(j discrete steps ⇐⇒ a time difference of j/N).
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This leads to simple computations: We want to compute P̂ (m) (which we use as

approximations of f̂(m)) Define a δ-sequence:

D(n) =

{
1, for n = 0,±N,±2N, . . .

0, otherwise.

Then

N 2N
period

zero

(τkD)(n) =

{
1, if n = k + jN, j ∈ Z

0, otherwise,

so

[F (k)τkD](n) =

{
F (k), n = k + jN

0, otherwise.

and so

F =

N−1∑

k=0

F (k)τkD

Therefore, the principles A) and B) give

P (F ) =

N−1∑

k=0

F (k)P (τkD)

=

N−1∑

k=0

F (k)τk/NP (D),

Where P (D) is the approximation of D = “unit pulse at time zero” D.



CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 111

We denote this function by p. Let us transform P (F ):

(P̂ (F ))(m) =

∫ 1

0

N+1∑

k=0

F (k)(τk/Np)(s)e
−2πismds

=

N+1∑

k=0

F (k)

∫ 1

0

e−2πismp(s− k

N
)ds (s− k

N
= t)

=
N+1∑

k=0

F (k)

∫
one

period

e−2πim(t+ k
N

)p(t)dt

=
N+1∑

k=0

F (k)e−
−2πimk

N

∫
one

period

e−2πimtp(t)dt

︸ ︷︷ ︸
p̂(m)

= p̂(m)
N+1∑

k=0

F (k)e−
2πimk

N

︸ ︷︷ ︸
=NF̂ (m)

= Np̂(m)F̂ (m).

We can get rid of the factor N by replacing p by Np. This is our approximation

of the “pulse of size N at zero”

{
N, n = 0 + jN

0, otherwise.

Second Method 5.28. Construct F as in the First Method, and compute F̂ .

Then the approximation of f̂(m) is

f̂(m) ≈ F̂ (m)p̂(m),

where p̂ is the Fourier transform of the function that we get when we apply our

approximation procedure to the sequence

ND(n) =

{
N, n = 0(+jN)

0, otherwise.

Note: The complicated proof of this simple method will pay off in a second!

Approximation Method 5.29. Use any type of translation-invariant inter-

polation method, for example splines. The simplest possible method is linear

interpolation: If we interpolate the pulse ND in this way we get Thus,
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N points

N

p(t) =

{
N(1 −N |t|), |t| ≤ 1

N

0, 1
N

≤ |t| ≤ 1 − 1
N

(periodic extension)

This is a periodic version of the kernel. A direct computation gives

p̂(m) =

(
sin(πm/N)

πm/N

)2

.

We get the following interesting theorem:

Theorem 5.30. If we first discretize f , i.e. we replace f by the sequence F (k) =

f(k/N), the compute F̂ (m), and finally multiply F̂ (m) by

p̂(m) =

(
sin(πm/N)

πm/N

)2

.

then we get the Fourier coefficients for the function which we get from f by linear

interpolation at the points tk = k/N .

(This corresponds to the computation of the Fourier integral
∫ 1

0
e−2πimtf(t)dt by

using the trapetsoidal rule. Other integration methods have similar interpreta-

tions.)
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5.4 Trigonometric Interpolation

Problem 5.31. Construct a good method to approximate a periodic function

f ∈ C(T ) by a trigonometric polynomial

N∑

m=−N
ame

2πimt

(a finite sum, resembles inverse Fourier transformation).

Useful for numerical computation etc.

Note: The earlier “Second Method” gave us a linear interpolation, not trigono-

metric approximation.

Note: This trigonometric polynomial has only finitely many Fourier coefficients

6= 0 (namely am, |m| ≤ N).

Actually, the “First Method” gave us a trigonometric polynomial. There we had





f̂(m) ≈ F̂ (m) for |m| < N
2
,

f̂(m) ≈ 1
2
F̂ (m) for |m| = N

2
,

f̂(m) ≈ 0 for |m| > N
2
.

By inverting this sequence we get a trigonometric approximation of f : f(t) ≈

g(t), where

g(t) =

∗∑

|m|≤N/2
F̂ (m)e2πimt. (5.2)

We have two different errors:

i) f̂(m) is replaced by F̂ (m) = 1
N

∑N−1
k=0 f( k

N
)e

2πikm
N ,

ii) The inverse series was truncated to N terms.

Strange fact: These two errors (partially) cancel each other.

Theorem 5.32. The function g defined in (5.2) satisfies

g(
k

N
) = f(

k

N
), n ∈ Z,

i.e., g interpolates f at the points tk (which were used to construct first F and

then g).
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Proof. We defined F (k) = f( k
N

), and

F̂ (m) =
∗∑

|k|≤N/2
F (k)e−

2πimk
N .

By the inversion formula on page 103,

g(
k

N
) =

∗∑

|m|≤N/2
F̂ (m)e

2πimk
N (use periodicity)

=

N−1∑

m=0

F̂ (m)e
2πimk

N

= F (k) = f(
k

N
) �

Error estimate: How large is |f(t)−g(t)| between the mesh points tk = k
N

(where

the error is zero)? We get an estimate from the computation in the last section.

Suppose that f̂ ∈ ℓ1(Z) and f ∈ C(T ) so that the inversion formula holds for all

t (see Theorem 1.37). Then

f(t) =
∑

m∈Z

f̂(m)e2πimt, and

g(t) =
∗∑

|m|≤N/2
F̂ (m)e2πimt (Theorem 5.21)

=

∗∑

|m|≤N/2

[
f̂(m) +

∑

k 6=0

f̂(m+ kN)

]
e2πimt

= f(t) −
∗∑

|m|≥N/2
f̂(m)e2πimt +

∗∑

|m|≤N/2

∑

k 6=0

f̂(m+ kN)e2πimt.

Thus

|g(t) − f(t)| ≤
∗∑

|m|≥N/2
|f̂(m)| +

∗∑

|m|≤N/2

∑

k 6=0

|f̂(m+ kM)|
︸ ︷︷ ︸

=
P∗

|l|≥N/2|f̂(l)|

= 2
∗∑

|m|≥N/2
|f̂(m)|

(take l = m + kN , every |l| > N
2

appears one time, no |l| < N
2

appears, and

|l| = N
2

two times).

This leads to the following theorem:
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Theorem 5.33. If
∑∞

m=−∞|f̂(m)| <∞, then

|g(t) − f(t)| ≤ 2
∗∑

|m|≥N/2
|f̂(m)|,

where
g(t) =

∑∗
|m|≤N/2 F̂ (m)e2πimt, and

F̂ (m) = 1
N

∑∗
|m|≤N/2 e

− 2πimk
N f( k

N
).

This is nice if f̂(m) → 0 rapidly as m→ ∞. Better accuracy by increasing N .

5.5 Generating Functions

Definition 5.34. The generating function of the sequence Jn(x) is the func-

tion

f(x, z) =
∑

n

Jn(x)z
n,

where the sum over n ∈ Z or over n ∈ Z+, depending on for which values of n

the functions Jn(x) are defined.

Note: We did this in the course on special functions. E.g., if Jn = Bessel’s

function of order n, then

f(x, z) = e
x
2
(z−1/2).

Note: For a fixed value of x, this is the “mathematician’s version” of the Z-

transform described on page 101.

Make a change of variable:

z = e2πit ⇒ f(x, e2πit) =
∑

n∈Z

Jn(x)(e
2πit)n

=
∑

n∈Z

Jn(x)e
2πint,

Comparing this to the inversion formula in Chapter 1 we get

Theorem 5.35. For a fixed x, the n:th Fourier coefficient of the function t 7→
f(x, e2πit) is equal to Jn(x).

Thus, we can compute Jn(x) by the method descibed in Section 5.3 to compute

the coefficients an = Jn(x) (x = fixed, n varies):
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1) Discretize F (k) = f(x, e
2πik

N )

2) F̂ (m) = 1
N

∑∗
|k|≤N/2 e

− 2πimk
N F (k)

3) F̂ (m) − Jn(x) =
∑

k 6=0 am+kN , (Theorem 5.21)

where am+kN = Jm+kN(x).

5.6 One-Sided Sequences

So far we have been talking about periodic sequences (in ΠN). Instead one often

wants to discuss

A) Finite sequences A(0), A(1), . . . , A(N − 1) or

B) One-sided sequences A(n), n ∈ Z+ = {0, 1, 2 . . .}

Note: 5.36. A finite sequence is a special csse of a one-sided sequence: put

A(n) = 0 for n ≥ N .

Note: 5.37. A one-sided sequence is a special case of a two-sided sequence: put

A(n) = 0 for n < 0.

Problem: These extended sequences are not periodic. ⇒ We cannot use the Fast

Fourier Transform directly.

Notation 5.38. CZ+ = {all complex valued sequences A(n), n ∈ Z+}

Definition 5.39. The convolution of two sequences A,B ∈ CZ+ is

(A ∗B)(m) =

m∑

k=0

A(m− k)B(k), m ∈ Z+

Note: The summation boundaries are the natural ones if we think that A(k) =

B(k) = 0 for k < 0.

Notation 5.40.

A|n(k) =

{
A(k), 0 ≤ k < n

0, k ≥ n.

Thus, this restricts the sequence A(k) to the n first terms.
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Lemma 5.41. (A ∗B)|n = (A|n ∗B|n)|n

Proof. Easy.

Notation 5.42. A = 0n means that A(k) = 0 for 0 ≤ k < n− 1, i.e., A|n = 0.

Lemma 5.43. If A = 0n and B = 0m, then A ∗B = 0n+m.

Proof. Easy.

Computation of A ∗B 5.44 (One-sided convolution).

1) Choose a number N ≥ 2n (often a power of 2).

2) Define

F (k) =

{
A(k), 0 ≤ k < n,

0, n ≤ k < N,

and extend F to be periodic, period N .

3) Define

G(k) =

{
B(k), 0 ≤ k < n,

0, n ≤ k < N,

periodic extension: G(k +N) = G(k).

Then, for all m, 0 ≤ m < n,

(F ∗G)(m)︸ ︷︷ ︸
periodic convolution

=

N−1∑

k=0

F (m− k)G(k)

=

m∑

k=0

F (m− k)G(k)

=
m∑

k=0

A(m− k)G(k) = (A ∗B)(m)︸ ︷︷ ︸
one-sided convolution

Note: Important that N ≥ 2n.

Thus, this way we have computed the n first coefficients of (A ∗B).

Theorem 5.45. The method described below allows us to compute (A ∗ B)|n

(=the first n coefficients of A ∗B) with a number of FLOP:s which is

C · n log2 n, where C is a constant.

Method: 1)-3) same as above
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4) Use FFT to compute

F̂ · Ĝ(= N(F̂ ∗G)).

5) Use the inverse FFT to compute

F ∗G =
1

N
(F̂ · Ĝ)̌

Then (A ∗B)|n = (F ∗G)|n.

Note: A “naive” computation of A ∗ B|n requires C1 · n2 FLOPs, where C1 is

another constant.

Note: Use “naive” method if n small. Use “FFT-inverse FFT” if n is large.

Note: The rest of this chapter applies one-sided convolutions to different situa-

tions. In all cases the method described in Theorem 5.45 can be used to compute

these.

5.7 The Polynomial Interpretation of a Finite

Sequence

Problem 5.46. Compute the product of two polynomials:

p(x) =

n∑

k=0

akx
k q(x) =

m∑

l=0

blx
l.

Solution: Define ak = 0 for k > 0 and bl = 0 for l > m. Then

p(x)q(x) =

( ∞∑

k=0

akx
k

)( ∞∑

l=0

blx
l

)

︸ ︷︷ ︸
sums are actually finite

=
∑

k,l

akblx
k+l (k + l = j, k = j − l)

=
∑

j

xj
j∑

l=0

aj−lbl =
m+n∑

j=0

cjx
j ,

where cj =
∑j

l=0 aj−lbl. This gives

Theorem 5.47.
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i) Multiplication of two polynomials corresponds to a convolution of their

coefficients: If

p(x) =

n∑

k=0

akx
k, q(x) =

m∑

l=0

blx
l,

then p(x)q(x) =
∑m+n

j=0 cjx
j, where c = a ∗ b.

ii) Addition of two polynomials corresponds to addition of the coefficients:

p(x) + q(x) =
∑

cjx
j , where cj = aj + bj .

iii) Multiplication of a polynomial by a complex constant corresponds to mul-

tiplication of the coefficients by the same constant.

Operation Polynomial Coefficients

Addition p(x) + q(x) {ak + bk}max{m,n}
k=0

Multiplication by

λ ∈ C

λp(x) {λak}nk=0

Multiplication p(x)q(x) (a ∗ b)(k)
Thus there is a one-to-one correspondence between

polynomials ⇐⇒ finite sequences,

where the operations correspond as described above. This is used in all symbolic

computer computations of polynomials.

Note: Two different conventions are in common use:

A) first coefficient is a0 (= lowest order),

B) first coefficient is an (= highest order).

5.8 Formal Power Series and Analytic Functions

Next we extend “polynomials” so that they may contain infinitely many terms.

Definition 5.48. A Formal Power Series (FPS) is a sum of the type

∞∑

k=0

A(k)xk

which need not converge for any x 6= 0. (If it does converge, then it defines an

analytic function in the region of convergence.)
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Example 5.49.
∑∞

k=0
xk

k!
converges for all x (and the sum is ex).

Example 5.50.
∑∞

k=0 x
k converges for |x| < 1 (and the sum is 1

1−x).

Example 5.51.
∑∞

k=0 k!x
k converges for no x 6= 0.

All of these are formal power series (and the first two are “ordinary” power

series).

Calculus with FPS 5.52. We borrow the calculus rules from the polynomials:

i) We add two FPS:s by adding the coefficients:

[ ∞∑

k=0

A(k)xk

]
+

[ ∞∑

k=0

B(k)xk

]
=

∞∑

k=0

[A(k) +B(k)]xk.

ii) We multiply a FPS by a constant λ by multiplying each coefficients by λ:

λ

∞∑

k=0

A(k)xk =

∞∑

k=0

[λA(k)]xk.

iii) We multiply two FPS:s with each other by taking the convolution of the

coefficients:

[ ∞∑

k=0

A(k)xk

][ ∞∑

k=0

B(k)xk

]
=

∞∑

k=0

C(k)xk,

where C = A ∗B.

Notation 5.53. We denote Ã(x) =
∑∞

k=0A(k)xk.

Conclusion 5.54. There is a one-to-one correspondence between all Formal

Power Series and all one-sided sequences (bounded or not). We denoted these by

CZ+ on page 116.

Comment 5.55. In the sequence (=”fortsättningen”) we operate with FPS:s.

These power series often converge, and then they define analytic functions, but

this fact is not used anywhere in the proofs.
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5.9 Inversion of (Formal) Power Series

Problem 5.56. Given a (formal) power series Ã(x) =
∑
A(k)xk, find the in-

verse formal power series B̃(x) =
∑
B(k)xk.

Thus, we want to find B̃(x) so that

Ã(x)B̃(x) = 1, i.e.,[ ∞∑

k=0

A(k)xk

][ ∞∑

l=0

B(l)xl

]
= 1 + 0x+ 0x2 + . . .

Notation 5.57. δ0 = {1, 0, 0, . . .} = the sequence whose power series is {1 +

0x+ 0x2 + . . .}. This series converges, and the sum is ≡ 1. More generally:

δk = {0, 0, 0, . . . , 0, 1, 0, 0, . . .}
= 0 + 0x+ 0x2 + . . .+ 0xk−1 + 1xk + 0xk+1 + 0xk+2 + . . .

= xk

Power Series Sequence

δk xk

Solution. We know that A∗B = δ0, or equivalently, Ã(x)B̃(x) = 1. Explicitly,

Ã(x)B̃(x) = A(0)B(0) (times x0) (5.3)

+[A(0)B(1) + A(1)B(0)]x (5.4)

+[A(0)B(2) + A(1)B(1) + A(2)B(0)]x2 (5.5)

+ . . . (5.6)

From this we can solve:

i) A(0)B(0) = 1 =⇒ A(0) 6= 0 and B(0) = 1
A(0)

.

ii) A(0)B(1) + A(1)B(0) = 0 =⇒ B(1) = −A(1)B(0)
A(0)

(always possible)

iii) A(0)B(2) + A(1)B(1) + A(2)B(0) = 1 =⇒ B(2) = − 1
A(0)

[A(1)B(1) +

A(2)B(0)], etc.

we get a theorem:

Theorem 5.58. The FPS Ã(x) can be inverted if and only if A(0) 6= 0. The

inverse series [A(x)]−1 is obtained recursively by the procedure described above.
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Recursive means:

i) Solve B(0)

ii) Solve B(1) using B(0)

iii) Solve B(2) using B(1) and B(0)

iv) Solve B(3) using B(2), B(1) and B(0), etc.

This is Hard Work. For example

sin(x) = x− x3

3!
+
x5

5!
− . . .

cos(x) = 1 − x2

2!
+
x4

4!
− . . .

tan(x) =
sin(x)

cos(x)
= sin(x)

1

cos(x)︸ ︷︷ ︸
convolution

=???

Hard Work means: Number of FLOPS is a constant times N2. Better method:

Use FFT.

Theorem 5.59. Let A(0) 6= 0. and let B̃(x) be the inverse of Ã(x). Then, for

every k ≥ 1,

B|2k = (B|k ∗ (2δ0 − A ∗B|k))|2k (5.7)

Proof. See Gripenberg.

Usage: First compute B|1 = { 1
A(0)

, 0, 0, 0, . . .}
Then B|2 = {B(0), B(1), 0, 0, 0, . . .} (use (5.7))

Then B|4 = {B(0), B(1), B(2), B(3), 0, , 0, 0, . . .}
Then B|8 = {8 terms 6= 0} etc.

Use the method on page 117 for the convolutions. (Useful only if you need lots

of coefficients).

5.10 Multidimensional FFT

Especially in image processing we also need the discrete Fourier transform in

several dimensions. Let d = {1, 2, 3, . . .} be the “space dimension”. Put Πd
N = {

sequences x(k1, k2, . . . , kd) which are N -periodic in each variable separately}.
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Definition 5.60. The d-dimensional Fourier transform is obtained by transform-

ing d successive (=”efter varandra”) “ordinary” Fourier transformations, one for

each variable.

Lemma 5.61. The d-dimensional Fourier transform is given by

x̂(m1, m2, . . . , md) =
1

Nd

∑

k1

∑

k2

· · ·
∑

kd

e
−2πi(k1m1+k2m2+...+kdmd)

N x(k1, k2, . . . , kd).

Proof. Easy.

All 1-dimensional results generalize easy to the d-dimensional case.

Notation 5.62. We call k = (k1, k2, . . . , kd) and m = (m1, m2, . . . , md) multi-

indeces (=pluralis av “multi-index”), and put

k · m = k1m1 + k2m2 + . . .+ kdmd

(=the “inner product” of k and m).

Lemma 5.63.

x̂(m) =
1

Nd

∑

k

e−
2πim·k

N x(k),

x(k) =
∑

m
e

2πim·k
N x̂(m).

Definition 5.64.

(F ·G)(m) = F (m)G(m)

(F ∗G)(m) =
∑

k

F (m − k)G(k),

where all the components of m and k run over one period.

Theorem 5.65.

(F ·G)̂ = F̂ ∗ Ĝ,
(F ∗G)̂ = NdF̂ · Ĝ.

Proof. Follows from Theorem 5.8.

In practice: Either use one multi-dimensional, or use d one-dimensional trans-

forms (not much difference, multi-dimensional a little faster).



Chapter 6

The Laplace Transform

6.1 General Remarks

Example 6.1. We send in a “signal” u into an “amplifier”, and get an “output

signal” y:

Black boxu y

Under quite general assumptions it can be shown that

y(t) = (K ∗ u)(t) =

∫ t

−∞
K(t− s)u(s)ds,

i.e., the output is the convolution (=”faltningen”) of u with the “inpulse re-

sponse” K.

Terminology 6.2. “Impulse response” (=pulssvar) since y = K if u = a delta

distribution.

Causality 6.3. The upper bound in the integral is t, i.e., (K ∗u)(t) depends only

on past values of u, and not on future values. This is called causality.

If, in addition u(t) = 0 for t < 0, then y(t) = 0 for t < 0, and

y(t) =

∫ t

0

K(t− s)u(s)ds,

which is a one-sided convolution.

Classification 6.4. Approximately: The Laplace-transform is the Fourier trans-

form applied to one-sided signals (defined on R+). In addition there is a change

of variable which rotate the complax plane.

124
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6.2 The Standard Laplace Transform

Definition 6.5. Suppose that
∫∞
0
e−σt|f(t)|dt < ∞ for some σ ∈ R. Then we

define the Laplace transform f̃(s) of f by

f̃(s) =

∫ ∞

0

e−stf(t)dt, ℜ(s) ≥ σ.

Lemma 6.6. The integral above converges absolutely for all s ∈ C with ℜ(s) ≥ σ

(i.e., f̃(s) is well-defined for such s).

Proof. Write s = α + iβ. Then

|e−stf(t)| = |e−αteiβtf(t)|
= e−αt|f(t)|
≤ e−σt|f(t)|, so∫ ∞

0

|e−stf(t)|dt ≤
∫ ∞

0

e−σt|f(t)|dt <∞. �

Theorem 6.7. f̃(s) is analytic in the open half-plane Re(s) > σ, i.e., f̃(s) has

a complex derivative with respect to s.

Proof. (Outline)

f̃(z) − f̃(s)

z − s
=

∫ ∞

0

e−zt − e−st

z − s
f(t)dt

=

∫ ∞

0

e−(z−s)t − 1

z − s
e−stf(t)dt (put z − s = h)

=

∫ ∞

0

1

h
[e−ht − 1]
︸ ︷︷ ︸
→−t as h→0

e−stf(t)dt

As Re(s) > σ we find that
∫∞
0

|te−stf(t)|d <∞ and a “short”computation (about
1
2

page) shows that the Lebesgue dominated convergence theorem can be applied

(show that | 1
h
(e−ht − 1)| ≤ const. · t · eαt, where α = 1

2
[σ + ℜ(s)] (this is true

for some small enough h), and then show that
∫∞
0
teαt|e−stf(t)|dt < ∞). Thus,

d
ds
f̃(s) exists, and

d

ds
f̃(s) = −

∫ ∞

0

e−sttf(t)dt, ℜ(s) > σ

Corollary 6.8. d
ds
f̃(s) is the Laplace transform of g(t) = −tf(t), and this

Laplace transform converges (at least) in the half-plane Re(s) > σ.
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Theorem 6.9. f̃(s) is bounded in the half-plane ℜ(s) ≥ σ.

Proof. (cf. proof of Lemma 6.6)

|f̃(s)| = |
∫ ∞

0

e−stf(t)dt| ≤
∫ ∞

0

|e−stf(t)|dt

=

∫ ∞

0

e−(ℜs)t|f(t)|dt ≤
∫ ∞

0

e−σt|f(t)|dt <∞.

Definition 6.10. A bounded analytic function on the half-plane Re(s) > σ

is called a H∞-function (over this half-plane).

Theorem 6.11. If f is absolutely continuous and
∫∞
0
e−σt|g(t)|dt < ∞ (i.e.,

f(t) = f(0) +
∫ t
0
g(s)ds, where

∫∞
0
e−σt|g(t)|dt <∞), then

(f̃ ′)(s) = sf̃(s) − f(0), ℜ(s) > σ.

Proof. Integration by parts (a la Lebesgue) gives

lim
T→∞

∫ T

0

e−stf(t)

︸ ︷︷ ︸
=f̃(s)

dt = lim
T→∞

([e−st
−s f(t)

]T
0

+
1

s

∫ ∞

0

e−stf ′(t)dt

)

=
1

s
f(0) +

1

s
f̃ ′(s), so

(f̃ ′)(s) = sf̃(s) − f(0). �

6.3 The Connection with the Fourier Transform

Let Re(s) > σ, and make a change of variable:
∫ ∞

0

e−stf(t)dt (t = 2πv; dt = 2πdv)

=

∫ ∞

0

e−2πsvf(2πv)2πdv (s = α + iω)

=

∫ ∞

0

e−2πiωve−2παvf(2πv)2πdv (put f(t) = 0 for t < 0)

=

∫ ∞

−∞
e−2πiωtg(t)dt,

where

g(t) =

{
2πe−2παtf(2πt) , t ≥ 0

0 , t < 0.
(6.1)

Thus, we got
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Theorem 6.12. On the line Re(s) = α (which is a line parallell with the imagi-

nary axis −∞ < ω < ∞) f̃(s) coincides (=sammanfaller med) with the Fourier

transform of the function g defined in (6.1).

Thus, modulo a change of variable, the Laplace transform is the Fourier transform

of a function vanishing for t < 0. From Theorem 6.12 and the theory about

Fourier transforms of functions in L1(R) and L2(R) we can derive a number of

results. For example:

Theorem 6.13. (Compare to Theorem 2.3, page 36) If f ∈ L1(R+) (i.e.,
∫∞
0

|f(t)|dt <
∞), then

lim
|s|→∞
ℜ(s)≥0

|f̃(s)| = 0

(where s→ ∞ in the half plane Re(s) > 0 in an arbitrary manner)

Re

Im

Combining Theorem 6.12 with one of the theorems about the inversion of the

Fourier integral we get formulas of the type

1

2π

∫ ∞

−∞
e2πiωtf̃(α + iω)dω =

{
e−2παtf(t), t > 0,

0, t < 0.

This is often written as a complex line integral: We integrate along the line

Re(s) = α, and replace 2πt → t and multiply the formulas by e2παt to get

(s = α + iω, ds = idω)

f(t) =
1

2πi

∫ α+i∞

α−i∞
estf̃(s)ds (6.2)

=
1

2πi

∫ ∞

ω=−∞
e(α+iω)tf̃(α + iω)idω
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Warning 6.14. This integral seldom converges absolutely. If it does converge

absolutely, then (See Theorem 2.3 with the Fourier theorem replaced by the in-

verse Fourier theorem) the function

g(t) =

{
2πe−2παtf(t), t ≥ 0,

0, t < 0

must be continuous. In other words:

Lemma 6.15. If the integral (6.2) converges absolutely, then f must be contin-

uous and satisfy f(0) = 0.

Therefore, the inversion theorems given in Theorem 2.30 and Theorem 2.31 are

much more useful. They give (under the assumptions given there)

1

2
[f(t+) + f(t−)] = lim

T→∞

1

2πi

∫ α+iT

α−iT
estf̃(s)ds

(and we interpret f(t) = 0 for t < 0). By Theorem 6.11, if f is absolutely

continuous and f ′ ∈ L1(R+), then (use also Theorem 6.13)

f̃(s) =
1

s
[ ˜(f ′)(s) + f(0)],

where ˜(f ′)(s) → 0 as |s| → ∞, ℜ(s) ≥ 0. Thus, for large values of ω, f̃(α+iω) ≈
f(0)
iω

, so the convergence is slow in general. Apart from the space H∞ (see page

126) (over the half plane) another much used space (especially in Control theory)

is H2.

Theorem 6.16. If f ∈ L2(R+), then the Laplace transform f̃ of f is analytic in

the half-plane ℜ(s) > 0, and it satisfy, in addition

sup
α>0

∫ ∞

−∞
|f̃(α + iω)|2dω <∞,

i.e., there is a constant M so that
∫ ∞

−∞
|f̃(α+ iω)|2dω ≤M (for all α > 0).

Proof. By Theorem 6.12 and the L2-theory for Fourier integrals (see Section

2.3),
∫ ∞

−∞
|f̃(α + iω)|2dω =

∫ ∞

0

|2πe−2παtf(2πt)|2dt (2πt = v)

= 2π

∫ ∞

0

|e−αvf(v)|2dv

≤ 2π

∫ ∞

0

|f(v)|2dv = 2π‖f‖L2(0,∞). �
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Converesly:

Theorem 6.17. If ϕ is analytic in ℜ(s) > 0, and ϕ satisfies

sup
α>0

∫ ∞

−∞
|ϕ(α + iω)|2dω <∞, (6.3)

then ϕ is the Laplace transform of a function f ∈ L2(R+).

Proof. Not too difficult (but rather long).

Definition 6.18. An H2-function over the half-plane ℜ(s) > 0 is a function ϕ

which is analytic and satisfies (6.3).

6.4 The Laplace Transform of a Distribution

Let f ∈ S ′ (tempered distribution), and suppose that the support of f is con-

tained in [0,∞) = R+ (i.e., f vanishes on (−∞, 0)). Then we can define the

Laplace transform of f in two ways:

i) Make a change of variables as on page 126 and use the Fourier transform

theory.

ii) Define f̃(s) as f applied to the “test function” e−st, t > 0. (Warning: this

is not a test function!)

Both methods lead to the same result, but the second method is actually simpler.

If ℜ(s) > 0, then t 7→ e−st behaves like a test function on [0,∞) but not on

(−∞, 0). However, f is supported on [0,∞), so it does not matter how e−st

behaves for t < 0. More precisely, we take an arbitrary “cut off” function

η ∈ C∞
pol satisfying {

η(t) ≡ 1 for t ≥ −1,

η(t) ≡ 0 for t ≤ −2.

Then η(t)e−st = e−st for t ∈ [−1,∞), and since f is supported on [0,∞) we can

replace e−st by η(t)e−st to get

Definition 6.19. If f ∈ S ′ vanishes on (−∞, 0), then we define the Laplace

transform f̃(s) of f by

f̃(s) = 〈f, η(t)e−st〉, ℜ(s) > 0.
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(Compare this to what we did on page 84).

Note: In the same way we can define the Laplace transform of a distribution that

is not necessarily tempered, but which becomes tempered after multiplication by

e−σt for some σ > 0. In this case the Laplace transform will be defined in the

half-plane ℜs > σ.

Theorem 6.20. If f vanishes on (−∞, 0), then f̃ is analytic on the half-plane

ℜs > 0.

Proof omitted.

Note: f̃ need not be bounded. For example, if f = δ′, then

(̃δ′)(s) = 〈δ′, η(t)e−st〉 = −〈δ, η(t)e−st〉

=
d

dt
e−st |t=0 = −s.

(which is unbounded). On the other hand

δ̃(s) = 〈δ, η(t)e−st〉 = e−st |t=0 = 1.

Theorem 6.21. If f ∈ S ′ vanishes on (−∞, 0), then

i) [t̃f(t)](s) = −[f̃(s)]′

ii) f̃ ′(s) = sf̃(s)

}
ℜ(s) > 0

Proof. Easy (homework?)

Warning 6.22. You can apply this distribution transform also to functions, but

remember to put f(t) = 0 for t < 0. This automatically leads to a δ-term in the

distribution derivative of f : after we define f(t) = 0 for t < 0, the distribution

derivative of f is

f(0)δ0︸ ︷︷ ︸
dervatives of jump at zero

+ f ′(t)︸︷︷︸
usual derivative

6.5 Discrete Time: Z-transform

This is a short continuation of the theory on page 101.

In discrete time we also run into one-sided convolutions (as we have seen), and

it is possible to compute these by the FFT. From a mathematical point of view

the Z-tranform is often simpler than the Fourier transform.
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Definition 6.23. The Z-transform of a sequence {f(n)}∞n=0 is given by

f̃(z) =

∞∑

n=0

f(n)z−n,

for all these z ∈ C for which the series converges absolutely.

Lemma 6.24.

i) There is a number ρ ∈ [0,∞] so that f̃(z) converges for |z| > ρ and f̃(z)

diverges for |z| < ρ.

ii) f̃ is analytic for |z| > ρ.

Proof. Course on analytic functions.

As we noticed on page 101, the Z-transform can be converted to the discrete

time Fourier transform by a simple change of variable.

6.6 Using Laguerra Functions and FFT to Com-

pute Laplace Transforms

We start by recalling some results from the course in special functions:

Definition 6.25. The Laguerra polynomials Lm are given by

Lm(t) =
1

m!
et
( d
dt

)m
(tme−t), m ≥ 0,

and the Laguerra functions ℓm are given by

ℓ,(t) =
1

m!
e

t
2

( d
dt

)m
(tme−t), m ≥ 0.

Note that ℓm(t) = e−
t
2Lm(t).

Lemma 6.26. The Laguerra polynomials can be computed recusively from the

formula

(m+ 1)Lm+1(t) + (t− 2m− 1)Lm(t) +mLm−1(t) = 0,

with starting values L−1 ≡ 0 and L1 ≡ 1.
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We saw that the sequence {ℓm}∞m=0 is an ortonormal sequence in L2(R+), so that

if we define, for some f ∈ L2(R+),

fm =

∫ ∞

0

f(t)ℓm(t)dt,

then

f(t) =

∞∑

m=0

fmℓm(t) (in the L2-sense). (6.4)

Taking Laplace transforms in this equation we get

f̃(s) =

∞∑

m=0

fmℓ̃m(s).

Lemma 6.27.

i) ℓ̃m(s) = (s−1/2)m

(s+1/2)m+1 ,

ii) f̃(s) =
∑∞

m=0 fm
(s−1/2)m

(s+1/2)m+1 , where fm =
∫∞
0
f(t)ℓm(t)dt.

Proof. Course on special functions.

The same method can be used to compute inverse Laplace transforms, and this

gives a possibility to use FFT to compute the coefficients {fm}∞m=0 if we know

f̃(s). The argument goes as follows.

Suppose for simplicity that f ∈ L1(R), so that f̃(s) is defined and bounded on

C+ = {s ∈ C|Re s > 0}. We want to expand f̃(s) into a series of the type

f̃(s) =

∞∑

m=0

fm
(s− 1/2)m

(s+ 1/2)m+1
. (6.5)

Once we know the cofficients fm we can recover f(t) from formula (6.4). To find

the coefficients fm we map the right half-plane C+ into the unit disk D = {z ∈
C : |z| < 1}. We define

z =
s− 1/2

s+ 1/2
⇐⇒ sz +

1

2
z = s− 1

2
⇐⇒

s =
1

2

1 + z

1 − z
and s+ s+ 1/2 =

1

2
(1 +

1 + z

1 − z
) =

1

1 − z
, so

1

s+ 1/2
= 1 − z

Lemma 6.28.
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i) ℜ(s) > 0 ⇐⇒ |z| < 1 item[ii)]ℜ(s) = 0 ⇐⇒ |z| = 1

iii) s = 1/2 ⇐⇒ z = 0

iv) s = ∞ ⇐⇒ z = 1

v) s = 0 ⇐⇒ z = −1

vi) s = −1/2 ⇐⇒ z = ∞

Proof. Easy.

Conclusion: The function f̃(1
2

1+z
1−z ) is analytic inside the unit disc D, (and bounded

if f̃ is bounded on C+).

Making the same change of variable as in (6.5) we get

1

1 − z
f̃(

1

2

1 + z

1 − z
) =

∞∑

m=0

fmz
m.

Let us define

g(z) =
1

1 − z
f̃(

1

2

1 + z

1 − z
), |z| < 1.

Then

g(z) =
∞∑

m=0

fmz
m,

so g(z) is the “mathematical” version of the Z-transform of the sequence {fm}∞m=0

(in the control theory of the Z-transform we replace zm by z−m).

If we know f̃(s), then we know g(z), and we can use FFT to compute the

coefficients fm: Make a change of variable: Put αN = e2πi/N . Then

g(αkN) =

∞∑

m=0

fmα
mk
N =

∞∑

m=0

fme
2πimk/N ≈

N∑

m=0

fme
2πimk/N

(if N is large enough). This is the inverse discrete Fourier transform of a periodic

extension of the sequence {fm}N−1
m=0. Thus, fm ≈ the discrete transformation of

the sequence {g(αkN)}N−1
k=0 . We put

G(k) = g(αkN) =
1

1 − αkN
f̃(

1

2

1 + αkN
1 − αkN

),

and get fm ≈ Ĝ(m), which can be computed with the FFT.
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Error estimate: We know that fm = ĝ(m) (see page 115) and that ĝ(m) = 0 for

m < 0. By the error estimate on page 108 we get

|Ĝ(m) − fm| =
∑

k 6=0

|fm+kN |

(where we put fm = 0 for m < 0).



Bibliography

[Gri04] Gustaf Gripernberg, Fourier-muunnosten perusteet (lecture notes),

http://math.tkk.fi/teaching/fourier/, 2004.

[GW99] C. Gasquet and P. Witomski, Fourier analysis and applications, Texts

in Applied Mathematics, vol. 30, Springer-Verlag, New York, 1999, Fil-

tering, numerical computation, wavelets, Translated from the French

and with a preface by R. Ryan. MR MR1657104 (99h:42003)

[Wal02] David F. Walnut, An introduction to wavelet analysis, Applied and Nu-
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