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Abstract

The global positioning system (GPS) provides an excellent educational example
as to how the theory of general relativity is put into practice and becomes part
of our everyday life. This paper gives a short and instructive derivation of
an important formula used in the GPS, and is aimed at graduate students and
general physicists. The theoretical background of the GPS (see [1]) uses
the Schwarzschild spacetime to deduce the approximate formula, ds/dt ~

1+V — %, for the relation between the proper time rate s of a satellite clock
and the coordinate time rate t. Here V is the gravitational potential at the
position of the satellite and v is its velocity (with light-speed being normalized
as ¢ = 1). In this paper we give a different derivation of this formula, without

using approximations, to arrive at ds/dt = V142V — |[v[> — 2 (n - v)?,
where n is the normal vector pointing outwards from the centre of Earth to

the satellite. In particular, if the satellite moves along a circular orbit then
the formula simplifies to ds/dr = /1+2V — |v|2. We emphasize that this
derivation is useful mainly for educational purposes, as the approximation
above is already satisfactory in practice.

1. Introduction

The most significant application of the theory of general relativity in everyday life, arguably,
is the global positioning system. The GPS uses accurate, stable atomic clocks in satellites
and on the ground to provide worldwide position and time determination. These clocks have
relativistic frequency shifts which need to be carefully accounted for, in order to achieve
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synchronization in an underlying Earth-centred inertial frame, upon which the whole system
is based. For educational purposes it is very instructive to see how a highly abstract theory
such as the general theory of relativity becomes a part of our everyday life.

Throughout this paper we will normalize universal constants for simplicity, so that light
speed and the gravitational constant are the unity,c =1, y = 1.

Let us briefly sketch here how the GPS works, including the major ingredients for the
reader’s convenience (a full and detailed description is available in [1]). In order to determine
your position at the surface of Earth you must be able to see some (at least four) GPS satellites
simultaneously, and know their position and your distance to them (with this much information
at hand, it is then elementary geometry to determine your position). To make this possible,
every GPS satellite emits signals continuously, describing its position and its local time #.
If your GPS device measures its own local time, 74y, then you can use the constancy of the
speed of light ¢ to calculate your distance d to the satellite as

d = (tgev — tsat)C = ldev — Fsat (1
keeping in mind the normalization ¢ = 1. (We remark here that in practice the GPS device is
unable to measure time with sufficient accuracy, therefore #4.y also has to be deduced from the
data sent by the satellites. However, this detail is not important for the purposes of this paper.)

This looks simple enough, but the problem is that formula (1) is only valid if all clocks
are synchronized in some special relativistic inertial frame. Therefore, for the purposes of
the GPS one imagines that an inertial frame is attached to the centre of Earth, and we try to
synchronize all clocks such that they measure the time ¢ of this ideal inertial frame. This means
that one should imagine ‘ideal’ clocks placed everywhere in the vicinity of Earth, measuring
the time ¢, and thus 7, and #4., should be the read-outs of these ideal clocks at the place of the
satellite when the signal originates and at the place of your device when the signal is received.
However, what we actually can measure is the proper time ¢ of stationary clocks on the
surface of Earth (which is measured in time-keeping centres throughout the world), and the
proper time s of satellite clocks. Therefore, we need to establish a relation between the time
rates tg, s and t.

Fortunately, the time rate 7 measured on Earth is independent of where you are (i.e. the
same manufactured clocks beat the same rate in London or Tokyo or New York) and differs
from the ‘ideal’ time rate ¢ only by a multiplicative constant,

dr 1-9 2

i 0, 2)
where @ is a constant corresponding to the Earth’s geoid (see [1]). This relation is very
convenient because the ideal time rate 7 can be replaced by tz, something we can actually
measure, and an equation of form (1) still remains valid after rescaling by the factor 1 — &,
This leaves us with the task of establishing a relation between s and ¢ (or s and ¢z, whichever
turns out to be more convenient).

To determine the relation of the proper time rate s of the satellite clocks and the time rate
t of ideal clocks measuring the coordinate time of the underlying Earth-centred inertial frame,
the customary theoretical framework [1] is to use Schwarzschild spacetime, and arrive at the
formula

Iv[?

ds/dt%1+V—7, (3)
after several first-order approximations in the calculations. Here V' denotes the gravitational
potential at the position of the satellite and v is the velocity of the satellite measured in
the underlying non-rotating Earth-centred inertial frame. Formula (3) is the internationally
accepted standard relating the clock frequencies, as described in [1, 3] and references therein.
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We remark here that the derivation of formula (2) is somewhat more involved than that of
formula (3). In fact, for the purposes of deriving (2) one needs to modify the Schwarzschild
metric by a small term, taking into account multipole contributions corresponding to the
Earth’s geoid. However, for formula (3) the modifying term is disregarded and the standard
Schwarzschild metric is used, the argument being that the modifying term becomes negligible
far enough from the Earth surface, where the satellites orbit (cf [1]). In this paper we do not
include the derivation of formula (2) and the modifying term which is used there.

In general, in physics it is justified to use approximate formulae for two different reasons.
The one is that in some cases the derivation of an exact result is analytically not possible.
The other is that in certain cases an exact analytic derivation, even if it exists, would lead
to involved and lengthy calculations thus concealing the important and possibly very simple
aspects at the heart of the issue. In calculations involving the theory of relativity (in particular,
general relativity) there is a tendency to turn to approximations automatically, due to the
involved nature of the theory. However, in some rare cases a modified point of view and an
adequate choice of the coordinate system can lead to exact results.

In this paper, we adhere to the standard theoretical framework used in [1, 3], but we point
out that an exact formula can be derived in a very simple manner for the clock frequency rate (3)
in question. Instead of using the customary isotropic coordinates we will treat Schwarzschild
spacetime with Schwarzschild coordinates (an entirely coordinate-free derivation of the same
formulae can be found in [5] but it is rather cumbersome). This treatment of Schwarzschild
spacetime is motivated by a similar account of special relativity in [4] and that of general
relativity in [7]. The coordinate-free point of view often has the advantage of conceptual
clarity and, in this particular case, brevity of calculations.

Our results here are mostly of educational and theoretical interest as the existing
formula (3) provides good approximation to the desired precision in the GPS (see [3]).

2. Schwarzschild’s spacetime

Schwarzschild’s spacetime describes the gravitational field of a pointlike inertial mass m.
It is a well-known model of general relativity, but we include its short description here for
convenience.

Let us introduce some notation. Let E be a three-dimensional Euclidean vector space, the
inner product of X, y € E being denoted by x - y. For 0 # x € E we put

X
n(x) = — “4)
x|
for the outward normal vector at X.
Consider R x E as a spacetime manifold with its usual special relativistic metric, i.e. the
Lorentz form given by

-1 0
()

where [ is the identity matrix. For a world point (¢, x) € R x E one should think of 7 as the
synchronization time corresponding to the centre of Earth, and x as the space vector pointing
to the world point from the centre of Earth. The Lorentz form (5) means that the Lorentz
length square of a 4-vector (s, q) is given by the usual formula |(s, q) |for = —s? +|q|%. This
special relativistic spacetime will be called the Earth-centred reference frame (ECRF). This is
an ‘ideal’ special relativistic frame and the task in the GPS is to achieve synchronization of
clocks in this underlying inertial frame.
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m

Introduce the potential V (x) := — ] OnE, and restrict your consideration to world points
(t,x) € R x E for which 1 +2V(x) > 0 (i.e. for world points outside the Schwarzschild
radius). Then it is easy to see (cf [2, 6, 8]) that for such world points, the standard form of the
Schwarzschild metric in R x E (i.e. a smooth collection of Lorentz forms g(¢, x) depending
on the world points) takes the form:

—(1+2Vv 0
g(f,X)=< ( 0 x) [ 2V ) (6)

Ve NX) ® n(x)

In particular, when we measure the length square of any space vector q at the space point
x in Schwarzschild’s metric we obtain
2V (x)
1+2V(x)
Similarly, when we measure the Schwarzschild length square of a 4-vector (e.g. a 4-velocity)
(s, q) at the point x we get

(5, @) 3, = —(1 +2V(X)))s” + |ql3- (8)

Ql5e = lqI* — (n(x) - q))°. (7

3. A satellite in the Earth’s gravitational field

In this section we derive the formula relating the proper time s of satellite vehicle clocks to
the ideal time ¢ of the underlying inertial frame.
A material point in spacetime is described by a world line function

R—-RxE, s (t(s), x(s)), 9

where s is the proper time of the material point. The 4-velocity, (¢(s), X (s)), of the material
point always satisfies

| (5), % (D)5 = — 1. (10)

Therefore, using equation (8) we obtain
—(1+2V(x()) i(s)* + X ()3, = —1 (11)
The time function 7(s) can be inverted, with s(¢) denoting the proper time instant s
corresponding to the ECRF-time ¢. Let v(r) := % denote the relative velocity of the

material point with respect to the centre of the Earth. Note that by the chain rule we have
v(t) = x(s (t))%. Now, rearranging (11) we obtain
5\2 . 5\2
() + X6 (F)
1+2V(x(s(?)))

=1, 12)

which yields

% = \/1 +2V(x(s(1)) — [v(t) |3 (13)

Finally, applying (7) we obtain the desired relation

ds
—_— = — 2 _ . 2
17 \/1 +2V —|v| T3V (n-v)2 (14)

Using a series expansion, assuming that all the terms on the right-hand side are much less
than 1, we get back the approximate formula (3)

A+ — —. (15)
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Of course, there is still some work to be done before one can apply equation (1) in the
GPS. Instead of ‘;—f what we really need is the function 7 (s), because the signal emitted by the
satellite contains the proper time instant s measured by clocks on board, and we would like to
replace it by the coordinate-time instant # which it corresponds to. However, having deduced
formula (14) (or its approximation (3)) it is possible to obtain the function (s), or at least a
good enough approximation of it. This is described very well in full detail in [1], and we feel
it inappropriate to repeat those calculations word-by-word here. Nevertheless, we warmly
recommend that the reader turn to [1] for the interesting details.
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Endnotes

(1) Author: Please check the authors affiliations and footnotes as set.
(2) Author: There is some discrepancy between manuscript and source file. Hence the source
file is followed as it seems to be the updated one.

Reference linking to the original articles

References with a volume and page number in blue have a clickable link to the original
article created from data deposited by its publisher at CrossRef. Any anomalously unlinked
references should be checked for accuracy. Pale purple is used for links to e-prints at arXiv.



	1. Introduction
	2. Schwarzschild's spacetime
	3. A satellite in the Earth's gravitational field
	References

