Practise exercises 1.

- (1) Prove that if $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$, then A is Jordan measurable and $\lambda_J(A) = 0$.
- (2) Prove that for any unbounded set $A \subset \mathbb{R}^d$ we have $\lambda_I^*(A) = +\infty$.
- (3) Let $A = \mathbb{Q} \cap [0,1]$. Prove that $\lambda_J^*(A) = 1$ but $\lambda_{*,J}(A) = 0$, so A is not Jordan measurable.
- (4) Prove that the fat Cantor set C_F is not Jordan measurable.
- (5) Prove that we don't get anything new if we allow countable union in the definition of the inner measure. That is, $\sup\{\sum_{n=1}^{\infty}\lambda(T_n) : \bigcup T_n \subset A\} = \lambda_{*,J}(A)$.
- (6) (HW1) Prove that if $\alpha : S \to [0, +\infty]$ is finitely additive on a semi-ring S then α is monotone, σ -superadditive, and subadditive.
- (7) Prove that a σ -algebra is closed under countable intersections.
- (8) Let $\alpha : S \to [0, +\infty]$ be finitely additive on a semi-ring S, and let α^* denote the corresponding outer measure. Prove that $\alpha^*(A) = \inf\{\sum_{i=1}^{\infty} \alpha(A_i) : A_i \in S, A \subset \bigcup A_i\}.$
- (9) Prove that all open sets are Lebesgue measurable.
- (10) Prove that the Borel σ -algebra is strictly contained in the σ -algebra of Lebesgue-measurable sets. That is, $(\mathbb{R}^d, \mathcal{B}, \lambda) \subsetneq (\mathbb{R}^d, \mathcal{M}(\lambda^*), \lambda)$.

Practise exercises 2.

- (11) (HW1) Let (X, \mathcal{M}, μ) be a measure space, and $E, F \in \mathcal{M}$. Prove that $\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$.
- (12) Let (X, \mathcal{M}, μ) be a measure space, and $E \in \mathcal{M}$. Define $\mu_E(A) = \mu(A \cap E)$ for any $A \in \mathcal{M}$. Prove that μ_E is a measure.
- (13) Let A_1, \ldots, A_r be sets belonging to a semi-ring S. Prove that there exist some pairwise disjoint sets B_1, \ldots, B_m in S such that $\bigcup_{i=1}^r A_i = \bigcup_{j=1}^m B_j$.
- (14) (HW1) Prove the Borel-Cantelli lemma: "if A_i are events such that the sum of their probability is finite, then the probability that infinitely many of them occurs is 0". More formally, if μ is a probability measure on a σ -algebra \mathcal{A} , and $A_i \in \mathcal{A}$ are such that $\sum_{i=1}^{\infty} \mu(A_i) < +\infty$ then $\mu(\bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_k) = 0$. (Note here that the event $\bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_k$ describes exactly that infinitely many of the A_i 's occur.)
- (15) Let (X, \mathcal{M}, μ) be a measure space, and let $\mathcal{N} = \{N \in \mathcal{A} : \mu(N) = 0\}$, and $\overline{\mathcal{M}} = \{E \cup F : E \in \mathcal{A}, F \subset N \text{ for some } N \in \mathcal{N}\}$. Prove that $\overline{\mathcal{M}}$ is a σ -algebra.

- (16) In the setting of the previous exercise, let $\overline{\mu}(E \cup F) = \mu(E)$. Prove that $\overline{\mu}$ is a complete measure on $\overline{\mathcal{M}}$. (The measure space $(X, \overline{\mathcal{M}}, \overline{\mu})$ is called the *completion* of (X, \mathcal{M}, μ) .
- (17) (HW1) Let μ be a finite Borel measure on \mathbb{R} . Let $F(x) = \mu((-\infty, x])$. Prove that F is an increasing and right-continuous function. (F is called the *distribution function* of μ .)
- (18) Let $F : \mathbb{R} \to \mathbb{R}$ be an increasing and right-continuous function. Let $\mu((a, b]) = F(b) F(a)$ for every $a \leq b$. Prove that μ is finitely additive and σ -subadditive on the semi-ring of intervals $S = \{(a, b] : a \leq b\}$. (The corresponding measure via the Caratheodory extension is called the *Lebesgue-Stieltjes measure* associated to F.)
- (19) Prove that the Lebesgue-measure is open-regular, i.e. $\lambda(E) = \inf\{\lambda(U) : U \supset E, U \text{ is open}\}.$
- (20) Prove that the Lebesgue-measure is *compact-regular*, i.e. $\lambda(E) = \sup\{\lambda(K) : K \subset E, K \text{ is compact}\}.$

Practise exercises 3.

- (21) Assume that the σ -algebra \mathcal{A} is generated by some set system \mathcal{E} . Prove that $f: (X, \mathcal{M}) \to (Y, \mathcal{A})$ is $(\mathcal{M}, \mathcal{A})$ -measurable iff $f^{-1}(E) \in \mathcal{M}$ for every $E \in \mathcal{E}$.
- (22) Prove that $f: (X, \mathcal{A}) \to \mathbb{C}$ is measurable (i.e. Borel-measurable), iff $Re \ f$ and $Im \ f$ are measurable.
- (23) Prove that if $f, g : X \to \mathbb{C}$ are measurable, then f + g and fg are also measurable.
- (24) Prove that if (f_n) is a sequence of real-valued measurable functions on (X, \mathcal{A}) then the functions $g_1(x) = \sup_{n \in \mathbb{N}} f_n(x)$, $g_2(x) = \inf_{n \in \mathbb{N}} f_n(x)$, $g_3(x) = \limsup_{n \in \mathbb{N}} f_n(x)$ and $g_4(x) = \liminf_{n \in \mathbb{N}} f_n(x)$ are all measurable. (In particular, if $\lim_{n \in \mathbb{N}} f_n(x)$ exists for every $x \in X$ then the limit function is also measurable.)
- (25) Prove the monotone convergence theorem: if f_n is an increasing sequence of $[0, +\infty]$ -valued measurable functions on a measure space (X, \mathcal{A}, μ) then $\int_X (\lim_{n \in \mathbb{N}} f_n) d\mu = \lim_{n \in \mathbb{N}} \int_X f_n d\mu.$
- (26) (HW2) Prove that for $f \in L^+$ we have $\int_X f d\mu = 0$ iff f(x) = 0 for μ -almost every $x \in X$.
- (27) (HW2) Let $f = (f_1, f_2, ..., f_n)$ be a function from (X, \mathcal{A}) to \mathbb{R}^n . Prove that f is Borel-measurable iff all f_j are Borel-measurable.
- (28) Prove that if $f, g: (X, \mathcal{A}) \to \mathbb{R}^n$ are Borel-measurable functions then $h(x) = \langle f(x), g(x) \rangle$ is also Borel-measurable.

- (29) Let (X, \mathcal{A}) , (Y, \mathcal{M}) be measurable spaces and let $A \in \mathcal{A} \otimes \mathcal{M}$ be a measurable set in the product space. Show that the cross-sections $A_x = \{y \in Y : (x, y) \in A\}$ and $A_y = \{x \in X : (x, y) \in A\}$ are measurable for each $x \in X$ and $y \in Y$.
- (30) (HW2) Let (X, \mathcal{A}) be a measurable space, and $H_1, \ldots, H_n \subset X$ pairwise disjoint sets. Assume that there exist some numbers $a_1, \ldots, a_n \in \mathbb{R}$ such that the function $f = \sum_{j=1}^n a_j \chi_{H_j}$ is measurable. Does this imply that each H_j must be a measurable set?
- (31) Let $f : \mathbb{R} \to \mathbb{R}$ be a monotonically increasing function. Show that f is measurable.
- (32) (HW2) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. Show that f is measurable.

Practise exercises 4.

- (33) (HW3) Let $f_1, f_2 \in L^+$. Using the definition of the integral, prove that $\int f_1 + f_2 = \int f_1 + \int f_2$.
- (34) Let $f \in L^1$. Prove that $|\int f| \leq \int |f|$.
- (35) (HW3) Assume (f_n) is a sequence of functions in L^1 such that $\sum_{n=1}^{\infty} ||f_n||_1 < +\infty$. Prove that $\sum_{n=1}^{\infty} f_n$ converges almost everywhere, and $\int (\sum_{n=1}^{\infty} f_n) = \sum_{n=1}^{\infty} \int f_n$.
- (36) (HW3) Let $f_n : (X, \mathcal{A}, \mu) \to \mathbb{R}_+$ be a monotonically decreasing sequence of functions, and assume that $\int f_1 < +\infty$. Prove that $\int (\lim_{n\to\infty} f_n) = \lim_{n\to\infty} \int f_n$. Give an example where $\int f_1 = +\infty$ and the above equality is not true.
- (37) Calculate $\lim_{n\to\infty} \int_0^n e^{-2x} (1+\frac{x}{n})^n dx.$
- (38) (HW3) Calculate $\lim_{n\to\infty} \int_1^n \frac{\pi + 2x^2 \arctan(nx)}{x^4(2-2^{-n}) + \sin\frac{1}{n}}$.
- (39) Prove that the function $F(t) = \int_0^\infty e^{-tx} dx$ is infinitely many times differentiable on $(0, +\infty)$, and calculate $\int_0^\infty x^n e^{-x} dx$.
- (40) Prove that if $f_n \to f$ in L^1 then $f_n \to f$ in measure. Show by an example that the converse is not true.
- (41) Assume that $f_n \to f$ in measure. Prove that there exists a subsequence f_{n_j} such that $f_{n_j} \to f$ almost everywhere.
- (42) Prove that if $f_n \to f$ in L^1 then there exists a subsequence f_{n_j} such that $f_{n_j} \to f$ almost everywhere.

(43) Prove Egoroff's theorem: if $\mu(X) < +\infty$ and $f_n \to f$ almost everywhere, then for every $\varepsilon > 0$ there exists a set $E \subset X$ such that $\mu(E) < \varepsilon$ and $f_n \to f$ uniformly on E^c .

Practise exercises 5.

- (44) Let μ the counting measure on \mathbb{N} . Prove that $f_n \to f$ in measure iff $f_n \to f$ uniformly.
- (45) Prove that $f_n \to f$ in measure iff for every $\varepsilon > 0$ there exists N such that $\mu(\{x : |f_n(x) f(x)| \ge \varepsilon\}) < \varepsilon$ for all $n \ge N$.
- (46) Assume $f_n \to f$ and $g_n \to g$ in measure. Prove that $f_n + g_n \to f + g$ in measure. Prove that $f_n g_n \to f g$ in measure if $\mu(X) < +\infty$ but not necessarily if $\mu(X) = +\infty$.
- (47) Prove that if μ is σ -finite and $f_n \to f$ a.e., then there exist measurable sets $E_1, E_2, \ldots, \subset X$ such that $\mu((\bigcup_{j=1}^{\infty} E_j)^c) = 0$ and $f_n \to f$ uniformly on each E_j . (Hint: Use Egoroff's theorem.)
- (48) Assume $\mu(X) \leq = \infty$, For complex-valued measurable functions let $d(f,g) = \int_X \frac{|f-g|}{1+|f-g|} d\mu$. Prove that this defines a metric if we identify functions that are equal almost everywhere. Prove also, that $f_n \to f$ in this metric iff $f_n \to f$ in measure.
- (49) Prove Lusin's theorem: If $f : [a, b] \to \mathbb{C}$ is measurable and $\varepsilon > 0$, then there exists a compact set $E \subset [a, b]$ such that $\lambda(E^c) < \varepsilon$ and $F|_E$ is continuous. (Here λ denotes the Lebesgue measure.)
- (50) Compute the following integral: $\int_{x=0}^{1} \int_{y=x}^{1} x \frac{\sinh y}{y} dy dx$.
- (51) Prove that $\int_0^1 x^a (1-x)^{-1} \log x = \sum_{k=1}^\infty (a+k)^{-2}$ for all a > -1.
- (52) For $x \in \mathbb{R}^n$ let f(x) = g(|x|) for some nonnegaive measurable function g defined on $(0, \infty)$. Prove that $\int_{\mathbb{R}^n} f(x) dx = \sigma(S^{n-1}) \int_0^\infty \int g(r) r^{n-1} dr$. (Here $\sigma(S^{n-1})$ denotes the surface area of the unit sphere.)
- (53) Prove that $\int_{\mathbb{R}^n} e^{-|x|^2} dx = \pi^{n/2}$.
- (54) Prove that $\sigma(S^{n-1}) = \frac{2\pi^{n/2}}{\Gamma(n/2)}$.
- (55) For which values of a, b is the function $|x|^a |\log |x||^b$ integrable on the ball of radius 2 in \mathbb{R}^n ?
- (56) In a σ -finite measure space (X, \mathcal{A}, μ) , for $f \in L^+(X)$ let $G_f = \{(x, y) \in X \times [0, \infty] : y \leq f(x)\}$. Prove that G_f is $\mathcal{A} \otimes \mathcal{B}_{\mathbb{R}}$ -measurable, and $(\mu \times \lambda)(G_f) = \int_X f d\mu$. (Here λ is the Lebesgue measure.)
- (57) (HW4) Let $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$ be σ -finite measure spaces, $f \in L^1(\mu), g \in L^1(\nu)$, and let h(x, y) = f(x)g(y). Prove that $\int hd(\mu \times \nu) = (\int fd\mu)(\int gd\nu)$.

(58) This exercise shows that σ -finiteness of the measures is needed in the Fubini theorem. Let κ and λ denote the counting measure and the Lebesgure measure on the Borel σ -algebra $\mathcal{B}_{\mathbb{R}}$, respectively. Let f(x,y) = 1 if $0 \leq x = y \leq 1$, and f(x,y) = 0 otherwise. Compute $\int_{\mathbb{R} \times \mathbb{R}} fd(\kappa \times \lambda)$, $\int_{\mathbb{R}} (\int_{\mathbb{R}} fd\kappa) d\lambda$, $\int_{\mathbb{R}} (\int_{\mathbb{R}} fd\lambda) d\kappa$.

Practise exercises 6.

- (59) (HW4) Let $f \in L^1$, $g \in L^{\infty}$. Prove that $||fg||_1 \le ||f||_1 ||g||_{\infty}$.
- (60) Prove that $||f||_{\infty} = \inf\{a \ge 0 : \mu(\{x : |f(x)| > a\}) = 0\}$ defines a norm on L^{∞} .
- (61) Prove that $||f_n f||_{\infty} \to 0$ iff there exists a measurable set E such that $\mu(E^c) = 0$ and $f_n \to f$ uniformly on E.
- (62) (HW4) Show by examples that $L^p(\mathbb{R}) \not\subseteq L^q(\mathbb{R})$ for any 1 .
- (63) Prove that for any $1 we have <math>\ell^p \subset \ell^q$, and for any sequence $\underline{a} = (a_n)_{n \in \mathbb{N}} \in \ell^p$ we have $\|\underline{a}\|_q \leq \|\underline{a}\|_p$.
- (64) (HW4) Assume $\mu(X) < +\infty$. Prove that for any $1 we have <math>L^p(X) \supset L^q(X)$, and $\|f\|_p \le \|f\|_q \mu(X)^{\frac{1}{p} \frac{1}{q}}$.
- (65) In the setting of the previous exercise, prove that $\lim_{p\to\infty} ||f||_p \to ||f||_{\infty}$.
- (66) Prove that $L^p(\mathbb{R})$ is separable for $1 \leq p < \infty$, but not separable for $p = \infty$.
- (67) For a complex-valued measurable function f define the essential range R_f of f as the set of complex numbers z such that $\{x : |f(x) z| < \varepsilon\}$ has positive measure for every $\varepsilon > 0$. Prove that R_f is a closed set, and if $f \in L^{\infty}$ then R_f is compact and $||f||_{\infty} = \max\{|z| : z \in R_f\}$.
- (68) Let p, q be conjugate exponents (i.e. $\frac{1}{p} + \frac{1}{q} = 1$), and let $h \in L^q(X)$. Define a linear functional $\phi_h : L^p(X) \to \mathbb{C}$ by setting $\phi_h(f) = \int_X f(x)h(x)d\mu(x)$. Prove that ϕ_h is a bounded linear functional, and $\|\phi_h\| \leq \|h\|_q$.
- (69) Assume $1 \le p < \infty$ and $||f_n f||_p \to 0$. Prove that $f_n \to f$ in measure. On the other hand, prove also that if $f_n \to f$ in measure, and $|f_n| \le g \in L^p$ then $||f_n f||_p \to 0$.
- (70) Assume $1 \le p < \infty$, $f_n, f \in L^p$ and $f_n \to f$ almost everywhere. Prove that $||f_n f||_p \to 0$ iff $||f_n||_p \to ||f||_p$.

Practise exercises 7.

- (71) (HW5) Let ν be a signed measure on (X, \mathcal{A}) . Prove that $E \in \mathcal{A}$ is ν -null iff $|\nu|(E) = 0$.
- (72) Let ν be a signed measure and μ be a measure on (X, \mathcal{A}) . Prove that $\nu \perp \mu$ iff $|\nu| \perp \mu$.

- (73) Let ν be a signed measure on (X, \mathcal{A}) . Prove that for all $f \in L^1(\nu)$ we have $|\int f d\nu| \leq \int |f| d|\nu|$.
- (74) (HW5) Let ν be a signed measure on (X, \mathcal{A}) . Prove that $\nu^+(E) = \sup\{\nu(F) : F \in \mathcal{A}, F \subset E\}$.
- (75) Let ν be a signed measure on (X, \mathcal{A}) . Prove that $|\nu|(E) = \sup\{\sum_{i=1}^{n} |\nu(E_i)| : E_i \in \mathcal{A}, \bigcup E_i = E\}.$
- (76) Prove that if ν is a signed measure, λ, μ are positive measures such that $\nu = \lambda \mu$ then $\lambda \ge \nu^+$ and $\mu \ge \nu^-$.
- (77) Let (X, \mathcal{A}, μ) be a measure space and let $f, g \in L^1(\mu)$. Prove that f = g a.e. iff $\int_E f = \int_E g$ for all $E \in \mathcal{A}$.
- (78) (HW5) Let ν be a signed measure and μ be a measure on (X, \mathcal{A}) . Prove that $\nu \ll \mu$ iff $|\nu| \ll \mu$.
- (79) Let μ and ν_j (j = 1, 2, ...) be positive measures such that $\nu_j \perp \mu$ for all j. Prove that $\sum_{j=1}^{\infty} \nu_j \perp \mu$.
- (80) Let μ and ν_j (j = 1, 2, ...) be positive measures such that $\nu_j \ll \mu$ for all j. Prove that $\sum_{j=1}^{\infty} \nu_j \ll \mu$.
- (81) (HW5) Let $F(x) = \arctan x$ if x < 0 and $F(x) = \frac{2x+1}{x+1}$ if $x \ge 0$. Let μ be the Lebesgue-Stieltjes measure generated by F, i.e. $\mu((a,b]) = F(b) F(a)$. Find the Lebesgue decomposition (i.e the singular and absolutely continuous parts) of μ with respect to the Lebesgue measure of the real line.