(1) Prove that if $A=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{R}^{d}$, then A is Jordan measurable and $\lambda_{J}(A)=0$.
(2) Prove that for any unbounded set $A \subset \mathbb{R}^{d}$ we have $\lambda_{J}^{*}(A)=+\infty$.
(3) Let $A=\mathbb{Q} \cap[0,1]$. Prove that $\lambda_{J}^{*}(A)=1$ but $\lambda_{*, J}(A)=0$, so A is not Jordan measurable.
(4) Prove that the fat Cantor set C_{F} is not Jordan measurable.
(5) Prove that we don't get anything new if we allow countable union in the definition of the inner measure. That is, $\sup \left\{\sum_{n=1}^{\infty} \lambda\left(T_{n}\right): \dot{U} T_{n} \subset A\right\}=$ $\lambda_{*, J}(A)$.
(6) (HW1) Prove that if $\alpha: S \rightarrow[0,+\infty]$ is finitely additive on a semi-ring S then α is monotone, σ-superadditive, and subadditive.
(7) Prove that a σ-algebra is closed under countable intersections.
(8) Let $\alpha: S \rightarrow[0,+\infty]$ be finitely additive on a semi-ring S, and let α^{*} denote the corresponding outer measure. Prove that $\alpha^{*}(A)=\inf \left\{\sum_{i=1}^{\infty} \alpha\left(A_{i}\right)\right.$: $\left.A_{i} \in S, A \subset \dot{U} A_{i}\right\}$.
(9) Prove that all open sets are Lebesgue measurable.
(10) Prove that the Borel σ-algebra is strictly contained in the σ-algebra of Lebesgue-measurable sets. That is, $\left(\mathbb{R}^{d}, \mathcal{B}, \lambda\right) \subsetneq\left(\mathbb{R}^{d}, \mathcal{M}\left(\lambda^{*}\right), \lambda\right)$.

Practise exercises 2

(11) (HW1) Let (X, \mathcal{M}, μ) be a measure space, and $E, F \in \mathcal{M}$. Prove that $\mu(E)+$ $\mu(F)=\mu(E \cup F)+\mu(E \cap F)$.
(12) Let (X, \mathcal{M}, μ) be a measure space, and $E \in \mathcal{M}$. Define $\mu_{E}(A)=\mu(A \cap E)$ for any $A \in \mathcal{M}$. Prove that μ_{E} is a measure.
(13) Let A_{1}, \ldots, A_{r} be sets belonging to a semi-ring S. Prove that there exist some pairwise disjoint sets B_{1}, \ldots, B_{m} in S such that $\cup_{i=1}^{r} A_{i}=\dot{\cup}_{j=1}^{m} B_{j}$.
(14) (HW1) Prove the Borel-Cantelli lemma: "if A_{i} are events such that the sum of their probability is finite, then the probability that infinitely many of them occurs is $0^{\prime \prime}$. More formally, if μ is a probability measure on a σ-algebra \mathcal{A}, and $A_{i} \in \mathcal{A}$ are such that $\sum_{i=1}^{\infty} \mu\left(A_{i}\right)<+\infty$ then $\mu\left(\cap_{n \in \mathbb{N}} \cup_{k \geq n} A_{k}\right)=0$. (Note here that the event $\cap_{n \in \mathbb{N}} \cup_{k \geq n} A_{k}$ describes exactly that infinitely many of the A_{i} 's occur.)
(15) Let (X, \mathcal{M}, μ) be a measure space, and let $\mathcal{N}=\{N \in \mathcal{A}: \mu(N)=0\}$, and $\overline{\mathcal{M}}=\{E \cup F: E \in \mathcal{A}, F \subset N$ for some $N \in \mathcal{N}\}$. Prove that $\overline{\mathcal{M}}$ is a σ-algebra.
(16) In the setting of the previous exercise, let $\bar{\mu}(E \cup F)=\mu(E)$. Prove that $\bar{\mu}$ is a complete measure on $\overline{\mathcal{M}}$. (The measure space $(X, \overline{\mathcal{M}}, \bar{\mu})$ is called the completion of (X, \mathcal{M}, μ).
(17) (HW1) Let μ be a finite Borel measure on \mathbb{R}. Let $F(x)=\mu((-\infty, x])$. Prove that F is an increasing and right-continuous function. (F is called the distribution function of μ.)
(18) Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be an increasing and right-continuous function. Let $\mu((a, b])=$ $F(b)-F(a)$ for every $a \leq b$. Prove that μ is finitely additive and σ subadditive on the semi-ring of intervals $S=\{(a, b]: a \leq b\}$. (The corresponding measure via the Caratheodory extension is called the LebesgueStieltjes measure associated to F.)
(19) Prove that the Lebesgue-measure is open-regular, i.e. $\lambda(E)=\inf \{\lambda(U)$: $U \supset E, U$ is open $\}$.
(20) Prove that the Lebesgue-measure is compact-regular, i.e. $\lambda(E)=\sup \{\lambda(K)$: $K \subset E, K$ is compact $\}$.

Practise exercises 3

(21) Assume that the σ-algebra \mathcal{A} is generated by some set system \mathcal{E}. Prove that $f:(X, \mathcal{M}) \rightarrow(Y, \mathcal{A})$ is $(\mathcal{M}, \mathcal{A})$-measurable iff $f^{-1}(E) \in \mathcal{M}$ for every $E \in \mathcal{E}$.
(22) Prove that $f:(X, \mathcal{A}) \rightarrow \mathbb{C}$ is measurable (i.e. Borel-measurable), iff $\operatorname{Re} f$ and $\operatorname{Im} f$ are measurable.
(23) Prove that if $f, g: X \rightarrow \mathbb{C}$ are measurable, then $f+g$ and $f g$ are also measurable.
(24) Prove that if $\left(f_{n}\right)$ is a sequence of real-valued measurable functions on (X, \mathcal{A}) then the functions $g_{1}(x)=\sup _{n \in \mathbb{N}} f_{n}(x), g_{2}(x)=\inf _{n \in \mathbb{N}} f_{n}(x)$, $g_{3}(x)=\lim \sup _{n \in \mathbb{N}} f_{n}(x)$ and $g_{4}(x)=\liminf _{n \in \mathbb{N}} f_{n}(x)$ are all measurable. (In particular, if $\lim _{n \in \mathbb{N}} f_{n}(x)$ exists for every $x \in X$ then the limit function is also measurable.)
(25) Prove the monotone convergence theorem: if f_{n} is an increasing sequence of $[0,+\infty]$-valued measurable functions on a measure space (X, \mathcal{A}, μ) then $\int_{X}\left(\lim _{n \in \mathbb{N}} f_{n}\right) d \mu=\lim _{n \in \mathbb{N}} \int_{X} f_{n} d \mu$.
(26) (HW2) Prove that for $f \in L^{+}$we have $\int_{X} f d \mu=0$ iff $f(x)=0$ for μ-almost every $x \in X$.
(27) (HW2) Let $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ be a function from (X, \mathcal{A}) to \mathbb{R}^{n}. Prove that f is Borel-measurable iff all f_{j} are Borel-measurable.
(28) Prove that if $f, g:(X, \mathcal{A}) \rightarrow \mathbb{R}^{n}$ are Borel-measurable functions then $h(x)=$ $\langle f(x), g(x)\rangle$ is also Borel-measurable.
(29) Let $(X, \mathcal{A}),(Y, \mathcal{M})$ be measurable spaces and let $A \in \mathcal{A} \otimes \mathcal{M}$ be a measurable set in the product space. Show that the cross-sections $A_{x}=\{y \in Y$: $(x, y) \in A\}$ and $A_{y}=\{x \in X:(x, y) \in A\}$ are measurable for each $x \in X$ and $y \in Y$.
(30) (HW2) Let (X, \mathcal{A}) be a measurable space, and $H_{1}, \ldots, H_{n} \subset X$ pairwise disjoint sets. Assume that there exist some numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$ such that the function $f=\sum_{j=1}^{n} a_{j} \chi_{H_{j}}$ is measurable. Does this imply that each H_{j} must be a measurable set?
(31) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a monotonically increasing function. Show that f is measurable.
(32) (HW2) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Show that f is measurable.

Practise exercises 4.

(33) (HW3) Let $f_{1}, f_{2} \in L^{+}$. Using the definition of the integral, prove that $\int f_{1}+f_{2}=\int f_{1}+\int f_{2}$.
(34) Let $f \in L^{1}$. Prove that $\left|\int f\right| \leq \int|f|$.
(35) (HW3) Assume $\left(f_{n}\right)$ is a sequence of functions in L^{1} such that $\sum_{n=1}^{\infty}\left\|f_{n}\right\|_{1}<+\infty$. Prove that $\sum_{n=1}^{\infty} f_{n}$ converges almost everywhere, and $\int\left(\sum_{n=1}^{\infty} f_{n}\right)=\sum_{n=1}^{\infty} \int f_{n}$.
(36) (HW3) Let $f_{n}:(X, \mathcal{A}, \mu) \rightarrow \mathbb{R}_{+}$be a monotonically decreasing sequence of functions, and assume that $\int f_{1}<+\infty$. Prove that $\int\left(\lim _{n \rightarrow \infty} f_{n}\right)=$ $\lim _{n \rightarrow \infty} \int f_{n}$. Give an example where $\int f_{1}=+\infty$ and the above equality is not true.
(37) Calculate $\lim _{n \rightarrow \infty} \int_{0}^{n} e^{-2 x}\left(1+\frac{x}{n}\right)^{n} d x$.
(38) (HW3) Calculate $\lim _{n \rightarrow \infty} \int_{1}^{n} \frac{\pi+2 x^{2} \arctan (n x)}{x^{4}\left(2-2^{-n}\right)+\sin \frac{1}{n}}$.
(39) Prove that the function $F(t)=\int_{0}^{\infty} e^{-t x} d x$ is infinitely many times differentiable on $(0,+\infty)$, and calculate $\int_{0}^{\infty} x^{n} e^{-x} d x$.
(40) Prove that if $f_{n} \rightarrow f$ in L^{1} then $f_{n} \rightarrow f$ in measure. Show by an example that the converse is not true.
(41) Assume that $f_{n} \rightarrow f$ in measure. Prove that there exists a subsequence $f_{n_{j}}$ such that $f_{n_{j}} \rightarrow f$ almost everywhere.
(42) Prove that if $f_{n} \rightarrow f$ in L^{1} then there exists a subsequence $f_{n_{j}}$ such that $f_{n_{j}} \rightarrow f$ almost everywhere.
(43) Prove Egoroff's theorem: if $\mu(X)<+\infty$ and $f_{n} \rightarrow f$ almost everywhere, then for every $\varepsilon>0$ there exists a set $E \subset X$ such that $\mu(E)<\varepsilon$ and $f_{n} \rightarrow f$ uniformly on E^{c}.

Practise exercises 5.

(44) Let μ the counting measure on \mathbb{N}. Prove that $f_{n} \rightarrow f$ in measure iff $f_{n} \rightarrow f$ uniformly.
(45) Prove that $f_{n} \rightarrow f$ in measure iff for every $\varepsilon>0$ there exists N such that $\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\}\right)<\varepsilon$ for all $n \geq N$.
(46) Assume $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ in measure. Prove that $f_{n}+g_{n} \rightarrow f+g$ in measure. Prove that $f_{n} g_{n} \rightarrow f g$ in measure if $\mu(X)<+\infty$ but not necessarily if $\mu(X)=+\infty$.
(47) Prove that if μ is σ-finite and $f_{n} \rightarrow f$ a.e., then there exist measurable sets $E_{1}, E_{2}, \ldots, \subset X$ such that $\mu\left(\left(\cup_{j=1}^{\infty} E_{j}\right)^{c}\right)=0$ and $f_{n} \rightarrow f$ uniformly on each E_{j}. (Hint: Use Egoroff's theorem.)
(48) Assume $\mu(X)<=\infty$, For complex-valued measurable functions let $d(f, g)=$ $\int_{X} \frac{|f-g|}{1+|f-g|} d \mu$. Prove that this defines a metric if we identify functions that are equal almost everywhere. Prove also, that $f_{n} \rightarrow f$ in this metric iff $f_{n} \rightarrow f$ in measure.
(49) Prove Lusin's theorem: If $f:[a, b] \rightarrow \mathbb{C}$ is measurable and $\varepsilon>0$, then there exists a compact set $E \subset[a, b]$ such that $\lambda\left(E^{c}\right)<\varepsilon$ and $\left.F\right|_{E}$ is continuous. (Here λ denotes the Lebesgue measure.)
(50) Compute the following integral: $\int_{x=0}^{1} \int_{y=x}^{1} x \frac{\sinh y}{y} d y d x$.
(51) Prove that $\int_{0}^{1} x^{a}(1-x)^{-1} \log x=\sum_{k=1}^{\infty}(a+k)^{-2}$ for all $a>-1$.
(52) For $x \in \mathbb{R}^{n}$ let $f(x)=g(|x|)$ for some nonnegaive measurable function g defined on $(0, \infty)$. Prove that $\int_{\mathbb{R}^{n}} f(x) d x=\sigma\left(S^{n-1}\right) \int_{0}^{\infty} \int g(r) r^{n-1} d r$. (Here $\sigma\left(S^{n-1}\right)$ denotes the surface area of the unit sphere.)
(53) Prove that $\int_{\mathbb{R}^{n}} e^{-|x|^{2}} d x=\pi^{n / 2}$.
(54) Prove that $\sigma\left(S^{n-1}\right)=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)}$.
(55) For which values of a, b is the function $|x|^{a}|\log | x| |^{b}$ integrable on the ball of radius 2 in \mathbb{R}^{n} ?
(56) In a σ-finite measure space (X, \mathcal{A}, μ), for $f \in L^{+}(X)$ let $G_{f}=\{(x, y) \in$ $X \times[0, \infty]: y \leq f(x)\}$. Prove that G_{f} is $\mathcal{A} \otimes \mathcal{B}_{\mathbb{R}}$-measurable, and $(\mu \times \lambda)\left(G_{f}\right)=\int_{X} f d \mu$. (Here λ is the Lebesgue measure.)
(57) (HW4) Let $(X, \mathcal{A}, \mu),(Y, \mathcal{B}, \nu)$ be σ-finite measure spaces, $f \in L^{1}(\mu), g \in$ $L^{1}(\nu)$, and let $h(x, y)=f(x) g(y)$. Prove that $\int h d(\mu \times \nu)=\left(\int f d \mu\right)\left(\int g d \nu\right)$.
(58) This exercise shows that σ-finiteness of the measures is needed in the Fubini theorem. Let κ and λ denote the counting measure and the Lebesgure measure on the Borel σ-algebra $\mathcal{B}_{\mathbb{R}}$, respectively. Let $f(x, y)=1$ if $0 \leq x=$ $y \leq 1$, and $f(x, y)=0$ otherwise. Compute $\int_{\mathbb{R} \times \mathbb{R}} f d(\kappa \times \lambda), \int_{\mathbb{R}}\left(\int_{\mathbb{R}} f d \kappa\right) d \lambda$, $\int_{\mathbb{R}}\left(\int_{\mathbb{R}} f d \lambda\right) d \kappa$.

Practise exercises 6

(59) (HW4) Let $f \in L^{1}, g \in L^{\infty}$. Prove that $\|f g\|_{1} \leq\|f\|_{1}\|g\|_{\infty}$.
(60) Prove that $\|f\|_{\infty}=\inf \{a \geq 0: \mu(\{x:|f(x)|>a\})=0\}$ defines a norm on L^{∞}.
(61) Prove that $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$ iff there exists a measurable set E such that $\mu\left(E^{c}\right)=0$ and $f_{n} \rightarrow f$ uniformly on E.
(62) (HW4) Show by examples that $L^{p}(\mathbb{R}) \nsubseteq L^{q}(\mathbb{R})$ for any $1<p \neq q<\infty$.
(63) Prove that for any $1<p \leq q<\infty$ we have $\ell^{p} \subset \ell^{q}$, and for any sequence $\underline{a}=\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{p}$ we have $\|\underline{a}\|_{q} \leq\|\underline{a}\|_{p}$.
(64) (HW4) Assume $\mu(X)<+\infty$. Prove that for any $1<p<q<\infty$ we have $L^{p}(X) \supset L^{q}(X)$, and $\|f\|_{p} \leq\|f\|_{q} \mu(X)^{\frac{1}{p}-\frac{1}{q}}$.
(65) In the setting of the previous exercise, prove that $\lim _{p \rightarrow \infty}\|f\|_{p} \rightarrow\|f\|_{\infty}$.
(66) Prove that $L^{p}(\mathbb{R})$ is separable for $1 \leq p<\infty$, but not separable for $p=\infty$.
(67) For a complex-valued measurable function f define the essential range R_{f} of f as the set of complex numbers z such that $\{x:|f(x)-z|<\varepsilon\}$ has positive measure for every $\varepsilon>0$. Prove that R_{f} is a closed set, and if $f \in L^{\infty}$ then R_{f} is compact and $\|f\|_{\infty}=\max \left\{|z|: z \in R_{f}\right\}$.
(68) Let p, q be conjugate exponents (i.e. $\frac{1}{p}+\frac{1}{q}=1$), and let $h \in L^{q}(X)$. Define a linear functional $\phi_{h}: L^{p}(X) \rightarrow \mathbb{C}$ by setting $\phi_{h}(f)=\int_{X} f(x) h(x) d \mu(x)$. Prove that ϕ_{h} is a bounded linear functional, and $\left\|\phi_{h}\right\| \leq\|h\|_{q}$.
(69) Assume $1 \leq p<\infty$ and $\left\|f_{n}-f\right\|_{p} \rightarrow 0$. Prove that $f_{n} \rightarrow f$ in measure. On the other hand, prove also that if $f_{n} \rightarrow f$ in measure, and $\left|f_{n}\right| \leq g \in L^{p}$ then $\left\|f_{n}-f\right\|_{p} \rightarrow 0$.
(70) Assume $1 \leq p<\infty, f_{n}, f \in L^{p}$ and $f_{n} \rightarrow f$ almost everywhere. Prove that $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ iff $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$.

Practise exercises 7.
(71) (HW5) Let ν be a signed measure on (X, \mathcal{A}). Prove that $E \in \mathcal{A}$ is ν-null iff $|\nu|(E)=0$.
(72) Let ν be a signed measure and μ be a measure on (X, \mathcal{A}). Prove that $\nu \perp \mu$ iff $|\nu| \perp \mu$.
(73) Let ν be a signed measure on (X, \mathcal{A}). Prove that for all $f \in L^{1}(\nu)$ we have $\left|\int f d \nu\right| \leq \int|f| d|\nu|$.
(74) (HW5) Let ν be a signed measure on (X, \mathcal{A}). Prove that $\nu^{+}(E)=\sup \{\nu(F)$: $F \in \mathcal{A}, F \subset E\}$.
(75) Let ν be a signed measure on (X, \mathcal{A}). Prove that $|\nu|(E)=\sup \left\{\sum_{i=1}^{n}\left|\nu\left(E_{i}\right)\right|\right.$: $\left.E_{i} \in \mathcal{A}, \dot{\cup} E_{i}=E\right\}$.
(76) Prove that if ν is a signed measure, λ, μ are positive measures such that $\nu=\lambda-\mu$ then $\lambda \geq \nu^{+}$and $\mu \geq \nu^{-}$.
(77) Let (X, \mathcal{A}, μ) be a measure space and let $f, g \in L^{1}(\mu)$. Prove that $f=g$ a.e. iff $\int_{E} f=\int_{E} g$ for all $E \in \mathcal{A}$.
(78) (HW5) Let ν be a signed measure and μ be a measure on (X, \mathcal{A}). Prove that $\nu \ll \mu$ iff $|\nu| \ll \mu$.
(79) Let μ and $\nu_{j}(j=1,2, \ldots)$ be positive measures such that $\nu_{j} \perp \mu$ for all j. Prove that $\sum_{j=1}^{\infty} \nu_{j} \perp \mu$.
(80) Let μ and $\nu_{j}(j=1,2, \ldots)$ be positive measures such that $\nu_{j} \ll \mu$ for all j. Prove that $\sum_{j=1}^{\infty} \nu_{j} \ll \mu$.
(81) (HW5) Let $F(x)=\arctan x$ if $x<0$ and $F(x)=\frac{2 x+1}{x+1}$ if $x \geq 0$. Let μ be the Lebesgue-Stieltjes measure generated by F, i.e. $\mu((a, b])=F(b)-F(a)$. Find the Lebesgue decomposition (i.e the singular and absolutely continuous parts) of μ with respect to the Lebesgue measure of the real line.

