
Practise exercises 1.

(1) Prove that if A = {a1, . . . , an} ⊂ Rd is a finite set, then A is Jordan
measurable and λJ(A) = 0.

(2) Prove that we don’t get anything new if we allow countable union in the
definition of the Jordan inner measure. That is, sup{

∑∞
n=1 λ(Tn) : ∪̇Tn ⊂

A} = λ∗,J(A).

(3) Let A = Q ∩ [0, 1]. Prove that λ∗J(A) = 1 but λ∗,J(A) = 0, so A is not
Jordan measurable. Conclude that the Jordan measure is not σ-additive.
(Therefore, it is not a measure. The terminology Jordan − measure is
standard, but let’s keep in mind that it is not a measure.)

(4) Let (X,M, µ) be a measure space, and E,F ∈M. Show that µ(E)+µ(F ) =
µ(E ∪ F ) + µ(E ∩ F ).

(5) Let (X,M, µ) be a measure space, amd E ∈M. Let µE(A) = µ(A ∩E) for
all A ∈M. Prove that µE is also a measure on the space (X,M).

(6) Let X be a non-empty set, and let A ⊂ X. Determine the σ-algebra gene-
rated by

(a) {A}
(b) {B : B ⊂ A}

(7) Let f : X → Y be an arbitrary function. Prove that
(a) if B is a σ-algebra on Y then {f−1(B) : B ∈ B} is a σ-algebra on X.
(b) if A is a σ-algebra on X then {B ⊂ Y : f−1(B) ∈ A} is a σ-algebra

on Y .

(8) Let (X,M, µ) be a measure space and let N = {N ∈ A : µ(N) = 0}, and
M = {E ∪ F : E ∈ A, F ⊂ N forsome N ∈ N}. Prove that M is also a
σ-algebra.

(9) Let (X,A), (Y,M) be measurable spaces, and let T ∈ A⊗M be a measurable
set in the product σ-algebra A⊗M. Prove that the cross sections Tx = {y ∈
Y : (x, y) ∈ T} and Ty = {x ∈ X : (x, y) ∈ T} are measurable for all x ∈ X
and y ∈ Y .
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(10) Let (X,A, µ) be a measure space. Prove the continuity properties of the
measure:

a; If E1 ⊂ E2 ⊂ . . . , then µ(∪∞j=1 = limj→∞ µ(Ej)

b; If µ(E1) <∞, and E1 ⊃ E2 ⊃ . . . , then µ(∩∞j=1 = limj→∞ µ(Ej)
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(11) Prove the Borel-Cantelli lemma: "if Ai are events such that the sum of
their probability is finite, then the probability that infinitely many of them
occurs is 0". More formally, if µ is a probability measure on a σ-algebra A,
and Ai ∈ A are such that

∑∞
i=1 µ(Ai) < +∞ then µ(∩n∈N ∪k≥n Ak) = 0.

(Note here that the event ∩n∈N ∪k≥n Ak describes exactly that infinitely
many of the Ai’s occur.)

(12) Prove directly that the Lebesgue outer measure of [0, 1] is 1, and that it
satisfies the splitting property. Conclude that [0, 1] is Lebesgue-measurable
and satisfies λ([0, 1]) = 1.

(13) Let F (x) = 0 for x < 0 and F (x) = 1 for x ≥ 0. Follow the construction
of the Lebesgue-Stieltjes measure corresponding to F , and prove that it is
equal to the Dirac measure δ0.

(14) Let F (x) = x if x < 0 and F (x) = 1 + x if x ≥ 0. Describe the Lebesgue-
Stieltjes measure generated by F .

(15) Prove that the Lebesgue-measure is open-regular, i.e. λ(E) = inf{λ(U) :
U ⊃ E,U is open}.

(16) Let A ⊂ Rn be a set such that its Lebesgue outer measure is 0. Prove that
A is Lebesgue measurable and λ(A) = 0.

(17) An example that the push-forward does not work in the naive way even for
surjective functions: Let X = R and let L denote the collection of Lebesgue
measurable sets, and let E /∈ L be a non-measurable set. Let c /∈ E be
any real number. Let f(x) = x if x ∈ E and f(x) = c otherwise, and let
Y = E ∪ {c}. Then f : X → Y is surjective. Consider A = {f(A) : A ∈ L}.
Then A is not a σ-algebra because {c} ∈ A but its complement in Y is E
and it is not an image of a measurable set.
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(18) Let X = [0, 1] × [0, 1] be the unit square, and let E be the collection of
rectangles Tab = {(x, y) ∈ X : 0 ≤ a ≤ x ≤ b ≤ 1, 0 ≤ y ≤ 1}. Let ν be the
set function defined by ν : E → [0, 1], ν(Tab) = b − a. Let µ∗ be the outer
measure generated by ν. Prove that the set D = {(x, y) ∈ X : x = y} is
not measurable (i.e. it does not satisfy the splitting property).

(19) Let X,A), (Y,M) be a measurable spaces. Assume M is generated by a set
system E. Prove that f : X → Y is (A,M) measurable iff f−1(E) ∈ A for
all E ∈ E.

(20) Let X,A), (Y1,M1), (Y2,M2) be measurable spaces. Prove that a function
f = (f1, f2) : X → Y1 × Y2 is M1 ⊗M2-measurable iff both coordinate
functions f1 and f2 are measurable.

(21) Let X,A) be a measurable space. Prove that a function f : X → C is
measurable iff Ref and Imf are measurable.



(22) Let f : R → R be a monotonically increasing function. Prove that f is
Borel-measurable.

(23) Let (X,A, µ) be a measure space. Prove that for f ∈ L+ we have
∫
X
fdµ = 0

iff f(x) = 0 for µ-almost every x ∈ X.

(24) Let f1, f2 ∈ L+. Using the definition of the integral, prove that
∫
f1 + f2 =∫

f1 +
∫
f2.

(25) (HW1) Let c+E = {c+e : e ∈ E} be a translated copy of a set E ⊂ R. Prove
that the Lebesgue outer measure λ∗ is translation invariant, i.e. λ∗(E) =
λ∗(c+E) for every E ⊂ R, c ∈ R. Also, prove that if E is measurable (i.e.
it has the splitting property) then c+E is also measurable. Conclude that
the Lebesgeu-measure is translation invariant.

(26) (HW2) In the setting of Exercise 8 define µ(E ∪ F ) = µ(E). Prove that µ
is a complete measure on M. (The space (X,M, µ) is called the completion
of (X,M, µ)).

(27) (HW3) Prove that the Lebesgue-measure is compact-regular, i.e. λ(E) =
sup{λ(K) : K ⊂ E,Kis compact}. (Hint: use Exercise 15.

(28) (HW4) LetX,A) be a measurable space, and f, g : X → R Borel-measurable
functions. Prove that f + g : X → R is also Borel-measurable.
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(29) Let (X,A, µ) be a complete measure space and let f, g : X → R be functions
such that f = g µ-almost everywhere. Prove that if f is measurable then
so is g.

(30) Let X = N, and µ the counting measure (i.e. µ(A) = |A| if A is finite,
and µ(A) = ∞ if A is infinite). Show that in this case L+ is the set of
nonnegative sequences, and for f = (an) ∈ L+ we have

∫
X
fdµ =

∑∞
n=1 an.

(31) Let (X,A) be a measurable space, and µ1 ≤ µ2 ≤ · · · ≤ µn ≤ . . . be
measures on it. Use the previous exercise and the monotone convergence
theorem to prove that µ(E) = supn∈N µn(E) is also a measure on (X,A)-n.

(32) Let (X,A, µ) be a measure space, f ∈ L+, and λ(E) =
∫
E
fdµ for all

E ∈ A. Prove that λ is a measure on (X,A). (In class we saw that this is
so if f is a simple function. You can freely use this fact here.)

(33) Show an example where fn ∈ L+, fn(x) is monotonically decreasing, fn(x)→
f(x) for all x ∈ X, but

∫
f 6= limn→∞

∫
fn. Prove that if we assume∫

f1 <∞ then
∫
f = limn→∞

∫
fn.

(34) Let f ∈ L1 Prove that |
∫
f | ≤

∫
|f |. (Treat the cases of real-valued f and

complex-valued f separately.)

(35) Let f, g ∈ L1. Prove that f + g ∈ L1.



(36) (HW1) Show that the Lebesgue measure of the Cantor set is 0.

(37) (HW2) Let f : R → R be a Borel measurable function such that f(x) 6= 0
for all x. Prove that the reciprocal function 1/f is also Borel measurable.

(38) (HW3) Let f : R→ R be a differentiable function. Prove that the derivative
f ′ is Borel measurable.

(39) (HW4) Assume fn ∈ L+, f ∈ L+, and fn(x) monotonically increases and
converges to f(x) for almost every x. Prove that

∫
f = limn→∞

∫
fn.
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(40) (HW1) Expandig the term 1
1−x as an infinite series, and using the MCT

prove that
∫ 1

0
xa(1− x)−1 log x = −

∑∞
k=1(a+ k)−2 for all a > −1.

(41) Assume (fn) is a sequence of functions in L1 such that∑∞
n=1 ‖fn‖1 < +∞. Prove that

∑∞
n=1 fn converges almost everywhere, and∫

(
∑∞
n=1 fn) =

∑∞
n=1

∫
fn.

(42) Calculate limn→∞
∫ n
0
e−2x(1 + x

n )
ndx.

(43) Calculate limn→∞
∫ n
1
π+2x2 arctan(nx)

x4(2−2−n)+sin 1
n

.

(44) (HW2) Calculate limn→∞
∫∞
1

n
1+n2x2 dx, and limn→∞

∫∞
0

n
1+n2x2 dx

(45) (HW3) Let fn(x) = e−n(1−cos x). Prove that on the interval [0, 100] fn → 0
in measure (with respect to the Lebesgue measure), but on the half-line
[0,∞) fn does not converge to 0 in measure.

(46) Prove that fn → f in measure iff for every ε > 0 there exists N such that
µ({x : |fn(x)− f(x)| ≥ ε}) < ε for all n ≥ N .

(47) Assume fn → f and gn → g in measure. Prove that fn + gn → f + g in
measure.

(48) Assume µ(X) <=∞, For complex-valued measurable functions let d(f, g) =∫
X
|f−g|

1+|f−g|dµ. Prove that this defines a metric if we identify functions that
are equal almost everywhere. Prove also, that fn → f in this metric iff
fn → f in measure.

(49) Prove that if fn → f almost uniformly then fn → f in measure, and fn → f
almost everywhere.

(50) Let µ(X) < ∞. Prove that if fn → f uniformly, then fn → f in L1. Show
an example where µ(X) <∞, fn → f almost uniformly but fn 6→ f in L1.

(51) Prove Lusin’s theorem: If f : [a, b]→ C is measurable and ε > 0, then there
exists a compact set E ⊂ [a, b] such that λ(Ec) < ε and F |E is continuous.
(Here λ denotes the Lebesgue measure.)



(52) (HW4) Using Fubini’s theorem compute the following integral:
∫ 1

x=0

∫ 1

y=x
x sinh y

y dydx.

(53) Let (X,A, µ), (Y,B, ν) be σ-finite measure spaces, f ∈ L1(µ), g ∈ L1(ν),
and let h(x, y) = f(x)g(y). Prove that

∫
hd(µ× ν) = (

∫
fdµ)(

∫
gdν).

(54) This exercise shows that σ-finiteness of the measures is needed in the Fubini
theorem. Let κ and λ denote the counting measure and the Lebesgure
measure on the Borel σ-algebra BR, respectively. Let f(x, y) = 1 if 0 ≤ x =
y ≤ 1, and f(x, y) = 0 otherwise. Compute

∫
R×R fd(κ× λ),

∫
R(
∫
R fdκ)dλ,∫

R(
∫
R fdλ)dκ.

(55) Prove that continuous functions are dense in L1(R). That is, for any
f ∈ L1(R) and any ε > 0 there exists a continuous function g such that
‖f − g‖1 < ε.

Practise exercises 6. (summary before the Midterm)

(56) Let X1, X2, . . . be pairwise disjoint sets and for every n let An be a σ-
algebra on Xn. Let U = {∪∞n=1An : An ∈ An}. Is it true that U is a
σ-algebra on the set X = ∪∞n=1Xn?

(57) Let f : R2 → R, f(x, y) = x − y. Determine the σ-algebra A = {f−1(E) :
E ∈ BR}.

(58) Let (X,A, µ) be a measure space, and let T : X → Y be a surjective
mapping. We saw that B = {E ⊂ Y : T−1(E) ∈ A} is a σ-algebra on Y .
Prove that ν(E) = µ(T−1(E)) is a measure on (Y,B).

(59) Let µ∗ be an outer measure on a set X, and let B ⊂ A ⊂ X such that
µ∗(A) = µ∗(B) <∞. Prove that if B is measurable then so is A.

(60) Let A ⊂ Rn be a bounded set such that λ(intA) = λ(A) (where λ is the
Lebesgue measure on Rn, intA is the interior of A, and A is the closure of
A. Prove that A is Lebesgue-measurable.

(61) Prove that if f, g : R → Rn are Borel-measurable functions, then h(x) =
〈f(x), g(x)〉 is also Borel-measurable (where 〈·, ·〉 denotes the usual scalar
product on Rn).

(62) Consider the measure space (R, P (R), µ) where µ is the counting measure
(i.e. µ(A) is the number of elements of A if A is finite, and µ(A) = +∞ if
A is infinite). Describe the functions f : R→ R which belong to L1(µ).

(63) Prove that if fn → f pointwise and there exists a g ∈ L1 such that |fn| ≤ g
for all n, then fn → f in L1.

(64) Calculate limn→∞
∫ 1

0
nxn

1+xdx. (Hint: use integration by parts before LDCT).

(65) Let f ∈ L1(R), and let E1 ⊂ E2 ⊂ . . . be Lebesgue-measurable sets in R.
Prove that limn→∞

∫
En
f exists and is finite.



(66) Is it true that the sequence of functions fn(x) =
∑n
k=0

xk

k! converges in
measure to f(x) = ex on the half-line (−∞, 0]?

(67) Let f, g ∈ L1(R). Is it true that their product fg ∈ L1(R)?
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(68) Let f be Lebesgue integrable on (0, a), and let g(x) =
∫ a
x
f(t)
t dt. Prove that

g is also integrable on (0, a) and
∫ a
0
g(x)dx =

∫ a
0
f(x)dx.

(69) Prove that
∫∞
0

e−x

x sinxdx = arctan 1. (Hint: use Fubini’s theorem for the
function e−xy sinx.)

(70) For which values of a, b is the function |x|a| log |x||b integrable on the ball
of radius 1/2 in Rn? (Use integration in polar coordinates.)

(71) Let 1 < p < ∞. For a measurable function f : X → C we say that f ∈ Lp
if |f |p ∈ L1, that is,

∫
X
|f |p < +∞. Show by examples that Lp(R) * Lq(R)

for any 1 < p 6= q <∞.

(72) Assume µ(X) < +∞. Prove that for any 1 < p < q <∞ we have Lp(X) ⊃
Lq(X).

(73) Assume 1 ≤ p <∞ and ‖fn− f‖p → 0. Prove that fn → f in measure. On
the other hand, prove also that if fn → f in measure, and |fn| ≤ g ∈ Lp
then ‖fn − f‖p → 0.
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(74) (HW1) Let f(x) = cos x
x2+1 , and for any Borel set E let ν(E) =

∫
E
f(x)dx.

What is ‖f‖∞? Prove that ν is a signed measure, and determine the positive
part P and the negative part N of the real line with respect to ν.

(75) Let f(x) = cos x
|x|+1 , and for any Borel set E let ν(E) =

∫
E
f(x)dx. Is ν a

signed measure? (Why not?)

(76) (HW2) Let ν be a signed measure on (X,A). Prove that E ∈ A is ν-null iff
|ν|(E) = 0.

(77) Let ν be a signed measure and µ be a measure on (X,A). We say that ν
is singular with respect to µ (in notation: µ ⊥ ν) if there exist E,F ∈ A

such that E ∩F = ∅, E∪ = X, and E is µ-null, and F is ν-null. Prove that
ν ⊥ µ iff |ν| ⊥ µ.

(78) Recall from class the Jordan decomposition ν = ν+ − ν−. Prove that
ν+ ⊥ ν−.

(79) Let µ and νj (j = 1, 2, . . . ) be positive measures such that νj ⊥ µ for all j.
Prove that

∑∞
j=1 νj ⊥ µ.



(80) (HW3) Let ν be a signed measure. Recall that a set E is positive with
respect to ν if for any measurable F ⊂ E we have ν(F ) ≥ 0. Prove that the
countable union of positive sets is positive.

(81) Let ν be a signed measure on (X,A). Prove that ν+(E) = sup{ν(F ) : F ∈
A, F ⊂ E}.

(82) Let ν be a signed measure on (X,A). Prove that |ν|(E) = sup{
∑n
i=1 |ν(Ei)| :

Ei ∈ A, ∪̇Ei = E}.

(83) (HW4) Let f ∈ L1, g ∈ L∞. Prove that ‖fg‖1 ≤ ‖f‖1‖g‖∞.
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(84) (HW1) Prove that ‖f‖∞ = inf{a ≥ 0 : µ({x : |f(x)| > a}) = 0} defines a
norm on L∞.

(85) (HW2) Let ν be a signed measure and µ be a measure on (X,A). Prove
that ν � µ iff |ν| � µ.

(86) Let µ and νj (j = 1, 2, . . . ) be positive measures such that νj � µ for all
j. Prove that

∑∞
j=1 νj � µ.

(87) (HW3) Let F (x) = arctanx if x < 0 and F (x) = 2x+1
x+1 if x ≥ 0. Let µ be

the Lebesgue-Stieltjes measure generated by F , i.e. µ((a, b]) = F (b)−F (a).
Find

∫ 1

−1(1 + x)dµ.

(88) Let (X,A, µ) be a measure space and let f, g ∈ L1(µ). Prove that f = g
a.e. iff

∫
E
f =

∫
E
g for all E ∈ A.

(89) Prove that if ν is a signed measure, λ, µ are positive measures such that
ν = λ− µ then λ ≥ ν+ and µ ≥ ν−.

(90) Prove that for any 1 < p ≤ q < ∞ we have `p ⊂ `q, and for any sequence
a = (an)n∈N ∈ `p we have ‖a‖q ≤ ‖a‖p.

(91) (HW4) Let p = 3 and consider the following linear functional f on `p: for
x = (x1, x2, x3, . . . ) ∈ `p let f(x) = 4x1 − x2. Prove that f is bounded and
determine its norm. (Use `p − `q duality!)

(92) Assume 1 ≤ p <∞, fn, f ∈ Lp and fn → f almost everywhere. Prove that
‖fn − f‖p → 0 iff ‖fn‖p → ‖f‖p.

Practise exercises 9. (summary before retake of the Midterm)

(93) Evaluate
∫ 1

0

∫ 1

y
x−3/2 cos πy2xdxdy. (Use Fubini.)

(94) Evaluate
∫∞
0

n sin(x/n)
x(x2+1) dx. (Use LDCT.)

(95) Find limn→∞
∫ 1

0
nxn

log(x+2)dx. (Use LDCT after partial integration.)



(96) Consider the sequence of functions fn(x) =
∑n
k=0(k + 1)xk. Do they con-

verge on the interval [−1, 1)
– pointwise?
– uniformly?
– in measure?
(Recall what you know about power series, and use Egoroff theorem if

necessary.)

(97) Consider the sequence of functions fn(x) = nxe−nx. Do they converge on
the half-line [0,∞)

– pointwise?
– uniformly?
– in measure?
(For each fixed n analyze the behaviour of the function fn.)

(98) Let F (x) = arctan(2x + 1) if x < 0 and F (x) = 2x+1
x+1 if x ≥ 0. Let µ be

the Lebesgue-Stieltjes measure generated by F , i.e. µ((a, b]) = F (b)−F (a).
Find

∫ 1

−1(2+x)dµ. (Decompose the measure µF to singular and absolutely
continuous parts with respect to the Lebesgue measure.)

(99) Let f(x) = |x|−α for x ∈ Rn. For which values of α > 0 and 1 ≤ p <∞ do
we have f ∈ Lp(Rn)? (Use integration in polar coordinates.)

(100) Let µ(X) < ∞, and 1 < p < q < ∞. Prove that Lq(X) ⊂ Lp(X), and
‖f‖p ≤ ‖f‖q(µ(X))

1
p−

1
q . (Use Holder’s inequality.)


