Practise exercises 1.

(1) Prove that if $A=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{R}^{d}$ is a finite set, then A is Jordan measurable and $\lambda_{J}(A)=0$.
(2) Prove that we don't get anything new if we allow countable union in the definition of the Jordan inner measure. That is, $\sup \left\{\sum_{n=1}^{\infty} \lambda\left(T_{n}\right): \dot{\cup} T_{n} \subset\right.$ $A\}=\lambda_{*, J}(A)$.
(3) Let $A=\mathbb{Q} \cap[0,1]$. Prove that $\lambda_{J}^{*}(A)=1$ but $\lambda_{*, J}(A)=0$, so A is not Jordan measurable. Conclude that the Jordan measure is not σ-additive. (Therefore, it is not a measure. The terminology Jordan - measure is standard, but let's keep in mind that it is not a measure.)
(4) Let (X, \mathcal{M}, μ) be a measure space, and $E, F \in \mathcal{M}$. Show that $\mu(E)+\mu(F)=$ $\mu(E \cup F)+\mu(E \cap F)$.
(5) Let (X, \mathcal{M}, μ) be a measure space, amd $E \in \mathcal{M}$. Let $\mu_{E}(A)=\mu(A \cap E)$ for all $A \in \mathcal{M}$. Prove that μ_{E} is also a measure on the space (X, \mathcal{M}).
(6) Let X be a non-empty set, and let $A \subset X$. Determine the σ-algebra generated by
(a) $\{A\}$
(b) $\{B: B \subset A\}$
(7) Let $f: X \rightarrow Y$ be an arbitrary function. Prove that
(a) if \mathcal{B} is a σ-algebra on Y then $\left\{f^{-1}(B): B \in \mathcal{B}\right\}$ is a σ-algebra on X.
(b) if \mathcal{A} is a σ-algebra on X then $\left\{B \subset Y: f^{-1}(B) \in \mathcal{A}\right\}$ is a σ-algebra on Y.
(8) Let (X, \mathcal{M}, μ) be a measure space and let $\mathcal{N}=\{N \in \mathcal{A}: \mu(N)=0\}$, and $\overline{\mathcal{M}}=\{E \cup F: E \in \mathcal{A}, F \subset N$ forsome $N \in \mathcal{N}\}$. Prove that $\overline{\mathcal{M}}$ is also a σ-algebra.
(9) Let $(X, \mathcal{A}),(Y, \mathcal{M})$ be measurable spaces, and let $T \in \mathcal{A} \otimes \mathcal{M}$ be a measurable set in the product σ-algebra $\mathcal{A} \otimes \mathcal{M}$. Prove that the cross sections $T_{x}=\{y \in$ $Y:(x, y) \in T\}$ and $T_{y}=\{x \in X:(x, y) \in T\}$ are measurable for all $x \in X$ and $y \in Y$.

Practise exercises 2.

(10) Let (X, \mathcal{A}, μ) be a measure space. Prove the continuity properties of the measure:

$$
\begin{aligned}
& \text { a; If } E_{1} \subset E_{2} \subset \ldots, \text { then } \mu\left(\cup_{j=1}^{\infty}=\lim _{j \rightarrow \infty} \mu\left(E_{j}\right)\right. \\
& \text { b; If } \mu\left(E_{1}\right)<\infty \text {, and } E_{1} \supset E_{2} \supset \ldots \text {, then } \mu\left(\cap_{j=1}^{\infty}=\lim _{j \rightarrow \infty} \mu\left(E_{j}\right)\right.
\end{aligned}
$$

(11) Prove the Borel-Cantelli lemma: "if A_{i} are events such that the sum of their probability is finite, then the probability that infinitely many of them occurs is $0^{\prime \prime}$. More formally, if μ is a probability measure on a σ-algebra \mathcal{A}, and $A_{i} \in \mathcal{A}$ are such that $\sum_{i=1}^{\infty} \mu\left(A_{i}\right)<+\infty$ then $\mu\left(\cap_{n \in \mathbb{N}} \cup_{k \geq n} A_{k}\right)=0$. (Note here that the event $\cap_{n \in \mathbb{N}} \cup_{k \geq n} A_{k}$ describes exactly that infinitely many of the A_{i} 's occur.)
(12) Prove directly that the Lebesgue outer measure of $[0,1]$ is 1 , and that it satisfies the splitting property. Conclude that $[0,1]$ is Lebesgue-measurable and satisfies $\lambda([0,1])=1$.
(13) Let $F(x)=0$ for $x<0$ and $F(x)=1$ for $x \geq 0$. Follow the construction of the Lebesgue-Stieltjes measure corresponding to F, and prove that it is equal to the Dirac measure δ_{0}.
(14) Let $F(x)=x$ if $x<0$ and $F(x)=1+x$ if $x \geq 0$. Describe the LebesgueStieltjes measure generated by F.
(15) Prove that the Lebesgue-measure is open-regular, i.e. $\lambda(E)=\inf \{\lambda(U)$: $U \supset E, U$ is open $\}$.
(16) Let $A \subset \mathbb{R}^{n}$ be a set such that its Lebesgue outer measure is 0 . Prove that A is Lebesgue measurable and $\lambda(A)=0$.
(17) An example that the push-forward does not work in the naive way even for surjective functions: Let $X=\mathbb{R}$ and let \mathcal{L} denote the collection of Lebesgue measurable sets, and let $E \notin \mathcal{L}$ be a non-measurable set. Let $c \notin E$ be any real number. Let $f(x)=x$ if $x \in E$ and $f(x)=c$ otherwise, and let $Y=E \cup\{c\}$. Then $f: X \rightarrow Y$ is surjective. Consider $\mathcal{A}=\{f(A): A \in \mathcal{L}\}$. Then \mathcal{A} is not a σ-algebra because $\{c\} \in \mathcal{A}$ but its complement in Y is E and it is not an image of a measurable set.

Practise exercises 3.

(18) Let $X=[0,1] \times[0,1]$ be the unit square, and let \mathcal{E} be the collection of rectangles $T_{a b}=\{(x, y) \in X: 0 \leq a \leq x \leq b \leq 1,0 \leq y \leq 1\}$. Let ν be the set function defined by $\nu: \mathcal{E} \rightarrow[0,1], \nu\left(T_{a b}\right)=b-a$. Let μ^{*} be the outer measure generated by ν. Prove that the set $D=\{(x, y) \in X: x=y\}$ is not measurable (i.e. it does not satisfy the splitting property).
(19) Let $X, \mathcal{A}),(Y, \mathcal{M})$ be a measurable spaces. Assume \mathcal{M} is generated by a set system \mathcal{E}. Prove that $f: X \rightarrow Y$ is $(\mathcal{A}, \mathcal{M})$ measurable iff $f^{-1}(E) \in \mathcal{A}$ for all $E \in \mathcal{E}$.
(20) Let $X, \mathcal{A}),\left(Y_{1}, \mathcal{N}_{1}\right),\left(Y_{2}, \mathcal{N}_{2}\right)$ be measurable spaces. Prove that a function $f=\left(f_{1}, f_{2}\right): X \rightarrow Y_{1} \times Y_{2}$ is $\mathcal{M}_{1} \otimes \mathcal{M}_{2}$-measurable iff both coordinate functions f_{1} and f_{2} are measurable.
(21) Let X, \mathcal{A}) be a measurable space. Prove that a function $f: X \rightarrow \mathbb{C}$ is measurable iff Ref and Imf are measurable.
(22) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a monotonically increasing function. Prove that f is Borel-measurable.
(23) Let (X, \mathcal{A}, μ) be a measure space. Prove that for $f \in L^{+}$we have $\int_{X} f d \mu=0$ iff $f(x)=0$ for μ-almost every $x \in X$.
(24) Let $f_{1}, f_{2} \in L^{+}$. Using the definition of the integral, prove that $\int f_{1}+f_{2}=$ $\int f_{1}+\int f_{2}$.
(25) (HW1) Let $c+E=\{c+e: e \in E\}$ be a translated copy of a set $E \subset \mathbb{R}$. Prove that the Lebesgue outer measure λ^{*} is translation invariant, i.e. $\lambda^{*}(E)=$ $\lambda^{*}(c+E)$ for every $E \subset \mathbb{R}, c \in \mathbb{R}$. Also, prove that if E is measurable (i.e. it has the splitting property) then $c+E$ is also measurable. Conclude that the Lebesgeu-measure is translation invariant.
(26) (HW2) In the setting of Exercise 8 define $\bar{\mu}(E \cup F)=\mu(E)$. Prove that $\bar{\mu}$ is a complete measure on $\overline{\mathcal{M}}$. (The space $(X, \overline{\mathcal{M}}, \bar{\mu})$ is called the completion of $(X, \mathcal{M}, \mu))$.
(27) (HW3) Prove that the Lebesgue-measure is compact-regular, i.e. $\lambda(E)=$ $\sup \{\lambda(K): K \subset E, K$ is compact $\}$. (Hint: use Exercise 15.
(28) (HW4) Let X, \mathcal{A}) be a measurable space, and $f, g: X \rightarrow \mathbb{R}$ Borel-measurable functions. Prove that $f+g: X \rightarrow \mathbb{R}$ is also Borel-measurable.

Practise exercises 4.
(29) Let (X, \mathcal{A}, μ) be a complete measure space and let $f, g: X \rightarrow \mathbb{R}$ be functions such that $f=g \mu$-almost everywhere. Prove that if f is measurable then so is g.
(30) Let $X=\mathbb{N}$, and μ the counting measure (i.e. $\mu(A)=|A|$ if A is finite, and $\mu(A)=\infty$ if A is infinite). Show that in this case L^{+}is the set of nonnegative sequences, and for $f=\left(a_{n}\right) \in L^{+}$we have $\int_{X} f d \mu=\sum_{n=1}^{\infty} a_{n}$.
(31) Let (X, \mathcal{A}) be a measurable space, and $\mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{n} \leq \ldots$ be measures on it. Use the previous exercise and the monotone convergence theorem to prove that $\mu(E)=\sup _{n \in \mathbb{N}} \mu_{n}(E)$ is also a measure on (X, \mathcal{A})-n.
(32) Let (X, \mathcal{A}, μ) be a measure space, $f \in L^{+}$, and $\lambda(E)=\int_{E} f d \mu$ for all $E \in \mathcal{A}$. Prove that λ is a measure on (X, \mathcal{A}). (In class we saw that this is so if f is a simple function. You can freely use this fact here.)
(33) Show an example where $f_{n} \in L^{+}, f_{n}(x)$ is monotonically decreasing, $f_{n}(x) \rightarrow$ $f(x)$ for all $x \in X$, but $\int f \neq \lim _{n \rightarrow \infty} \int f_{n}$. Prove that if we assume $\int f_{1}<\infty$ then $\int f=\lim _{n \rightarrow \infty} \int f_{n}$.
(34) Let $f \in L^{1}$ Prove that $\left|\int f\right| \leq \int|f|$. (Treat the cases of real-valued f and complex-valued f separately.)
(35) Let $f, g \in L^{1}$. Prove that $f+g \in L^{1}$.
(36) (HW1) Show that the Lebesgue measure of the Cantor set is 0 .
(37) (HW2) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Borel measurable function such that $f(x) \neq 0$ for all x. Prove that the reciprocal function $1 / f$ is also Borel measurable.
(38) (HW3) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Prove that the derivative f^{\prime} is Borel measurable.
(39) (HW4) Assume $f_{n} \in L^{+}, f \in L^{+}$, and $f_{n}(x)$ monotonically increases and converges to $f(x)$ for almost every x. Prove that $\int f=\lim _{n \rightarrow \infty} \int f_{n}$.

Practise exercises 5 .
(40) (HW1) Expandig the term $\frac{1}{1-x}$ as an infinite series, and using the MCT prove that $\int_{0}^{1} x^{a}(1-x)^{-1} \log x=-\sum_{k=1}^{\infty}(a+k)^{-2}$ for all $a>-1$.
(41) Assume $\left(f_{n}\right)$ is a sequence of functions in L^{1} such that $\sum_{n=1}^{\infty}\left\|f_{n}\right\|_{1}<+\infty$. Prove that $\sum_{n=1}^{\infty} f_{n}$ converges almost everywhere, and $\int\left(\sum_{n=1}^{\infty} f_{n}\right)=\sum_{n=1}^{\infty} \int f_{n}$.
(42) Calculate $\lim _{n \rightarrow \infty} \int_{0}^{n} e^{-2 x}\left(1+\frac{x}{n}\right)^{n} d x$.
(43) Calculate $\lim _{n \rightarrow \infty} \int_{1}^{n} \frac{\pi+2 x^{2} \arctan (n x)}{x^{4}\left(2-2^{-n}\right)+\sin \frac{1}{n}}$.
(44) (HW2) Calculate $\lim _{n \rightarrow \infty} \int_{1}^{\infty} \frac{n}{1+n^{2} x^{2}} d x$, and $\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{n}{1+n^{2} x^{2}} d x$
(45) (HW3) Let $f_{n}(x)=e^{-n(1-\cos x)}$. Prove that on the interval $[0,100] f_{n} \rightarrow 0$ in measure (with respect to the Lebesgue measure), but on the half-line $[0, \infty) f_{n}$ does not converge to 0 in measure.
(46) Prove that $f_{n} \rightarrow f$ in measure iff for every $\varepsilon>0$ there exists N such that $\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\}\right)<\varepsilon$ for all $n \geq N$.
(47) Assume $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ in measure. Prove that $f_{n}+g_{n} \rightarrow f+g$ in measure.
(48) Assume $\mu(X)<=\infty$, For complex-valued measurable functions let $d(f, g)=$ $\int_{X} \frac{|f-g|}{1+|f-g|} d \mu$. Prove that this defines a metric if we identify functions that are equal almost everywhere. Prove also, that $f_{n} \rightarrow f$ in this metric iff $f_{n} \rightarrow f$ in measure.
(49) Prove that if $f_{n} \rightarrow f$ almost uniformly then $f_{n} \rightarrow f$ in measure, and $f_{n} \rightarrow f$ almost everywhere.
(50) Let $\mu(X)<\infty$. Prove that if $f_{n} \rightarrow f$ uniformly, then $f_{n} \rightarrow f$ in L^{1}. Show an example where $\mu(X)<\infty, f_{n} \rightarrow f$ almost uniformly but $f_{n} \nrightarrow f$ in L^{1}.
(51) Prove Lusin's theorem: If $f:[a, b] \rightarrow \mathbb{C}$ is measurable and $\varepsilon>0$, then there exists a compact set $E \subset[a, b]$ such that $\lambda\left(E^{c}\right)<\varepsilon$ and $\left.F\right|_{E}$ is continuous. (Here λ denotes the Lebesgue measure.)
(52) (HW4) Using Fubini's theorem compute the following integral: $\int_{x=0}^{1} \int_{y=x}^{1} x \frac{\sinh y}{y} d y d x$.
(53) Let $(X, \mathcal{A}, \mu),(Y, \mathcal{B}, \nu)$ be σ-finite measure spaces, $f \in L^{1}(\mu), g \in L^{1}(\nu)$, and let $h(x, y)=f(x) g(y)$. Prove that $\int h d(\mu \times \nu)=\left(\int f d \mu\right)\left(\int g d \nu\right)$.
(54) This exercise shows that σ-finiteness of the measures is needed in the Fubini theorem. Let κ and λ denote the counting measure and the Lebesgure measure on the Borel σ-algebra $\mathcal{B}_{\mathbb{R}}$, respectively. Let $f(x, y)=1$ if $0 \leq x=$ $y \leq 1$, and $f(x, y)=0$ otherwise. Compute $\int_{\mathbb{R} \times \mathbb{R}} f d(\kappa \times \lambda), \int_{\mathbb{R}}\left(\int_{\mathbb{R}} f d \kappa\right) d \lambda$, $\int_{\mathbb{R}}\left(\int_{\mathbb{R}} f d \lambda\right) d \kappa$.
(55) Prove that continuous functions are dense in $L^{1}(\mathbb{R})$. That is, for any $f \in L^{1}(\mathbb{R})$ and any $\varepsilon>0$ there exists a continuous function g such that $\|f-g\|_{1}<\varepsilon$.

Practise exercises 6. (summary before the Midterm)
(56) Let X_{1}, X_{2}, \ldots be pairwise disjoint sets and for every n let \mathcal{A}_{n} be a σ algebra on X_{n}. Let $\mathcal{U}=\left\{\cup_{n=1}^{\infty} A_{n}: A_{n} \in \mathcal{A}_{n}\right\}$. Is it true that \mathcal{U} is a σ-algebra on the set $X=\cup_{n=1}^{\infty} X_{n}$?
(57) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=x-y$. Determine the σ-algebra $\mathcal{A}=\left\{f^{-1}(E)\right.$: $\left.E \in \mathcal{B}_{\mathbb{R}}\right\}$.
(58) Let (X, \mathcal{A}, μ) be a measure space, and let $T: X \rightarrow Y$ be a surjective mapping. We saw that $\mathcal{B}=\left\{E \subset Y: T^{-1}(E) \in \mathcal{A}\right\}$ is a σ-algebra on Y. Prove that $\nu(E)=\mu\left(T^{-1}(E)\right)$ is a measure on (Y, \mathcal{B}).
(59) Let μ^{*} be an outer measure on a set X, and let $B \subset A \subset X$ such that $\mu^{*}(A)=\mu^{*}(B)<\infty$. Prove that if B is measurable then so is A.
(60) Let $A \subset \mathbb{R}^{n}$ be a bounded set such that $\lambda(\operatorname{int} A)=\lambda(\bar{A})$ (where λ is the Lebesgue measure on $\mathbb{R}^{n}, \operatorname{int} A$ is the interior of A, and \bar{A} is the closure of A. Prove that A is Lebesgue-measurable.
(61) Prove that if $f, g: \mathbb{R} \rightarrow \mathbb{R}^{n}$ are Borel-measurable functions, then $h(x)=$ $\langle f(x), g(x)\rangle$ is also Borel-measurable (where $\langle\cdot, \cdot\rangle$ denotes the usual scalar product on \mathbb{R}^{n}).
(62) Consider the measure space $(\mathbb{R}, P(\mathbb{R}), \mu)$ where μ is the counting measure (i.e. $\mu(A)$ is the number of elements of A if A is finite, and $\mu(A)=+\infty$ if A is infinite). Describe the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which belong to $L^{1}(\mu)$.
(63) Prove that if $f_{n} \rightarrow f$ pointwise and there exists a $g \in L^{1}$ such that $\left|f_{n}\right| \leq g$ for all n, then $f_{n} \rightarrow f$ in L^{1}.
(64) Calculate $\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n x^{n}}{1+x} d x$. (Hint: use integration by parts before LDCT).
(65) Let $f \in L^{1}(\mathbb{R})$, and let $E_{1} \subset E_{2} \subset \ldots$ be Lebesgue-measurable sets in \mathbb{R}. Prove that $\lim _{n \rightarrow \infty} \int_{E_{n}} f$ exists and is finite.
(66) Is it true that the sequence of functions $f_{n}(x)=\sum_{k=0}^{n} \frac{x^{k}}{k!}$ converges in measure to $f(x)=e^{x}$ on the half-line $(-\infty, 0]$?
(67) Let $f, g \in L^{1}(\mathbb{R})$. Is it true that their product $f g \in L^{1}(\mathbb{R})$?

Practise exercises 7.

(68) Let f be Lebesgue integrable on ($0, a$), and let $g(x)=\int_{x}^{a} \frac{f(t)}{t} d t$. Prove that g is also integrable on $(0, a)$ and $\int_{0}^{a} g(x) d x=\int_{0}^{a} f(x) d x$.
(69) Prove that $\int_{0}^{\infty} \frac{e^{-x}}{x} \sin x d x=\arctan 1$. (Hint: use Fubini's theorem for the function $e^{-x y} \sin x$.)
(70) For which values of a, b is the function $|x|^{a}|\log | x| |^{b}$ integrable on the ball of radius $1 / 2$ in \mathbb{R}^{n} ? (Use integration in polar coordinates.)
(71) Let $1<p<\infty$. For a measurable function $f: X \rightarrow \mathbb{C}$ we say that $f \in L^{p}$ if $|f|^{p} \in L^{1}$, that is, $\int_{X}|f|^{p}<+\infty$. Show by examples that $L^{p}(\mathbb{R}) \nsubseteq L^{q}(\mathbb{R})$ for any $1<p \neq q<\infty$.
(72) Assume $\mu(X)<+\infty$. Prove that for any $1<p<q<\infty$ we have $L^{p}(X) \supset$ $L^{q}(X)$.
(73) Assume $1 \leq p<\infty$ and $\left\|f_{n}-f\right\|_{p} \rightarrow 0$. Prove that $f_{n} \rightarrow f$ in measure. On the other hand, prove also that if $f_{n} \rightarrow f$ in measure, and $\left|f_{n}\right| \leq g \in L^{p}$ then $\left\|f_{n}-f\right\|_{p} \rightarrow 0$.

Practise exercises 8.

(74) (HW1) Let $f(x)=\frac{\cos x}{x^{2}+1}$, and for any Borel set E let $\nu(E)=\int_{E} f(x) d x$. What is $\|f\|_{\infty}$? Prove that ν is a signed measure, and determine the positive part P and the negative part N of the real line with respect to ν.
(75) Let $f(x)=\frac{\cos x}{|x|+1}$, and for any Borel set E let $\nu(E)=\int_{E} f(x) d x$. Is ν a signed measure? (Why not?)
(76) (HW2) Let ν be a signed measure on (X, \mathcal{A}). Prove that $E \in \mathcal{A}$ is ν-null iff $|\nu|(E)=0$.
(77) Let ν be a signed measure and μ be a measure on (X, \mathcal{A}). We say that ν is singular with respect to μ (in notation: $\mu \perp \nu$) if there exist $E, F \in \mathcal{A}$ such that $E \cap F=\emptyset, E \cup=X$, and E is μ-null, and F is ν-null. Prove that $\nu \perp \mu$ iff $|\nu| \perp \mu$.
(78) Recall from class the Jordan decomposition $\nu=\nu^{+}-\nu^{-}$. Prove that $\nu+\perp \nu^{-}$.
(79) Let μ and $\nu_{j}(j=1,2, \ldots)$ be positive measures such that $\nu_{j} \perp \mu$ for all j. Prove that $\sum_{j=1}^{\infty} \nu_{j} \perp \mu$.
(80) (HW3) Let ν be a signed measure. Recall that a set E is positive with respect to ν if for any measurable $F \subset E$ we have $\nu(F) \geq 0$. Prove that the countable union of positive sets is positive.
(81) Let ν be a signed measure on (X, \mathcal{A}). Prove that $\nu^{+}(E)=\sup \{\nu(F): F \in$ $\mathcal{A}, F \subset E\}$.
(82) Let ν be a signed measure on (X, \mathcal{A}). Prove that $|\nu|(E)=\sup \left\{\sum_{i=1}^{n}\left|\nu\left(E_{i}\right)\right|\right.$: $\left.E_{i} \in \mathcal{A}, \dot{\cup} E_{i}=E\right\}$.
(83) (HW4) Let $f \in L^{1}, g \in L^{\infty}$. Prove that $\|f g\|_{1} \leq\|f\|_{1}\|g\|_{\infty}$.

Practise exercises 9 .
(84) (HW1) Prove that $\|f\|_{\infty}=\inf \{a \geq 0: \mu(\{x:|f(x)|>a\})=0\}$ defines a norm on L^{∞}.
(85) (HW2) Let ν be a signed measure and μ be a measure on (X, \mathcal{A}). Prove that $\nu \ll \mu$ iff $|\nu| \ll \mu$.
(86) Let μ and $\nu_{j}(j=1,2, \ldots)$ be positive measures such that $\nu_{j} \ll \mu$ for all j. Prove that $\sum_{j=1}^{\infty} \nu_{j} \ll \mu$.
(87) (HW3) Let $F(x)=\arctan x$ if $x<0$ and $F(x)=\frac{2 x+1}{x+1}$ if $x \geq 0$. Let μ be the Lebesgue-Stieltjes measure generated by F, i.e. $\mu((a, b])=F(b)-F(a)$. Find $\int_{-1}^{1}(1+x) d \mu$.
(88) Let (X, \mathcal{A}, μ) be a measure space and let $f, g \in L^{1}(\mu)$. Prove that $f=g$ a.e. iff $\int_{E} f=\int_{E} g$ for all $E \in \mathcal{A}$.
(89) Prove that if ν is a signed measure, λ, μ are positive measures such that $\nu=\lambda-\mu$ then $\lambda \geq \nu^{+}$and $\mu \geq \nu^{-}$.
(90) Prove that for any $1<p \leq q<\infty$ we have $\ell^{p} \subset \ell^{q}$, and for any sequence $\underline{a}=\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{p}$ we have $\|\underline{a}\|_{q} \leq\|\underline{a}\|_{p}$.
(91) (HW4) Let $p=3$ and consider the following linear functional f on ℓ^{p} : for $\underline{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in \ell^{p}$ let $f(\underline{x})=4 x_{1}-x_{2}$. Prove that f is bounded and determine its norm. (Use $\ell^{p}-\ell^{q}$ duality!)
(92) Assume $1 \leq p<\infty, f_{n}, f \in L^{p}$ and $f_{n} \rightarrow f$ almost everywhere. Prove that $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ iff $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$.

Practise exercises 9. (summary before retake of the Midterm)
(93) Evaluate $\int_{0}^{1} \int_{y}^{1} x^{-3 / 2} \cos \frac{\pi y}{2 x} d x d y$. (Use Fubini.)
(94) Evaluate $\int_{0}^{\infty} \frac{n \sin (x / n)}{x\left(x^{2}+1\right)} d x$. (Use LDCT.)
(95) Find $\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n x^{n}}{\log (x+2)} d x$. (Use LDCT after partial integration.)
(96) Consider the sequence of functions $f_{n}(x)=\sum_{k=0}^{n}(k+1) x^{k}$. Do they converge on the interval $[-1,1)$

- pointwise?
- uniformly?
- in measure?
(Recall what you know about power series, and use Egoroff theorem if necessary.)
(97) Consider the sequence of functions $f_{n}(x)=n x e^{-n x}$. Do they converge on the half-line $[0, \infty)$
- pointwise?
- uniformly?
- in measure?
(For each fixed n analyze the behaviour of the function f_{n}.)
(98) Let $F(x)=\arctan (2 x+1)$ if $x<0$ and $F(x)=\frac{2 x+1}{x+1}$ if $x \geq 0$. Let μ be the Lebesgue-Stieltjes measure generated by F, i.e. $\mu((a, b])=F(b)-F(a)$. Find $\int_{-1}^{1}(2+x) d \mu$. (Decompose the measure μ_{F} to singular and absolutely continuous parts with respect to the Lebesgue measure.)
(99) Let $f(x)=|x|^{-\alpha}$ for $x \in \mathbb{R}^{n}$. For which values of $\alpha>0$ and $1 \leq p<\infty$ do we have $f \in L^{p}\left(\mathbb{R}^{n}\right)$? (Use integration in polar coordinates.)
(100) Let $\mu(X)<\infty$, and $1<p<q<\infty$. Prove that $L^{q}(X) \subset L^{p}(X)$, and $\|f\|_{p} \leq\|f\|_{q}(\mu(X))^{\frac{1}{p}-\frac{1}{q}}$. (Use Holder's inequality.)

