Practise exercises 1.

- (1) Prove that if $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$ is a finite set, then A is Jordan measurable and $\lambda_J(A) = 0$.
- (2) Prove that we don't get anything new if we allow countable union in the definition of the Jordan inner measure. That is, $\sup\{\sum_{n=1}^{\infty} \lambda(T_n) : \bigcup T_n \subset A\} = \lambda_{*,J}(A)$.
- (3) Let $A = \mathbb{Q} \cap [0,1]$. Prove that $\lambda_J^*(A) = 1$ but $\lambda_{*,J}(A) = 0$, so A is not Jordan measurable. Conclude that the Jordan measure is not σ -additive. (Therefore, it is *not* a measure. The terminology Jordan measure is standard, but let's keep in mind that it is not a measure.)
- (4) Let (X, \mathcal{M}, μ) be a measure space, and $E, F \in \mathcal{M}$. Show that $\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$.
- (5) Let (X, \mathcal{M}, μ) be a measure space, and $E \in \mathcal{M}$. Let $\mu_E(A) = \mu(A \cap E)$ for all $A \in \mathcal{M}$. Prove that μ_E is also a measure on the space (X, \mathcal{M}) .
- (6) Let X be a non-empty set, and let $A \subset X$. Determine the σ -algebra generated by
 - (a) $\{A\}$
 - (b) $\{B: B \subset A\}$
- (7) Let $f: X \to Y$ be an arbitrary function. Prove that

(a) if \mathcal{B} is a σ -algebra on Y then $\{f^{-1}(B) : B \in \mathcal{B}\}$ is a σ -algebra on X. (b) if \mathcal{A} is a σ -algebra on X then $\{B \subset Y : f^{-1}(B) \in \mathcal{A}\}$ is a σ -algebra on Y.

- (8) Let (X, \mathcal{M}, μ) be a measure space and let $\mathcal{N} = \{N \in \mathcal{A} : \mu(N) = 0\}$, and $\overline{\mathcal{M}} = \{E \cup F : E \in \mathcal{A}, F \subset N \text{ forsome } N \in \mathcal{N}\}$. Prove that $\overline{\mathcal{M}}$ is also a σ -algebra.
- (9) Let $(X, \mathcal{A}), (Y, \mathcal{M})$ be measurable spaces, and let $T \in \mathcal{A} \otimes \mathcal{M}$ be a measurable set in the product σ -algebra $\mathcal{A} \otimes \mathcal{M}$. Prove that the cross sections $T_x = \{y \in Y : (x, y) \in T\}$ and $T_y = \{x \in X : (x, y) \in T\}$ are measurable for all $x \in X$ and $y \in Y$.

Practise exercises 2.

(10) Let (X, \mathcal{A}, μ) be a measure space. Prove the continuity properties of the measure:

a; If $E_1 \subset E_2 \subset \ldots$, then $\mu(\bigcup_{j=1}^{\infty} = \lim_{j \to \infty} \mu(E_j))$ b; If $\mu(E_1) < \infty$, and $E_1 \supset E_2 \supset \ldots$, then $\mu(\bigcap_{j=1}^{\infty} = \lim_{j \to \infty} \mu(E_j))$

- (11) Prove the Borel-Cantelli lemma: "if A_i are events such that the sum of their probability is finite, then the probability that infinitely many of them occurs is 0". More formally, if μ is a probability measure on a σ -algebra \mathcal{A} , and $A_i \in \mathcal{A}$ are such that $\sum_{i=1}^{\infty} \mu(A_i) < +\infty$ then $\mu(\bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_k) = 0$. (Note here that the event $\bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_k$ describes exactly that infinitely many of the A_i 's occur.)
- (12) Prove directly that the Lebesgue outer measure of [0,1] is 1, and that it satisfies the splitting property. Conclude that [0,1] is Lebesgue-measurable and satisfies $\lambda([0,1]) = 1$.
- (13) Let F(x) = 0 for x < 0 and F(x) = 1 for $x \ge 0$. Follow the construction of the Lebesgue-Stieltjes measure corresponding to F, and prove that it is equal to the Dirac measure δ_0 .
- (14) Let F(x) = x if x < 0 and F(x) = 1 + x if $x \ge 0$. Describe the Lebesgue-Stieltjes measure generated by F.
- (15) Prove that the Lebesgue-measure is open-regular, i.e. $\lambda(E) = \inf\{\lambda(U) : U \supset E, U \text{ is open}\}.$
- (16) Let $A \subset \mathbb{R}^n$ be a set such that its Lebesgue outer measure is 0. Prove that A is Lebesgue measurable and $\lambda(A) = 0$.
- (17) An example that the push-forward does not work in the naive way even for surjective functions: Let $X = \mathbb{R}$ and let \mathcal{L} denote the collection of Lebesgue measurable sets, and let $E \notin \mathcal{L}$ be a non-measurable set. Let $c \notin E$ be any real number. Let f(x) = x if $x \in E$ and f(x) = c otherwise, and let $Y = E \cup \{c\}$. Then $f: X \to Y$ is surjective. Consider $\mathcal{A} = \{f(A) : A \in \mathcal{L}\}$. Then \mathcal{A} is not a σ -algebra because $\{c\} \in \mathcal{A}$ but its complement in Y is E and it is not an image of a measurable set.

Practise exercises 3.

- (18) Let $X = [0,1] \times [0,1]$ be the unit square, and let \mathcal{E} be the collection of rectangles $T_{ab} = \{(x,y) \in X : 0 \le a \le x \le b \le 1, 0 \le y \le 1\}$. Let ν be the set function defined by $\nu : \mathcal{E} \to [0,1], \nu(T_{ab}) = b a$. Let μ^* be the outer measure generated by ν . Prove that the set $D = \{(x,y) \in X : x = y\}$ is not measurable (i.e. it does not satisfy the splitting property).
- (19) Let X, \mathcal{A} , (Y, \mathcal{M}) be a measurable spaces. Assume \mathcal{M} is generated by a set system \mathcal{E} . Prove that $f: X \to Y$ is $(\mathcal{A}, \mathcal{M})$ measurable iff $f^{-1}(E) \in \mathcal{A}$ for all $E \in \mathcal{E}$.
- (20) Let X, \mathcal{A} , (Y_1, \mathcal{M}_1) , (Y_2, \mathcal{M}_2) be measurable spaces. Prove that a function $f = (f_1, f_2) : X \to Y_1 \times Y_2$ is $\mathcal{M}_1 \otimes \mathcal{M}_2$ -measurable iff both coordinate functions f_1 and f_2 are measurable.
- (21) Let X, \mathcal{A} be a measurable space. Prove that a function $f : X \to \mathbb{C}$ is measurable iff Ref and Imf are measurable.

- (22) Let $f : \mathbb{R} \to \mathbb{R}$ be a monotonically increasing function. Prove that f is Borel-measurable.
- (23) Let (X, \mathcal{A}, μ) be a measure space. Prove that for $f \in L^+$ we have $\int_X f d\mu = 0$ iff f(x) = 0 for μ -almost every $x \in X$.
- (24) Let $f_1, f_2 \in L^+$. Using the definition of the integral, prove that $\int f_1 + f_2 = \int f_1 + \int f_2$.
- (25) (HW1) Let $c+E = \{c+e : e \in E\}$ be a translated copy of a set $E \subset \mathbb{R}$. Prove that the Lebesgue outer measure λ^* is translation invariant, i.e. $\lambda^*(E) = \lambda^*(c+E)$ for every $E \subset \mathbb{R}$, $c \in \mathbb{R}$. Also, prove that if E is measurable (i.e. it has the splitting property) then c+E is also measurable. Conclude that the Lebesgue-measure is translation invariant.
- (26) (HW2) In the setting of Exercise 8 define $\overline{\mu}(E \cup F) = \mu(E)$. Prove that $\overline{\mu}$ is a complete measure on $\overline{\mathcal{M}}$. (The space $(X, \overline{\mathcal{M}}, \overline{\mu})$ is called the *completion* of (X, \mathcal{M}, μ)).
- (27) (HW3) Prove that the Lebesgue-measure is *compact-regular*, i.e. $\lambda(E) = \sup\{\lambda(K) : K \subset E, K \text{ is compact}\}$. (Hint: use Exercise 15.
- (28) (HW4) Let X, \mathcal{A}) be a measurable space, and $f, g : X \to \mathbb{R}$ Borel-measurable functions. Prove that $f + g : X \to \mathbb{R}$ is also Borel-measurable.

Practise exercises 4.

- (29) Let (X, \mathcal{A}, μ) be a complete measure space and let $f, g: X \to \mathbb{R}$ be functions such that $f = g \mu$ -almost everywhere. Prove that if f is measurable then so is g.
- (30) Let $X = \mathbb{N}$, and μ the counting measure (i.e. $\mu(A) = |A|$ if A is finite, and $\mu(A) = \infty$ if A is infinite). Show that in this case L^+ is the set of nonnegative sequences, and for $f = (a_n) \in L^+$ we have $\int_X f d\mu = \sum_{n=1}^{\infty} a_n$.
- (31) Let (X, \mathcal{A}) be a measurable space, and $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_n \leq \cdots$ be measures on it. Use the previous exercise and the monotone convergence theorem to prove that $\mu(E) = \sup_{n \in \mathbb{N}} \mu_n(E)$ is also a measure on (X, \mathcal{A}) -n.
- (32) Let (X, \mathcal{A}, μ) be a measure space, $f \in L^+$, and $\lambda(E) = \int_E f d\mu$ for all $E \in \mathcal{A}$. Prove that λ is a measure on (X, \mathcal{A}) . (In class we saw that this is so if f is a simple function. You can freely use this fact here.)
- (33) Show an example where $f_n \in L^+$, $f_n(x)$ is monotonically decreasing, $f_n(x) \to f(x)$ for all $x \in X$, but $\int f \neq \lim_{n \to \infty} \int f_n$. Prove that if we assume $\int f_1 < \infty$ then $\int f = \lim_{n \to \infty} \int f_n$.
- (34) Let $f \in L^1$ Prove that $|\int f| \leq \int |f|$. (Treat the cases of real-valued f and complex-valued f separately.)
- (35) Let $f, g \in L^1$. Prove that $f + g \in L^1$.

- (36) (HW1) Show that the Lebesgue measure of the Cantor set is 0.
- (37) (HW2) Let $f : \mathbb{R} \to \mathbb{R}$ be a Borel measurable function such that $f(x) \neq 0$ for all x. Prove that the reciprocal function 1/f is also Borel measurable.
- (38) (HW3) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. Prove that the derivative f' is Borel measurable.
- (39) (HW4) Assume $f_n \in L^+$, $f \in L^+$, and $f_n(x)$ monotonically increases and converges to f(x) for almost every x. Prove that $\int f = \lim_{n \to \infty} \int f_n$.

Practise exercises 5.

- (40) (HW1) Expanding the term $\frac{1}{1-x}$ as an infinite series, and using the MCT prove that $\int_0^1 x^a (1-x)^{-1} \log x = -\sum_{k=1}^\infty (a+k)^{-2}$ for all a > -1.
- (41) Assume (f_n) is a sequence of functions in L^1 such that $\sum_{n=1}^{\infty} ||f_n||_1 < +\infty$. Prove that $\sum_{n=1}^{\infty} f_n$ converges almost everywhere, and $\int (\sum_{n=1}^{\infty} f_n) = \sum_{n=1}^{\infty} \int f_n$.
- (42) Calculate $\lim_{n\to\infty} \int_0^n e^{-2x} (1+\frac{x}{n})^n dx.$
- (43) Calculate $\lim_{n\to\infty} \int_1^n \frac{\pi + 2x^2 \arctan(nx)}{x^4(2-2^{-n}) + \sin\frac{1}{n}}$.
- (44) (HW2) Calculate $\lim_{n\to\infty} \int_1^\infty \frac{n}{1+n^2x^2} dx$, and $\lim_{n\to\infty} \int_0^\infty \frac{n}{1+n^2x^2} dx$
- (45) (HW3) Let $f_n(x) = e^{-n(1-\cos x)}$. Prove that on the interval [0,100] $f_n \to 0$ in measure (with respect to the Lebesgue measure), but on the half-line $[0,\infty)$ f_n does not converge to 0 in measure.
- (46) Prove that $f_n \to f$ in measure iff for every $\varepsilon > 0$ there exists N such that $\mu(\{x : |f_n(x) f(x)| \ge \varepsilon\}) < \varepsilon$ for all $n \ge N$.
- (47) Assume $f_n \to f$ and $g_n \to g$ in measure. Prove that $f_n + g_n \to f + g$ in measure.
- (48) Assume $\mu(X) \leq \infty$, For complex-valued measurable functions let $d(f,g) = \int_X \frac{|f-g|}{1+|f-g|} d\mu$. Prove that this defines a metric if we identify functions that are equal almost everywhere. Prove also, that $f_n \to f$ in this metric iff $f_n \to f$ in measure.
- (49) Prove that if $f_n \to f$ almost uniformly then $f_n \to f$ in measure, and $f_n \to f$ almost everywhere.
- (50) Let $\mu(X) < \infty$. Prove that if $f_n \to f$ uniformly, then $f_n \to f$ in L^1 . Show an example where $\mu(X) < \infty$, $f_n \to f$ almost uniformly but $f_n \not\to f$ in L^1 .
- (51) Prove Lusin's theorem: If $f : [a, b] \to \mathbb{C}$ is measurable and $\varepsilon > 0$, then there exists a compact set $E \subset [a, b]$ such that $\lambda(E^c) < \varepsilon$ and $F|_E$ is continuous. (Here λ denotes the Lebesgue measure.)

- (52) (HW4) Using Fubini's theorem compute the following integral: $\int_{x=0}^{1} \int_{y=x}^{1} x \frac{\sinh y}{y} dy dx$.
- (53) Let $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$ be σ -finite measure spaces, $f \in L^1(\mu), g \in L^1(\nu)$, and let h(x, y) = f(x)g(y). Prove that $\int hd(\mu \times \nu) = (\int fd\mu)(\int gd\nu)$.
- (54) This exercise shows that σ -finiteness of the measures is needed in the Fubini theorem. Let κ and λ denote the counting measure and the Lebesgure measure on the Borel σ -algebra $\mathcal{B}_{\mathbb{R}}$, respectively. Let f(x, y) = 1 if $0 \le x =$ $y \le 1$, and f(x, y) = 0 otherwise. Compute $\int_{\mathbb{R}\times\mathbb{R}} fd(\kappa \times \lambda)$, $\int_{\mathbb{R}} (\int_{\mathbb{R}} fd\kappa) d\lambda$, $\int_{\mathbb{R}} (\int_{\mathbb{R}} fd\lambda) d\kappa$.
- (55) Prove that continuous functions are dense in $L^1(\mathbb{R})$. That is, for any $f \in L^1(\mathbb{R})$ and any $\varepsilon > 0$ there exists a continuous function g such that $\|f g\|_1 < \varepsilon$.

Practise exercises 6. (summary before the Midterm)

- (56) Let X_1, X_2, \ldots be pairwise disjoint sets and for every n let \mathcal{A}_n be a σ -algebra on X_n . Let $\mathcal{U} = \{\bigcup_{n=1}^{\infty} \mathcal{A}_n : \mathcal{A}_n \in \mathcal{A}_n\}$. Is it true that \mathcal{U} is a σ -algebra on the set $X = \bigcup_{n=1}^{\infty} X_n$?
- (57) Let $f : \mathbb{R}^2 \to \mathbb{R}$, f(x, y) = x y. Determine the σ -algebra $\mathcal{A} = \{f^{-1}(E) : E \in \mathcal{B}_{\mathbb{R}}\}$.
- (58) Let (X, \mathcal{A}, μ) be a measure space, and let $T : X \to Y$ be a surjective mapping. We saw that $\mathcal{B} = \{E \subset Y : T^{-1}(E) \in \mathcal{A}\}$ is a σ -algebra on Y. Prove that $\nu(E) = \mu(T^{-1}(E))$ is a measure on (Y, \mathcal{B}) .
- (59) Let μ^* be an outer measure on a set X, and let $B \subset A \subset X$ such that $\mu^*(A) = \mu^*(B) < \infty$. Prove that if B is measurable then so is A.
- (60) Let $A \subset \mathbb{R}^n$ be a bounded set such that $\lambda(\operatorname{int} A) = \lambda(\overline{A})$ (where λ is the Lebesgue measure on \mathbb{R}^n , $\operatorname{int} A$ is the interior of A, and \overline{A} is the closure of A. Prove that A is Lebesgue-measurable.
- (61) Prove that if $f, g : \mathbb{R} \to \mathbb{R}^n$ are Borel-measurable functions, then $h(x) = \langle f(x), g(x) \rangle$ is also Borel-measurable (where $\langle \cdot, \cdot \rangle$ denotes the usual scalar product on \mathbb{R}^n).
- (62) Consider the measure space $(\mathbb{R}, P(\mathbb{R}), \mu)$ where μ is the counting measure (i.e. $\mu(A)$ is the number of elements of A if A is finite, and $\mu(A) = +\infty$ if A is infinite). Describe the functions $f : \mathbb{R} \to \mathbb{R}$ which belong to $L^1(\mu)$.
- (63) Prove that if $f_n \to f$ pointwise and there exists a $g \in L^1$ such that $|f_n| \leq g$ for all n, then $f_n \to f$ in L^1 .
- (64) Calculate $\lim_{n\to\infty} \int_0^1 \frac{nx^n}{1+x} dx$. (Hint: use integration by parts before LDCT).
- (65) Let $f \in L^1(\mathbb{R})$, and let $E_1 \subset E_2 \subset \ldots$ be Lebesgue-measurable sets in \mathbb{R} . Prove that $\lim_{n\to\infty} \int_{E_n} f$ exists and is finite.

- (66) Is it true that the sequence of functions $f_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$ converges in measure to $f(x) = e^x$ on the half-line $(-\infty, 0]$?
- (67) Let $f, g \in L^1(\mathbb{R})$. Is it true that their product $fg \in L^1(\mathbb{R})$?

Practise exercises 7.

- (68) Let f be Lebesgue integrable on (0, a), and let $g(x) = \int_x^a \frac{f(t)}{t} dt$. Prove that g is also integrable on (0, a) and $\int_0^a g(x) dx = \int_0^a f(x) dx$.
- (69) Prove that $\int_0^\infty \frac{e^{-x}}{x} \sin x dx = \arctan 1$. (Hint: use Fubini's theorem for the function $e^{-xy} \sin x$.)
- (70) For which values of a, b is the function $|x|^a |\log |x||^b$ integrable on the ball of radius 1/2 in \mathbb{R}^n ? (Use integration in polar coordinates.)
- (71) Let $1 . For a measurable function <math>f : X \to \mathbb{C}$ we say that $f \in L^p$ if $|f|^p \in L^1$, that is, $\int_X |f|^p < +\infty$. Show by examples that $L^p(\mathbb{R}) \not\subseteq L^q(\mathbb{R})$ for any 1 .
- (72) Assume $\mu(X) < +\infty$. Prove that for any $1 we have <math>L^p(X) \supset L^q(X)$.
- (73) Assume $1 \le p < \infty$ and $||f_n f||_p \to 0$. Prove that $f_n \to f$ in measure. On the other hand, prove also that if $f_n \to f$ in measure, and $|f_n| \le g \in L^p$ then $||f_n f||_p \to 0$.

Practise exercises 8.

- (74) (HW1) Let $f(x) = \frac{\cos x}{x^2+1}$, and for any Borel set E let $\nu(E) = \int_E f(x)dx$. What is $||f||_{\infty}$? Prove that ν is a signed measure, and determine the positive part P and the negative part N of the real line with respect to ν .
- (75) Let $f(x) = \frac{\cos x}{|x|+1}$, and for any Borel set E let $\nu(E) = \int_E f(x) dx$. Is ν a signed measure? (Why not?)
- (76) (HW2) Let ν be a signed measure on (X, \mathcal{A}) . Prove that $E \in \mathcal{A}$ is ν -null iff $|\nu|(E) = 0$.
- (77) Let ν be a signed measure and μ be a measure on (X, \mathcal{A}) . We say that ν is *singular* with respect to μ (in notation: $\mu \perp \nu$) if there exist $E, F \in \mathcal{A}$ such that $E \cap F = \emptyset$, $E \cup = X$, and E is μ -null, and F is ν -null. Prove that $\nu \perp \mu$ iff $|\nu| \perp \mu$.
- (78) Recall from class the Jordan decomposition $\nu = \nu^+ \nu^-$. Prove that $\nu + \perp \nu^-$.
- (79) Let μ and ν_j (j = 1, 2, ...) be positive measures such that $\nu_j \perp \mu$ for all j. Prove that $\sum_{j=1}^{\infty} \nu_j \perp \mu$.

- (80) (HW3) Let ν be a signed measure. Recall that a set E is positive with respect to ν if for any measurable $F \subset E$ we have $\nu(F) \geq 0$. Prove that the countable union of positive sets is positive.
- (81) Let ν be a signed measure on (X, \mathcal{A}) . Prove that $\nu^+(E) = \sup\{\nu(F) : F \in \mathcal{A}, F \subset E\}$.
- (82) Let ν be a signed measure on (X, \mathcal{A}) . Prove that $|\nu|(E) = \sup\{\sum_{i=1}^{n} |\nu(E_i)| : E_i \in \mathcal{A}, \bigcup E_i = E\}.$
- (83) (HW4) Let $f \in L^1$, $g \in L^{\infty}$. Prove that $||fg||_1 \le ||f||_1 ||g||_{\infty}$.

Practise exercises 9.

- (84) (HW1) Prove that $||f||_{\infty} = \inf\{a \ge 0 : \mu(\{x : |f(x)| > a\}) = 0\}$ defines a norm on L^{∞} .
- (85) (HW2) Let ν be a signed measure and μ be a measure on (X, \mathcal{A}) . Prove that $\nu \ll \mu$ iff $|\nu| \ll \mu$.
- (86) Let μ and ν_j (j = 1, 2, ...) be positive measures such that $\nu_j \ll \mu$ for all j. Prove that $\sum_{j=1}^{\infty} \nu_j \ll \mu$.
- (87) (HW3) Let $F(x) = \arctan x$ if x < 0 and $F(x) = \frac{2x+1}{x+1}$ if $x \ge 0$. Let μ be the Lebesgue-Stieltjes measure generated by F, i.e. $\mu((a, b]) = F(b) F(a)$. Find $\int_{-1}^{1} (1+x) d\mu$.
- (88) Let (X, \mathcal{A}, μ) be a measure space and let $f, g \in L^1(\mu)$. Prove that f = g a.e. iff $\int_E f = \int_E g$ for all $E \in \mathcal{A}$.
- (89) Prove that if ν is a signed measure, λ, μ are positive measures such that $\nu = \lambda \mu$ then $\lambda \ge \nu^+$ and $\mu \ge \nu^-$.
- (90) Prove that for any $1 we have <math>\ell^p \subset \ell^q$, and for any sequence $\underline{a} = (a_n)_{n \in \mathbb{N}} \in \ell^p$ we have $\|\underline{a}\|_q \le \|\underline{a}\|_p$.
- (91) (HW4) Let p = 3 and consider the following linear functional f on ℓ^p : for $\underline{x} = (x_1, x_2, x_3, \dots) \in \ell^p$ let $f(\underline{x}) = 4x_1 x_2$. Prove that f is bounded and determine its norm. (Use $\ell^p \ell^q$ duality!)
- (92) Assume $1 \le p < \infty$, $f_n, f \in L^p$ and $f_n \to f$ almost everywhere. Prove that $||f_n f||_p \to 0$ iff $||f_n||_p \to ||f||_p$.

Practise exercises 9. (summary before retake of the Midterm)

- (93) Evaluate $\int_0^1 \int_u^1 x^{-3/2} \cos \frac{\pi y}{2x} dx dy.$ (Use Fubini.)
- (94) Evaluate $\int_0^\infty \frac{n \sin(x/n)}{x(x^2+1)} dx$. (Use LDCT.)
- (95) Find $\lim_{n\to\infty} \int_0^1 \frac{nx^n}{\log(x+2)} dx$. (Use LDCT after partial integration.)

- (96) Consider the sequence of functions $f_n(x) = \sum_{k=0}^n (k+1)x^k$. Do they converge on the interval [-1, 1)
 - pointwise?
 - uniformly?
 - in measure?

(Recall what you know about power series, and use Egoroff theorem if necessary.)

- (97) Consider the sequence of functions $f_n(x) = nxe^{-nx}$. Do they converge on the half-line $[0, \infty)$
 - pointwise?
 - uniformly?
 - in measure?
 - (For each fixed n analyze the behaviour of the function f_n .)
- (98) Let $F(x) = \arctan(2x+1)$ if x < 0 and $F(x) = \frac{2x+1}{x+1}$ if $x \ge 0$. Let μ be the Lebesgue-Stieltjes measure generated by F, i.e. $\mu((a, b]) = F(b) F(a)$. Find $\int_{-1}^{1} (2+x) d\mu$. (Decompose the measure μ_F to singular and absolutely continuous parts with respect to the Lebesgue measure.)
- (99) Let $f(x) = |x|^{-\alpha}$ for $x \in \mathbb{R}^n$. For which values of $\alpha > 0$ and $1 \le p < \infty$ do we have $f \in L^p(\mathbb{R}^n)$? (Use integration in polar coordinates.)
- (100) Let $\mu(X) < \infty$, and $1 . Prove that <math>L^q(X) \subset L^p(X)$, and $\|f\|_p \leq \|f\|_q (\mu(X))^{\frac{1}{p} \frac{1}{q}}$. (Use Holder's inequality.)