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Abstract. This note concerns the so-called pyjama problem, whether
it is possible to cover the plane by finitely many rotations of vertical
strips of half-width ε. We first prove that there exist no periodic
coverings for ε < 1

3 . Then we describe an explicit (non-periodic)

construction for ε = 1
3 − 1

48 . Finally, we use a compactness ar-
gument combined with some ideas from additive combinatorics to
show that a finite covering exists for ε = 1

5 . The question whether
ε can be arbitrarily small remains open.

1. introduction

This note concerns a question that has been advertised as the ”pyjama-
problem” in the additive combinatorics community. The problem was
originally raised in [5], and we recall it here for convenience. Let ∥x∥
denote the distance of any real number x to the closest integer, and
define the following set of equidistant vertical strips of width 2ε on R2:

Eε := {(x, y) ∈ R2 : ∥x∥ ≤ ε}.
Denote by Rθ the counterclockwise rotation of the plane by angle θ
(around the origin). The question is whether we can cover the plane by
the union of finitely many rotates of Eε, i.e. whether there exist angles
θ0, . . . θn such that R2 =

∪n
j=0RθjEε. We will assume throughout this

note (without loss of generality) that the angles θ0, . . . θn are pairwise
distinct.

We make a few remarks on the origin of the problem. In [3] Fursten-
berg, Katznelson and Weiss proved that for any set A of positive upper
density in R2 there exists a threshold t0 ∈ R such that for any t ≥ t0
there exist points in A with distance t. Another proof was given by Fal-
coner and Marstrand in [2]. Subsequently, Bourgain [1] used a Fourier
analytic argument to generalize the result in higher dimensions: a set A
of positive upper density in Rk contains all large enough copies of any
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k − 1 dimensional simplex. Kolountzakis [4] used a similar argument
to prove that even if the unit ball is non-Euclidean (but smooth), all
large enough distances appear between points of A. In this circle of
problems, a natural question of Sz. Révész (private communication)
was whether it is true in R2 that finitely many rotations of the differ-
ence set A − A can cover the plane, with the exception of a bounded
set. This would have given a generalization of the above mentioned
result of [2, 3]. However, the question was answered in the negative in
[5], where A was taken to be a set of small disks around points of the
integer lattice. The ”pyjama-problem” was formulated and left open
in [5]. For further related problems concerning extremal properties of
sets of positive upper density we refer to [6].

Let us introduce some notations and definitions.

Definition 1.1. We will say that ε has the finite rotation property if
there exist angles θ0, . . . θn such that R2 =

∪n
j=0RθjEε. Let ε0 denote

the infimum of the values of ε having the finite rotation property.

We believe that ε can be arbitrarily small.

Conjecture 1.1. With notation introduced above, we have ε0 = 0.

Let uj = (cos θj, sin θj) ∈ R2 be the unit vector corresponding to the
angle θj. It is easy to see that a vector x ∈ R2 is covered by RθjEε

if and only if ∥⟨uj,x⟩∥ ≤ ε. The pyjama problem can therefore be
formulated in an equivalent way as follows:

For a given ε > 0 we want to find unit vectors u1, . . .un ∈ R2 such that
for all x ∈ R2 there exists a uj such that ∥⟨uj,x⟩∥ ≤ ε.

The case ε = 1
3
is ”trivial”. Indeed, the rotations by angles 0, 2π

3
, 4π

3
will suffice, as the reader can easily verify. As we shall see, it is not
at all trivial to go below ε = 1

3
. The above covering by rotations

0, 2π
3
, 4π

3
is periodic. One natural approach is to consider other periodic

arrangements of the strips (e.g. angles corresponding to Pythagorean
triples). We will make the concept of periodicity rigorous in Section 2,
and prove that it can never work for any ε < 1

3
.

Another natural approach is to consider angles corresponding to Nth
roots of unity for some N . It can be proven, however, that we will not
get a covering of R2 in this manner for any N and any ε < 1

3
. We will

not include the proof of this negative result to keep this note brief.

A random set of angles will not lead to a covering for any ε < 1
2
, al-

most surely. The reason is that the numbers cos θ0, . . . , cos θn will be al-
most surely independent overQ, and therefore the set R(cos θ0, . . . , cos θn),
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mod 1, will be dense in the torus Tn+1, and thus we can find a vector
x = (x, 0) ∈ R2 such that ∥⟨uj,x⟩∥ ≈ 1

2
for all j. A similar argument

shows that we will not get a covering for any ε < 1
2
if the vectors

u0, . . . ,un are independent over Q (in that case one needs to consider
x = (x cosφ, x sinφ) for some appropriate angle φ and x ∈ R).

In Section 3 we will show a specific finite set of angles for ε = 1
3
− 1

48
.

Finally, in Section 4 we will use a compactness argument combined with
some ideas from additive combinatorics to show that a finite covering
exists for ε = 1

5
. However, this result is non-constructive, i.e. we will

not be able to exhibit the appropriate angles.

2. Periodic covering is not possible for ε < 1
3

Periodicity is a natural idea to ensure that the whole plane gets
covered by the rotated strips. The reason is that in this case only the
fundamental region (which is a finite parallelogram, spanned by the
period-vectors) needs to be checked. However, we will now show that
ε cannot be smaller than 1

3
in such a case.

Definition 2.1. Given θ0, . . . , θn, and the corresponding unit vectors
u0, . . . ,un, a vector v ∈ R2 is a period-vector of the set

∪n
j=0RθjEε, if

⟨uj,v⟩ ∈ Z for each j. The set
∪n

j=0RθjEε is called (fully) periodic if
it has two R-linearly independent period vectors v0,v1.

Periodicity is directly related to the dimension of the space spanned
by the vectors u0, . . . ,un over Q.

Lemma 2.1. For any n ≥ 1 the set
∪n

j=0RθjEε is periodic if and only

if d := dim (span{u0, . . . ,un}Q) = 2.

Proof. Assume d = 2. As u0 and u1 are distinct, we can find two
R-linearly independent vectors v0,v1 such that ⟨uj,vk⟩ ∈ Z for 0 ≤
j, k ≤ 1. Let u2 = q0u0 + q1u1 where q0, q1 ∈ Q, and let M denote
the least common multiple of the denominators of q0, q1. Then it is
straightforward to check that the vectors w0 = Mv0, w1 = Mv1 are
two period-vectors with respect to u0,u1,u2. We can then proceed by
induction to produce two period vectors with respect to u0, . . .un.

Assume now that
∪n

j=0RθjEε is periodic, i.e. there exist two linearly

independent period vectors v0,v1 such that ⟨uj,vk⟩ := mj,k ∈ Z for
each j = 0, . . . , n and k = 0, 1. We need to prove that each uj is a
Q-linear combination of u0 and u1. Let us fix j. The 2 × 2 matrix
A given by ak,r = mr,k (for 0 ≤ k, r ≤ 1) contains integer entries
and is non-singular. Therefore, there exists a vector qj =

(
q0,j
q1,j

)
with
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rational coordinates such that A.qj =
(−mj,0

−mj,1

)
. But then the vector

uj + q1,ju1+ q0,ju0 is orthogonal to both v0 and v1, and therefore must
be zero. �
Lemma 2.2. If n ≥ 2, θ0 = 0 and

∪n
j=0RθjEε is periodic, then all eiθj

(for j = 0, . . . , n) belong to the same quadratic imaginary field.

Proof. As we saw in the previous lemma, there are non-zero rational
numbers q0, q1, such that q0 + q1e

iθ1 = eiθ2 . Hence |q0 + q1e
iθ1 |2 = 1,

which yields that cos θ1 =
1−q20−q21
2q0q1

is rational (and similarly, all cos θj
are rational). Furthermore, eiθ1 satisfies the quadratic equation x2 −
2 cos θ1x+ 1 = 0. As all eiθj are Q-linear combinations of eiθ0 = 1 and
eiθ1 , they all belong to the same imaginary quadratic field Q(eiθ1). �

We are now in position to prove the main (negative) result of this
section.

Theorem 2.3. If ε < 1
3
and

∪n
j=0RθjEε is periodic, then it does not

cover the whole plane.

Proof. If n = 0 or 1 then it is trivial that covering is not possible for
any ε < 1

2
.

Assume n ≥ 2, and
∪n

j=0RθjEε is periodic. Without loss of gen-

erality we can assume that θ0 = 0. Then all the numbers eiθj (for
j = 0, . . . , n) belong to the same quadratic imaginary field, and all
the numbers cos θj are rational by Lemma 2.2. Let the field be de-
noted by K = Q(

√
−D), where D is a positive square-free integer.

Then (cos θj, sin θj) = (
mj

nj
,
kj

√
D

nj
) for some integers mj, kj, nj such that

m2
j + Dk2

j = n2
j . We may assume that gcd(mj, kj, nj) = 1; then the

equation m2
j +Dk2

j = n2
j implies that mj, kj, nj are pairwise co-prime.

Let M =
∏n

j=0 nj.

If D = 1 then the angles θj correspond to Pythagorean triples, m2
j +

k2
j = n2

j . Note that all the nj must be odd. Consider the point x =

(M
2
, M

2
) ∈ R2. Then ⟨uj,x⟩ = M

nj

(
mj+kj

2

)
, where M

nj
is an odd integer

and mj + kj is odd. Therefore, ∥⟨uj,x⟩∥ = 1
2
for each j, and hence x

is not covered if ε < 1
2
.

If D ̸= 1 then let p denote the smallest prime dividing D. If p = 2
then all mj, nj must be odd. Consider the point x = (M

2
,M

√
2) ∈ R2.

Then ⟨uj,x⟩ = M
nj

mj

2
+

2Mkj
nj

. Therefore ∥⟨uj,x⟩∥ = 1
2
for each j, and

hence x is not covered if ε < 1
2
.
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Finally, assume p > 2. Then m2
j +Dk2

j = n2
j implies that mj ≡ ±nj

(mod p), and all mj, nj are relatively prime to p. Let t be an integer

such that tM ≡ 1 mod p. Consider the point x = ( tM(p−1)
2p

,M
√
D) ∈

R2. Then ⟨uj,x⟩ = tMmj

nj

p−1
2p

+
kjMD

nj
. Here

tMmj

nj
is an integer which is

±1 (mod p), and
kjMD

nj
is also an integer. Therefore, ∥⟨uj,x⟩∥ = p−1

2p
≥

1
3
for each j, and hence x is not covered if ε < 1

3
. �

3. Covering with ε = 1
3
− 1

48

Having all the negative results so far, one might be tempted to con-
jecture that the trivial covering cannot be improved and ε0 =

1
3
. How-

ever, we will now show that this is not the case.

Theorem 3.1. Let ε = 1
3
− 1

48
. Define θ1 = 0, and θ2 =

2π
3
, θ3 =

4π
3
. Let

θ4 be such that (cos θ4, sin θ4) = (1
3
,
√
8
3
), and θ5 = θ4 +

2π
3
, θ6 = θ4 +

4π
3
.

Let θ7 be such that (cos θ7, sin θ7) = (1
3
,−

√
8
3
), and θ8 = θ7 +

2π
3
, θ9 =

θ7 +
4π
3
. Then

∪9
j=1RθjEε = R2.

Proof. Let x ∈ R2 be arbitrary, and let ⟨uj,x⟩ = sj for 1 ≤ j ≤ 9.
Observe the following relations:

s1+s2+s3 = 0, s4+s5+s6 = 0, s7+s8+s9 = 0, 3(s4+s7)−2s1 = 0.

Let A denote the 4 × 9 matrix corresponding to this set of linear
equations. Assume, by contradiction, that ∥sj∥ > ε for all j. Then the
fractional parts wj = {sj} must lie in the interval Iε = (1

3
− 1

48
, 2
3
+ 1

48
).

Therefore the vector w = (w1, . . . , w9) is contained in the cube I9ε , and
the image of w under the linear transformation A must be an integer
lattice point in R4. We will show that this is not possible.

We claim that all the wj must fall into I1∪I2, where I1 = (1
3
− 1

48
, 1
3
+

1
24
) and I2 = (2

3
− 1

24
, 2
3
+ 1

48
). Indeed, w1 ≡ −w2 − w3 (mod 1), and

−w2 − w3 ∈ −Iε − Iε = (−4
3
− 1

24
,−2

3
+ 1

24
) ≡ [0, 1

3
+ 1

24
) ∪ (2

3
− 1

24
, 1)

(mod 1), and hence w1 must fall into the intersection of this set with
Iε which is exactly I1 ∪ I2. The same reasoning works for all wj.

Finally, if all the wj fall into I1 ∪ I2, then the equation 3(w4 +w7)−
2w1 ≡ 0 (mod 1) cannot be satisfied. The reason for this is that
∥3(w4 + w7)∥ < 1

4
(because w4, w7 ∈ I1 ∪ I2), while ∥ − 2w1∥ > 1

4
(because w1 ∈ I1 ∪ I2). �
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This construction can be improved to decrease the value of ε. How-
ever, we do not see any argument to show that ε can be arbitrarily
close to zero.

4. A compactness argument for ε = 1
5

We now turn to a non-constructive compactness argument which
allows us to decrease the value of ε.

Lemma 4.1. Let T denote the group [−1
2
, 1
2
) with the addition opera-

tion mod 1. If ε does not have the finite rotation property then there
exists a non-continuous additive homomorphism γ : R2 → T such that
|γ(u)| ≥ ε for all unit vectors u. Conversely, if ε has the finite rotation
property then there exists no additive homomorphism γ : R2 → T such
that |γ(u)| > ε for all unit vectors u.

Proof. Let Γ denote the dual group of R2 (R2 is meant here as an
additive group with the Euclidean topology). Then Γ can be identified
with R2 in the usual way, x ↔ γx where γx : R2 → T is the character
γx(u) := ⟨x,u⟩ (mod 1). Now, consider R2 as an additive group with
the discrete topology. Then its dual group, denoted by Γ′, is compact
and consists of all possible additive homomorphisms from R2 → T.

Let C1 denote the unit circle in the plane R2. The assumption
that ε does not have the finite rotation property means that for any
u1, . . . ,uN ∈ C1 there exists an x ∈ R2 such that ∥⟨uj,x⟩∥ ≥ ε for each
uj. In other words, there exists a γx ∈ Γ ⊂ Γ′ such that |γx(uj)| ≥ ε
for each uj. Now, due to the compactness of Γ′ we claim that there
must exist γ ∈ Γ′ such that |γ| ≥ ε on the whole of C1. Indeed, this is
the so-called finite intersection property of compact sets: if Fu denotes
the set of characters γ ∈ Γ′ such that |γ(u)| ≥ ε then our condition
says that any finite intersection of such sets Fu is non-empty. Note
that Fu are closed sets, and therefore the intersection of all of the sets
Fu is non-empty by compactness.

We now prove the converse statement. If ε has the finite rotation
property then there exist unit vectors u1, . . . ,un such that for every
x ∈ R2 we have ∥⟨uj,x⟩∥ ≤ ε for some j. Let M ⊂ Zn describe the
rational linear relations among the vectors: M = {(m1, . . . ,mn) ∈ Zn :∑

j mjuj = 0}. Let g : R2 → Tn be the function defined by g(x) =

(⟨u1,x⟩, . . . , ⟨un,x⟩), and let S = Ran (g) ⊂ Tn denote the closure of
the range of g. Then S is a closed subgroup, and S ∩ (ε, 1 − ε)n = ∅.
The subgroup S is characterized by the linear relations in M , namely
S = {(x1, . . . , xn) ∈ Tn :

∑
j mjxj = 0 for all (m1, . . . ,mn) ∈ M}.
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Consider any additive homomorphism γ : R2 → T. For every x ∈ R2

we have (γ(u1), . . . , γ(un)) ∈ S because
∑

j mjγ(uj) = γ(
∑

j mjuj) =

0. As S ∩ (ε, 1− ε)n = ∅ we conclude that |γ(uj)| ≤ ε for some j. �
In the following auxiliary result it will be convenient to identify R2

with C.

Lemma 4.2. Let u1, . . .un ∈ C be unit vectors, and let M ⊂ Zn de-
scribe the rational linear relations among them: M = {(m1, . . . ,mn) ∈
Zn :

∑
j mjuj = 0}. Let S ⊂ Tn be the subgroup S = {(x1, . . . , xn) ∈

Tn :
∑

j mjxj = 0 for all (m1, . . . ,mn) ∈ M}. Let γ : C → T be a non-
continuous additive homomorphism, and let g : C → Tn be the function
defined by g(z) = (γ(u1z), . . . , γ(unz)). Let U be any neighbourhood of
zero. Then g(U) is dense in S.

Proof. We use the standard notation A for the closure of a set A. We
will show that as U runs through the neighbourhoods of zero, we have
B := ∩U g(U) = S (this is clearly equivalent to the statement of the
proposition). First notice that B is a non-empty (0 ∈ B) and compact
set. It is also clear that B ⊂ S, as g(z) ∈ S for every z ∈ C. We
claim that B is a subgroup of S. To see this, let b1, b2 ∈ B, and let U
be any neighbourhood of zero. We want to show that b1 − b2 ∈ g(U).
Let U ′ be a smaller neighbourhood, such that U ′ − U ′ ⊂ U . Then
b1−b2 ∈ g(U ′)−g(U ′) = g(U ′)− g(U ′) = g(U ′ − U ′) ⊂ g(U). Therefore
B is a subgroup.

If B = S then we are done. If B is a compact non-empty proper
subgroup of S, then there exists a continuous character χ : Tn → T
such that χ is not identically zero on S, but χ|B ≡ 0. Such a character
χ can be identified with an n-tuple of integers, χ = (a1, . . . an) ∈ Zn,
χ /∈ M , so that χ(t1, . . . tn) = a1t1+. . . antn for any (t1, . . . tn) ∈ Tn. Let
β =

∑
j ajuj, which is non-zero because (a1, . . . an) /∈ M . Consider the

additive homomorphism h : C → T defined by h(z) = γ(βz) = χ(g(z)).
We claim that h(z) is continuous. Assume it is not. Then there exists a
sequence zm → 0 such that h(zm) does not converge to 0. By passing to
a subsequence, we may assume that h(zm) → w ̸= 0. Again, by passing
to a subsequence we may assume that g(zm) converges to some y ∈ Tn.
But then y ∈ B and χ(y) = limχ(g(zm)) = limh(zm) = w ̸= 0, a
contradiction. Therefore, h(z) is continuous, and so is γ(z) = h( 1

β
z),

which contradicts our assumption on γ. �
With the help of Lemma 4.1 and 4.2 we can prove the main result of

this section: even if
∪n

j=0RθjEε does not cover R2 but the non-covered
region is small enough in some sense, we can still conclude that ε0 ≤ ε.
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Theorem 4.3. Assume ε > 0 and unit vectors u1, . . . ,un ∈ C are
given. Let M ⊂ Zn describe the rational linear relations among the
vectors: M = {(m1, . . . ,mn) ∈ Zn :

∑
j mjuj = 0}. Let S ⊂ Tn be the

subgroup S = {(x1, . . . , xn) ∈ Tn :
∑

j mjxj = 0 for all (m1, . . . ,mn) ∈
M}, and let Xε = S ∩ (ε, 1− ε)n. If the difference set Xε −Xε is not
dense in S then ε0 ≤ ε, with the notation of Definition 1.1.

Proof. Let ε′ > ε arbitrary, and assume by contradiction that ε′ does
not have the finite rotation property. Then there exists a non-continuous
additive homomorphism γ : R2 → Tn such that |γ(u)| ≥ ε′ for all unit
vectors u, by Lemma 4.1. Let g : C → Tn be the function defined
by g(z) = (γ(u1z), . . . , γ(unz)). Then g(z) ∈ S ∩ [ε′, 1 − ε′]n ⊂ Xε

for all unit vectors z. However, if D denotes the closed unit disk then
g(2D) = g(C1) − g(C1) ⊂ Xε − Xε should be dense in Tn by Lemma
4.2, a contradiction. �

Improved upper bounds on ε0 follow immediately.

Corollary 4.4. With the notation of Definition 1.1 we have ε0 ≤ 1
4
.

Proof. Let δ > 0 be arbitrary and apply Theorem 4.3 with ε = 1
4
+ δ

and u1 = 1. Then Xε = (ε, 1 − ε), and Xε − Xε is not dense in T.
Therefore, ε0 ≤ ε, and hence ε0 ≤ 1

4
. �

A more elaborate argument gives the following improvement.

Corollary 4.5. With the notation of Definition 1.1 we have ε0 ≤ 1
5
.

Proof. Let δ > 0 arbitrary and apply Theorem 4.3 with ε = 1
5
+ δ

and u1 = 1,u2 = e2πi/3,u3 = e4πi/3. In this case S ⊂ T3 is a two-
dimensional torus, which can be identified with [0, 1)2 via the projection
mapping (s1, s2, s3) 7→ (s1, s2). Elementary calculations give the exact
position of the region Xε: it is the union of two triangles T1 and T2

with coordinates of vertices (ε, ε), (ε, 1− 2ε), (1− 2ε, ε) and (1− ε, 1−
ε), (1− ε, 2ε), (2ε, 1− ε), respectively. However, it is easy to check that
these triangles are ”too small” in the sense that (T1 ∪ T2) − (T1 ∪ T2)
is not dense in [0, 1)2. Therefore, ε0 ≤ ε, and hence ε0 ≤ 1

5
. �

We conclude this note with two remarks.

First, notice that the proofs of Corollaries 4.4 and 4.5 follow the same
pattern. If u1, . . . ,un and ε > 0 correspond to a covering of R2, we
slightly decrease the half-width of the strips to some ρ < ε, so that the
non-covered region is still small enough, and then apply Theorem 4.3
to conclude that ε0 ≤ ρ. In Corollary 4.4 this was done for the trivial
covering u1 = 1, ε = 1

2
with the choice ρ = 1

4
. In Corollary 4.5 we used
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the covering u1 = 1,u2 = e2πi/3,u3 = e4πi/3 for ε = 1
3
, with the choice

ρ = 1
5
. It is plausible that this can be done for every covering, thus

reducing the value of ε ever further. This would mean that the set of
ε’s having the finite rotation property is open. However, it would still
not prove that ε0 = 0.

Second, Theorem 4.3 gives us the possibility to re-consider periodic
coverings. For instance, let ε < 1

2
and take all Pythagorean triples

m2
j + k2

j = n2
j with nj ≤ N for some fixed N . We know from Section 2

that the corresponding angles will not give a covering for ε. However,
it is possible that the non-covered part X of the plane is small enough
so that Theorem 4.3 can be invoked to conclude that ε has the finite
rotation property. In fact, it is possible that this argument works for
any ε > 0 if we choose N large enough, but we could not prove it so
far.
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