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Abstract. This short note gives an upper bound on the measure
of sets A ⊂ [0, 1] such that x+ y = 3z has no solutions in A.

To the memory of Yahya Ould Hamidoune.

1. Introduction

In this note we consider measurable sets A ⊂ [0, 1] such that the
linear equation x + y = 3z has no solutions in A. In particular, we
prove that the measure of A satisfies |A| ≤ 1

2
− δ with δ = 1

114
. To put

this result in context we briefly describe the history of the problem.

A set A of real numbers is called k-sum-free if it does not contain
elements a, b, c such that a + b = kc, where k is a positive integer. (It
is customary to require that not all a, b, c be equal, to avoid trivial
solutions if k = 2). Let f(n, k) denote the maximal cardinality of a
k-sum-free set in {1, 2, . . . , n}. The quantity f(n, k) and the possible
structure of maximal k-sum-free sets A(n, k) has been studied exten-
sively over the past decades, and an almost complete understanding
has been reached for all values of k, except k = 2.

For k = 1 we have f(n, 1) = ⌈n
2
⌉ and the extremal sets are well-

known. For n odd, there are two maximal sum-free sets: the set of odd
numbers in {1, . . . , n}, and the “top half” {n+1

2
, . . . , n}. For n even,

n ≥ 10, there are three maximal sum-free sets: the set of odd numbers,
{n
2
+ 1, . . . , n}, and {n

2
, . . . , n− 1}.

For k = 2 the famous theorem of Roth [6] says that f(n, 2) = o(n),
and giving tight upper and lower bounds on f(n, 2) is a notoriously
difficult and famous problem.

For k = 3 Chung and Goldwasser [3] proved that f(n, 3) = ⌈n
2
⌉ for

any n 6= 4, and the set of odd numbers is the unique maximal 3-sum-
free set for n ≥ 23.
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For k ≥ 4 Chung and Goldwasser [2] gave an example of a k-sum-free
set of cardinality

k(k − 2)

k2 − 2
n+

8(k − 2)

k(k2 − 2)(k4 − 2k2 − 4)
n+O(1),

and conjectured that

lim
n→∞

f(n, k)

n
=

k(k − 2)

k2 − 2
+

8(k − 2)

k(k2 − 2)(k4 − 2k2 − 4)
.

They also conjectured that if n is large then the extremal k-sum-free
sets consist of three intervals of consecutive integers with slight mod-
ifications at the end-points. Subsequently Baltz & al. [1] proved the
first conjecture and gave a structural result on maximal k-sum-free sets
which is very close to proving the second.

The examples for k ≥ 4 in [2] were based on the solution of the con-
tinuous version of the problem. Namely, let µ(k) denote the maximal
possible measure of a measurable k-sum-free set A ⊂ [0, 1). Intuitively
one expects that information on µ(k) and the structure of the maximal
sets should provide information on limn→∞ f(n, k)/n. This is indeed
the case for most values of k.

For k = 1 it is easy to see that µ(1) = 1
2
and the “top-half” interval

(1
2
, 1] is essentially the only maximal 1-sum-free set. This is in analogy

with f(n, 1), with the exception that the extremal set of odd numbers
does not have a continuous analogue.

For k = 2 a simple Lebesgue-point argument shows that µ(2) = 0,
in analogy with f(n, 2) = o(n).

For k ≥ 4 the analogy continues to hold, as Chung and Goldwasser
[2] showed that

µ(k) =
k(k − 2)

k2 − 2
+

8(k − 2)

k(k2 − 2)(k4 − 2k2 − 4)
,

with the extremal set being a union of three intervals.

Therefore, the only case left open is k = 3 in the continuous setting,
the value of µ(3) being unknown. The largest known 3-sum-free set in
the interval (0, 1], also given in [2], is

(1) A =

(

8

177
,
4

59

)

∪

(

28

177
,
14

59

)

∪

(

2

3
, 1

)

,

with |A| = 77
177

. (Some endpoints of the intervals can be included in A
but it does not change the measure.) Chung and Goldwasser conjecture
that if |A| is maximal and the set A itself is maximal with respect to
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inclusion then A must be equal to the union of these three intervals
together with some of their endpoints [2, Conjecture 3]. We have made
some computer experiments which support this conjecture: an easy
linear programming code shows that if A is the union of 2, 3, 4 or 5
disjoint intervals then |A| ≤ 77

177
, with equality holding only for the

intervals above.

The primary motivation of this note is to show that the analogy
between the discrete and continuous versions of the problem breaks

down for k = 3. Namely, limn→∞

f(n,3)
n

= 1
2
as mentioned above, but

µ(3) ≤ 1
2
− 1

114
according to Theorem 2.1 below. This shows that

the extremal set of odd numbers for f(n, 3) cannot have a continuous
analogue in (0, 1].We are fairly convinced that [2, Conjecture 3] is true,
and µ(3) = 77

177
but we are currently unable to prove it.

2. Sets with no solutions to x+ y = 3z

In this section we prove our main result.

Theorem 2.1. Let A ⊂ [0, 1] be a measurable set such that there exist

no x, y, z ∈ A for which x + y = 3z holds. Then the measure of A
satisfies |A| ≤ 1

2
− δ with δ = 1

114
.

Proof. First note that we can assume that A is closed, because the
Lebesgue measure is inner regular. Second, we can assume that 1 ∈ A
because otherwise we could consider an appropriate dilate αA of A
with some α > 1. With these assumptions inf(A) belongs to A, and
diam(A) = 1− inf(A).
We introduce the notations x = |A|, a = inf(A) and C = A+A

3
. Note

that C ⊂ [2a
3
, 2
3
], A ∪ C ⊂ [2a

3
, 1], and by assumption A and C are

disjoint.
We first prove x ≤ 1

2
.

Corollary 3.1 of [7], specialized to the case A = B asserts that

|A+ A| ≥ min(3|A|, |A|+ diam(A)) = min(3x, x + 1− a).

This implies |C| ≥ min(x, x+1−a
3

). If the minimum here is x, then using

the fact that A and C are disjoint in [2a
3
, 1] we obtain 2x ≤ 1− 2a

3
, and

hence

(2) x ≤
1

2
−

a

3

follows. If the minimum is x+1−a
3

, then we obtain

x+
x+ 1− a

3
≤ 1−

2a

3
,
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which implies

(3) x ≤
1

2
−

a

4
.

In both cases we conclude that x ≤ 1
2
. Moreover, by dilating the

interval [0, 1] we obtain that any set Ã ⊂ [0, w] which contains no
solutions to x+ y = 3z satisfies

(4) |Ã| ≤
w

2
.

Assume now, by contradiction, that x = 1/2− δ with δ < 1
114

. From
the argument above we see that in this case

(5) a ≤ 4δ

must hold.
Also, C does not intersect (2

3
, 1], and this implies that Amust contain

most of this interval, with the possible exception of a set of measure
at most 2δ by the following argument. If |A ∩ (2

3
, 1]| = 1

3
− ε then

the inequality |A ∪ C| ≤ 1 − 2a/3 used to deduce (2) and (3) can be
improved to |A ∪ C| ≤ 1 − 2a/3 − ε, and this yields an improvement
of − ε

2
and −3ε

4
on the right hand side of (2) and (3), respectively. If

ε > 2δ then this would imply |A| < 1
2
− δ in both cases.

Taking into account that a ∈ A we get that |(A+A)∩(a+ 2
3
, a+1]| ≥

1
3
− 2δ, and |(A+A) ∩ (4

3
, 2]| ≥ 2

3
− 4δ. Dividing by 3 and using again

the disjointness of A and C we get that |A ∩ (a
3
+ 2

9
, a
3
+ 1

3
]| ≤ 2δ

3
and

|A ∩ (4
9
, 2
3
]| ≤ 4δ

3
. We now omit these parts of A and put

A′ = A \

(

(a

3
+

2

9
,
a

3
+

1

3

)

∪
(4

9
,
2

3

)

)

.

By the above arguments we have |A′| ≥ |A| − 2δ.

Note that A′ naturally breaks up into three disjoint parts:

A1 = A′ ∩

[

a,
a

3
+

2

9

]

, A2 = A′ ∩

[

a

3
+

1

3
,
4

9

]

, A3 = A′ ∩

[

2

3
, 1

]

.

By (4) and (5) we have

(6) |A1| ≤
a

6
+

1

9
≤

2δ

3
+

1

9
.

Let b = sup(A1), c = inf(A2) and d = sup(A2). We have b ≤ a
3
+ 2

9

and a
3
+ 1

3
≤ c ≤ d ≤ 4

9
. If A2 is non-empty then a, b, c, d ∈ A′. If A2

happens to be empty, then
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|A| ≤ |A′|+ 2δ = |A1|+ |A3|+ 2δ ≤ (
2δ

3
+

1

9
) + (

1

3
) + 2δ

≤
4

9
+

2δ

3
+ 2δ <

1

2
− δ

and we are done.

Assume now that A2 is non-empty. This implies A1 + A3 ⊃ (a +
A3) ∪ (b+A3) and this latter set equals the interval [a+ 2

3
, b+ 1] with

the exception of a set of measure at most 4δ. Similarly, A2 + A3 ⊃
(c + A3) ∪ (d + A3) which equals the interval [c + 2

3
, d + 1] with the

exception of a set of measure at most 4δ.
We distinguish two cases according to the magnitude of c− b.

If c− b > 1
3
, then

|A| ≤ |A′|+ 2δ = |A1|+ |A2|+ |A3|+ 2δ

≤ (b− a) + (d− c) +
1

3
+ 2δ = (d− a) + (b− c) +

1

3
+ 2δ

≤
4

9
− a−

1

3
+

1

3
+ 2δ ≤

4

9
+ 2δ <

1

2
− δ,

a contradiction.

If c− b ≤ 1
3
, then the intervals [a+ 2

3
, b+1] and [c+ 2

3
, d+1] overlap,

so that (A1+A3)∪ (A2+A3) equals the interval [a+
2
3
, d+1] with the

exception of a set of measure at most 8δ. Therefore set C contains the
interval I = [a

3
+ 2

9
, d
3
+ 1

3
], with the exception of a set of measure at

most 8δ
3
. Notice, however, that d

3
+ 1

3
> d because d < 1

2
. Therefore,

the interval I fully covers A2, and hence |A2| ≤
8δ
3
. Therefore,

|A| ≤ |A′|+ 2δ = |A1|+ |A2|+ |A3|+ 2δ

≤
(a

6
+

1

9

)

+
(8δ

3

)

+
(1

3

)

+ 2δ =
4

9
+

16

3
δ <

1

2
− δ,

a contradiction.
�

Remark 2.2. It is more than likely that one could obtain a larger δ by
doing the case-by-case analysis with a little more care. However, the
arguments above do not seem to lead to the structural result that the
extremal 3-sum-free set must be the union of the three intervals stated
in [2, Conjecture 3].
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