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1 Setting
Chaotic flows
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Continuous time. Physical/SRB measure.
M compact metric space

Xt : M →M smooth flow (ie, Xt+s = Xt ◦Xs for s, t ∈ R)

There exists a unique invariant SRB measure µSRB : Leb(B(µSRB)) > 0 where

B(µSRB) =

{
x ∈M :

1

T

∫ T

0

ϕ(Xs(x)) ds→
∫
ϕdµSRB , ∀ϕ ∈ C(M)

}

1.1 Mixing
Mixing

After obtaining an interesting invariant probability measure for a dynamical system,
it is natural to study the properties of this measure. Besides ergodicity there are various
degrees of mixing.

Given a flow Xt and an invariant ergodic probability measure µ, we say that the
system (Xt, µ) is mixing if for any two measurable sets A,B

µ
(
A ∩X−tB

)
−−−→
t→∞

µ(A) · µ(B)

or equivalently ∫
ϕ ·
(
ψ ◦Xt

)
dµ −−−→

t→∞

∫
ϕdµ

∫
ψ dµ

for any pair ϕ,ψ : M → R of continuous functions.
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Correlation function
Considering ϕ and ψ ◦ Xt : M → R as random variables over the probability

space (M,µ), this definition just says that “the random variables ϕ and ψ ◦Xt are
asymptotically independent” since the expected value E

(
ϕ · (ψ ◦ Xt)

)
tends to the

product E(ϕ) · E(ψ) when t goes to infinity.

The correlation function

Ct(ϕ,ψ) =
∣∣E(ϕ · (ψ ◦Xt)

)
− E(ϕ) · E(ψ)

∣∣
=
∣∣∣ ∫ ϕ ·

(
ψ ◦Xt

)
dµ−

∫
ϕdµ

∫
ψ dµ

∣∣∣
satisfies Ct(ϕ,ψ) −−−→

t→∞
0 in the case of mixing.

Speed of mixing: decay of correlations.
Given observables ϕ,ψ : M → R in a Banach space X (which depends on the

systems and is in general a space of functions with some regularity, Hölder or Cr for
some r > 1...) the correlation function (for the SRB measure) is given by

Ct(ψ,ϕ) =

∣∣∣∣∫ (ϕ ◦Xt)ψ dµSRB −
∫
ψ dµSRB

∫
ϕ dµSRB

∣∣∣∣ .
We classify decay of correlations into some classes

• Exponential decay: ∃C, γ > 0 so that

Ct(ψ,ϕ) ≤ Ce−γt‖ψ‖‖ϕ‖

• Super-polynomial decay: ∀β > 0∃Cβ > 0 s.t.

Ct(ψ,ϕ) ≤ Cβt−β‖ψ‖‖ϕ‖

1.2 Overview
Some known results: Decay of correlations

super-poly. decay exp. decay

Anosov or
Axiom A flows

C2 open
C∞ dense
not all

smooth foliations & non-
integrability
C1 open set of C3

dim≥ 3 vector fields
geometric Lorenz
attractors

C2 open
C∞ dense

C1-open set of C∞

vector fields
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Dolgopyat 98’ C5-Anosov flows whose stable and unstable foliations are jointly non-
integrable have exponential decay

Dolgopyat 98’ Generic suspension flows over subshift of finite type are exponentially
mixing

Pollicott 99’ Equilibrium states of suspension semiflows over subshift of finite type
with "nice" roof function have exponential decay

Field, Melbourne, Törok 07’ C2 open, C∞ dense set of Axiom A flows with super-
polynomial decay of correlations

Ruelle 83’, Pollicott 85’ Examples with slow decay of correlations.

Baladi, Vallée 05’ Exp. decay of corr. for C2 suspension semiflows on surfaces with
countable Markov partitions and "good roof function"

Ávila, Goüezel, Yoccoz 06’ Exponential decay of correlations for Teichmüller flow;
criterium for suspension semiflows over hyperbolic base with (countable) Markov
structure

Melbourne 09’ C2 open, C∞ dense set of geom. Lorenz attractors have superpoly-
nomial decay

A., Varandas 11’ C2-open set of geom. Lorenz attractors with exponential decay

A., Melbourne, Varandas 15’ Super-polynomial decay for C1 open set of C∞ geo-
metric Lorenz attractors and ASIP for time-1 map

A., Butterley, Varandas 16’ C1-open set C3 Axiom A vector fields, dim. ≥ 3, with
non-trivial attractor with exponential decay

A., Melbourne 16’ Exponential decay of correlations for C1+α suspension semiflows
on surfaces with countable Markov partitions and "good roof function"

1.3 Geometric Lorenz flow and exponential decay
Lorenz equations

In 1963 Lorenz presented the following systems of equations and payed close at-
tention to certain parameter values:

dx

dt
= σ(y − x) σ = 10

dy

dt
= rx− y − xz r = 28

dz

dt
= xy − bz b = 8/3

for which the systems seemed to be “sensitive to initial conditions” or “chaotic”.
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The Lorenz system has an attractor
Only around the year 2000 was it established, by [Tucker, “The Lorenz attractor

exists”, C. R. Acad. Sci. Paris, 1999], that the Lorenz system of equations with
the parameters indicated by Lorenz does indeed have a transitive attractor with a
SRB measure.

This proof was and remains a computer assisted proof, rather involved, delicate and
quite technical, which works for a specific family of parameters. It was tested on very
fast computers at the time and took several days to complete the calculations.

Tucker in fact showed that the Lorenz attractor is a geometric Lorenz attrac-
tor, and so is an example of transitive singular-hyperbolic set

Description of Geometric Lorenz attractors
Consider the linear system (ẋ, ẏ, ż) = (λ1x, λ2y, λ3z), thus

Xt(x0, y0, z0) = (eλ1tx0, e
λ2ty0, e

λ3tz0),

where λ2 < λ3 < 0 < −λ3 < λ1 in a ngbh. of (0, 0, 0).

σ

x=x=

λ

λ

λ

1

2 3

.

.

.

+
−

− +11

ΣΣ

S+

Γ

L

S

For τ = − 1
λ1

log |x| we get

Xτ (x, y, 1) = (sgn(x), y|x|−λ2/λ1 , |x|−λ3/λ1)

Invariant constracting foliation
We assume that the “triangles”L(S±) are compressed in the y-direction and stretched

on the other transverse and rotated back preserving the line segments S ∩ {x = x0}:
This may be seen as a suspension flow over the Poincaré return map R with roof func-
tion τX(x, y) = − 1

λ1
log |x|+ c(x) where c(·) is bounded.

One-dimensional quotient map
The Poincaré first return mapR : S∗ → S is a skew-productR(x, y) =

(
f(x), g(x, y)

)
for some functions f : I \{0} → I and g : (I \{0})× I → I , where I = [−1/2, 1/2].

Moreover, the smoothness of f depends on the smoothness of the contracting
foliation and

• f(x) ≈ |x|α and so |f ′(x)| ≈ α|x|α−1

• |∂yg| ≈ |x|β ≤ λ < 1 and |∂yg(x, y)| · |Df(x)|−1 ≤ λ which give singular-
hyperbolicity for the attrator.
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Sectional-hyperbolicity
Tucker in fact showed that the Lorenz attractor is a transitive singular-hyperbolic

set.

We say that a compact invariant set Λ for a flow is sectionally hyperbolic if the
tangent bundle over Λ admits aDXt-invariant and dominated splitting TΛM = EsΛ⊕
EcΛ, such that there are C, λ > 0 satisfying for every x ∈ Λ and t > 0

• Es is uniformly contracted: ‖DXt | Esx‖ ≤ Ce−λt;

• Ec is 2-sectionally expanded: for every bidimensional subspace Fx contained in
Ecx we have |det(DXt | Fx)| ≥ Ceλt; and

• all equilibrium points, if any, are hyperbolic.

Sectional-hyperbolicity and hyperbolicity
A sectional-hyperbolic compact invariant subset for a three-dimensional vector

field (where dimEs = 1 and dimEc = 2) is also referred to as a singular-hyperbolic
set.

Sectional-hyperbolicity is an extension of the notion of hyperbolicity.

Hyperbolic Lemma
Every compact singular-hyperbolic set without singularities is an hyperbolic set, that
is, Ec can be written as [G]⊕Eu, where [G] is the flow direction and Eu is uniformly
expanded:

∃C, λ > 0 : ‖(DXt | Eux )−1‖ < Ce−λt.
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Dominated splitting. Robustness.
The continuous splitting TΛM = Es ⊕ Ec is dominated if it is DXt-invariant,

that is

DXtE
∗
x = E∗Xt(x),∀t ∈ R,∀x ∈ Λ, ∗ = s, cu;

and there are K,λ > 0 such that

‖DXt | Ex‖ · ‖DX−t | EcXt(x)‖ < Ke−λt,∀ x ∈ Λ, t > 0.

Domination is a rather weak form of hyperbolicity, but is a robust property. This
means that if a vector field Z admits an attracting set Λ, then there we can find ε > 0
such that for all vector fields Y such that ‖Y − Z‖C1 < ε there is an attracting set
ΛY close to Λ so that ΛY has a dominated splitting (with the same dimensions of the
subbundles).

This robustness property is also true for sectional hyperbolicity.

The stable (contracting) foliation
To construct the physical/SRB measure for a geometric Lorenz attractor the smooth-

ness of the one-dimensional quotient map is important: it needs to be aC1+α piecewise
expanding map with finitely many branches, for some α > 0.

This crucially depends on the regularity of the contracting foliation over which the
dynamics of the return map is quotiented.

Moreover, the construction of geometric Lorenz attractors provides that this con-
tracting foliation covers a full neighborhood U of the attractor.

The attractor has zero volume
Moreover, the Lorenz equations define a vector field G which is dissipative, that is,

div(G) ≤ −δ < 0 for some δ > 0.

Hence, the Lorenz attractor Λ = ∩t>0Xt(U) has zero volume, where Xt is the
flow generated by G.

However, this is a general result: a singular-hyperbolic attractor has zero volume
whenever the vector field is of class C1+α [see Alves, A., Pacifico, Pinheiro, Dyn Sist
an Int J, 22(3), 249-267 (2007)].

Strongly dissipative condition
We further assume that our geometric Lorenz flows are strongly dissipative, i.e.,

the divergence of the vector field G is strictly negative: there exists δ > 0 such that

(divG)(x) ≤ −δ, ∀x ∈ U,

and moreover the eigenvalues of the singularity at 0 satisfy the additional constraint

λu + λss < λs (λ1 + λ2 < λ3).
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A consequence of domination, uniform contraction on the stable direction and strong
dissipativity, is the existence of a Xt-invariant contracting foliation Fss, defined in a
neighborhood of Λ, which is C1+ε-smooth and whose leaves are C1+ε curves with
uniform size.

Lemma 1. The strong stable foliation Fss is C1+ε for some ε > 0.

1.4 Sketch
Sketch of proof of exponential decay

To obtain exponential decay for geometric Lorenz flow the strategy is to show that
this flow can be written as a semiflow over C1+α expanding maps with C1 roof
functions satisfying a uniform non-integrability condition. We now explain the
terms,

Uniformly expanding maps:

Fix α ∈ (0, 1]. Let {(cm, dm) : m ≥ 1} be a countable partition mod 0 of Y =
[0, 1] and suppose that F : Y → Y is C1+α on each subinterval (cm, dm) and extends
to a homeomorphism from [cm, dm] onto Y .

Let H = {h : Y → [cm, dm]} denote the family of inverse branches of F , and let
Hn denote the inverse branches for Fn.

Uniformly expanding maps and absolutely continuous invariant probability mea-
sures

We say that F : Y → Y is a C1+α uniformly expanding map if there exist
constants C1 ≥ 1, ρ0 ∈ (0, 1) s.t.

(i) |h′|∞ ≤ C1ρ
n
0 for all h ∈ Hn,

(ii) | log |h′| |α ≤ C1 for all h ∈ H,

where

| log |h′| |α = sup
x 6=y

∣∣ log |h′|(x)− log |h′|(y)
∣∣

|x− y|α .

Under these assumptions, it is standard that there exists a unique F -invariant absolutely
continuous probability measure µ with α-Hölder density bounded above and below.

Expanding semiflows
Suppose that R : Y → R+ is C1 on partition elements (cm, dm) with inf R >

0. Define the suspension Y R = {(y, u) ∈ Y × R : 0 ≤ u ≤ R(y)}/ ∼ where
(y,R(y)) ∼ (Fy, 0).

The suspension flow Ft : Y R → Y R is given by Ft(y, u) = (y, u + t) computed
modulo identifications, with ergodic invariant probability measure µR = (µ×Leb)/R̄
where R̄ =

∫
Y
Rdµ.

We say that Ft is a C1+α expanding semiflow provided
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(iii) |(R ◦ h)′|∞ ≤ C1 for all h ∈ H.

(iv) There exists ε > 0 such that
∑
h∈H e

ε|R◦h|∞ |h′|∞ <∞.

Uniform nonintegrability
Let Rn =

∑n−1
j=0 R ◦ F j and define

ψh1,h2
= Rn ◦ h1 −Rn ◦ h2 : Y → R,

for h1, h2 ∈ Hn. We require

(UNI) There exists D > 0, and h1, h2 ∈ Hn0
, for some sufficiently large integer

n0 ≥ 1, such that inf |ψ′h1,h2
| ≥ D.

The requirement “sufficiently large” can be made explicit.

Function spaces
Define Fα(Y R) to consist of L∞ functions v : Y R → R such that ‖v‖α = |v|∞ +

|v|α <∞ where

|v|α = sup
(y,u)6=(y′,u)

|v(y, u)− v(y′, u)|
|y − y′|α .

Define Fα,k(Y R) to consist of functions with ‖v‖α,k =
∑k
j=0 ‖∂

j
t v‖α <∞ where ∂t

denotes differentiation along the semiflow direction.

Obtaining exponential decay
Given v, w ∈ Fα,1(Y R) define the correlation function

ρv,w(t) =

∫
v w ◦ Ft dµR −

∫
v dµR

∫
w dµR.

Theorem [Baladi-Vallée ’05 (with C2 expanding map), A.-Melbourne ’15 (with
C1+α expanding map)]
Assume conditions (i)–(iv) and UNI. Then there exist constants c, C > 0 s.t. for all
t > 0

|ρv,w(t)| ≤ Ce−ct‖v‖α,2‖w‖α,2.

1.5 Organization of the notes and talks
Plan of the talks: stable bundle and foliation

Assume that Λ is an attracting set with a continuous invariant partially hyperbolic
splitting TΛ = Es ⊕ Ecu: we have domination plus Es uniformly contracted. We get

• a positively invariant ngbh. U0 of Λ and a continuous family of cone fields Cs(a),
Ccu(a) over U0 satisfying backwards expansion of Cs(a) and domination.

• a continuous extension of the stable subspace bundle Es over Λ to an invariant
contracting bundle Es over U0.
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• a flow invariant contracting stable manifold bundleW s over U0 consisting of C1

leaves tangent to Es, which is a topological foliation of U0.

Then we study the smoothness of this foliation.

Plan of the talks: smoothness of stable foliation

• Show that bunching implies smoothness of the stable foliation W s, with the
regularity being at least Hölder, and the holonomies along this foliation have the
same regularity.

In addition to the previous assumptions, assume sectional expansion on Ecu.

• Then strong dissipativity implies regularity, as in the previous item.

Assume, in addition, that Es has codimension 2.

• Then the quotient one-dimensional map isC1+ε (even though the stable foliation
is only Hölder regular).

Finally, assuming also sectional expansion on Ecu

• Then the one-dimensional quotient map is a piecewise C1+ε expanding map.

2 Stable bundle
Invariant stable bundle extension

Existence of an invariant extension of the stable bundle
to a full neighborhood of the attracting set

We discuss existence and regularity properties of the stable foliation associated
with a partially hyperbolic attracting set. Sectional expansion is not assumed.

Throughout, Λ is a partially hyperbolic attractor for a vector fieldG ∈ Xr(M), r ≥
1, with dominated invariant splitting TΛM = Es ⊕Ecu and Es uniformly contracted.
Write d = dimM = ds + dcu.

2.1 Cone fields
Cone fields in a neighborhood of Λ

Let U0 ⊂ M be a forward invariant neighborhood of Λ such that
⋂
t≥0Xt(U0) =

Λ.

Choose a continuous (not necessarily invariant) extension TU0M = Es ⊕ Ecu of
the splitting TΛM = Es ⊕ Ecu. Given x ∈ U0 and a > 0 we define the cone fields

Csx(a) = {v = vs + vcu ∈ Esx ⊕ Ecux : ‖vcu‖ ≤ a‖vs‖},
Ccux (a) = {v = vs + vcu ∈ Esx ⊕ Ecux : ‖vs‖ ≤ a‖vcu‖}.
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Partial hyperbolic cone fields in U0

Proposition
Fix T so that λT = 1/150. For any a ∈ (0, 1

4 ] there is a positively invariant neighbor-
hood U0 of Λ, s.t. ∀x ∈ U0

(a) DX−t
(
CsXtx(b)

)
⊂ Csx(b) and DXt

(
Ccux (b)

)
⊂ CcuXtx(b), for all b ≥ a, t ≥ T

(backward invariance of stable cones and forward invariance of center-unstable cones).

(b) ∃c > 0, λ̃ ∈ (0, 1) s.t. ∀t > 0

‖DX−t(Xtx)v‖ ≥ cλ̃−t‖v‖, ∀v ∈ CsXtx(a);

‖DXt(x)v‖
‖v‖ ≥ cλ̃−t ‖DX

t(x)u‖
‖u‖ for

{
~0 6= v ∈ Ccux (a)
u ∈ DX−t(CsXtx(a))

;

(backward expansion of stable cones and domination).

(Skip the proof of this proposition)

Proof of the Proposition (extending cones)
If v lies in TxM where x ∈ U0, then we write v = vs + vcu ∈ Esx ⊕ Ecux . If

v ∈ C∗x(a), then (1− a)‖v∗‖ ≤ ‖v‖ ≤ (1 + a)‖v∗‖ where throughout ∗ ∈ {s, cu}.
For x ∈ Λ, it follows from invariance of the splittingEs⊕Ecu that (DXt(x)v)∗ =

DXt(x)v∗ for all v ∈ TxM and t ∈ R.

We fix the ngbh. U0 as follows. For each x ∈ Λ, we choose a ngbh. Ux ⊂ M of
x s.t. Ux is diffeomorphic to Rd where d = dimM . Then TUx

M is identified with
Ux × Rd. Given y1, y2 ∈ Ux, a vector v ∈ Rd corresponds to vectors vyj ∈ TyjM via
this identification.

By the smoothness of the flow, we can choose Ux so small that ‖DXt(y1)vy1‖ ≤
2‖DXt(y2)vy2‖ for all x ∈ Λ, y1, y2 ∈ Ux, v ∈ Rd, t ∈ [−T, T ].

Fixing coordinate systems
By the continuity of the splitting Es ⊕ Ecu, for a > 0 fixed we can ensure for all

b ≥ a/8, t ∈ [−T, T ], that
if DXt(y1)vy1 ∈ C∗y1(b), then DXt(y2)vy2 ∈ C∗y2(2b).

We now fixU0 to be a positively invariant neighborhood of Λ contained in
⋃
x∈Λ Ux.

By construction, for every y ∈ U0, there exists x ∈ Λ such that

(i) DXt(x)vx ⊂ C∗x(b) =⇒ DXt(y)vy ⊂ C∗y(2b),

(ii) DXt(y)vy ⊂ C∗y(b) =⇒ DXt(x)vx ⊂ C∗x(2b), and

(iii) 1
2‖DXt(x)vx‖ ≤ ‖DXt(y)vy‖ ≤ 2‖DXt(x)vx‖,

for all v ∈ Rd, b ≥ a/8, t ∈ [−T, T ].
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Proof of item (a) of the proposition
From domination on the initial splitting over Λ we get

‖(DXt(x)v)s‖ = ‖DXt(x)vs‖ ≤ ‖DXt|Esx‖‖vs‖
≤ λt‖DX−t|EcuXtx‖−1‖vs‖
= λt‖(DXt|Ecux )−1‖−1‖vs‖
≤ λt‖(DXt(x)v)cu‖‖vcu‖−1‖vs‖,

for all x ∈ Λ, v ∈ TxM , t ≥ 0. In particular

DXt(C
cu
x (b)) ⊂ CcuXtx(bλt), ∀x ∈ Λ, b > 0, t ≥ 0.

From Λ to U0

Now let y ∈ U0, b ≥ a, v ∈ Ccuy (b). We can pass to a nearby point x ∈ Λ with
corresponding vector vx ∈ Ccux (2b) by (ii). Then DXt(x)vx ∈ CcuXtx

(2bλt) for all
t ≥ 0. In particular, since λT = 1/150 ≤ 1/16,

DXT (x)vx ∈ CcuXT x(b/8) and DXt(x)vx ∈ CcuXtx(2b), ∀t ≥ 0.

From (i) we get

DXT (Ccuy (b)) ⊂ CcuXT y(b/4) ⊂ CcuXT y(b) and

DXr(C
cu
y (b)) ⊂ CcuXry(4b), ∀r ∈ [0, T ], y ∈ U0.

By positive invariance ofU0, it follows inductively thatDXkT (Ccuy (b)) ⊂ CcuXkT y
(b/4) ⊂

CcuXkT y
(b) for all y ∈ U0, k ∈ Z+.

The general t ≥ T
For general t ≥ T , write t = kT + r where k ≥ 1 and r ∈ [0, T ). Again using

positive invariance of U0 together with cone invariance

DXt(C
cu
y (b)) = DXkT ·DXr(C

cu
y (b)) ⊂ DXkT (CcuXry(4b)) ⊂ CcuXty(b).

This completes the proof of forward invariance for the center-unstable cone fiels, and
the proof of the backward invariance for the stable cone field is completely analogous.

Hence we have proved item (a) in the statement of the proposition.

Proof of item (b) of the proposition
Keep the choices of T and U0 and recall that a ∈ (0, 1

4 ] is fixed. First we backward
contraction along the stable cone field.
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Suppose that x ∈ Λ and v ∈ CsXT x
(2a). By backward invarianceDX−T (XTx)v ∈

Csx(2a), so using the contraction on EsΛ

‖DX−T (XTx)v‖ ≥ (1− 2a)‖(DX−T (XTx)v)s‖
= (1− 2a)‖(DXT (x))−1vs‖ ≥ (1− 2a)λ−T ‖vs‖
≥ (1 + 2a)−1(1− 2a)λ−T ‖v‖
≥ 50‖v‖ ≥ 8‖v‖.

Backward contraction from Λ to U0

Now let y ∈ U0, v ∈ CsXT y
(a). As in part (a), we can pass to a nearby point

x ∈ Λ with corresponding vector vx ∈ CsXT x
(2a) and so ‖DX−T (XTx)vx‖ ≥ 8‖vx‖.

Using (iii) together with positive invariance of U0, we have that ‖DX−T (XT y)v‖ ≥
2‖v‖ for all v ∈ CsXT y

(a).

By positive invariance of U0 and backward invariance of the stable cone field, it
follows inductively that

‖DX−kT (XkT y)v‖ ≥ 2k‖v‖ for y ∈ U0, v ∈ CsXkT y
(a), k ≥ 0.

For t = kT + r where k ∈ Z+, r ∈ [0, T ), let v ∈ CsXty
(a). Then DX−t(Xty)v =

DX−r(Xry)DX−kT (Xty)v so it follows from the previous estimates

‖DX−t(Xty)v‖ ≥ c‖DX−kT (XkT (Xry))v‖ ≥ c2k‖v‖,

where c = infr∈[0,T ],y∈U0,v∈TyM, v 6=0 ‖DX−r(y)v‖/‖v‖ > 0. This completes the
proof of backward contraction.

Proof of domination of the cone fields
From domination in Λ we get for x ∈ Λ, u, v ∈ TxM ,

‖DXT (x)us‖
‖us‖ ≤ ‖DXT |Esx‖ ≤ λT ‖(DXT |Ecux )−1‖−1 ≤ λT ‖DXT (x)vcu‖

‖vcu‖ .

Let u ∈ DX−T (CsXT x
(2a)), v ∈ Ccux (2a). By cone invariance

‖DXT (x)vcu‖
‖vcu‖ ≤ (1 + 2a)‖DXT (x)v‖

(1− 2a)‖v‖ , and

‖DXT (x)u‖
‖u‖ ≤ (1 + 2a)‖DXT (x)us‖

(1− 2a)‖us‖ ,

and so
‖DXT (x)u‖
‖u‖ ≤ 9λT

‖DXT (x)v‖
‖v‖ ≤ 3

50

‖DXT (x)v‖
‖v‖

for all v ∈ Ccux (2a), u ∈ DX−T (CsXT x
(2a)).

13



Again from Λ to U0 and conclusion
Using (iii) it follows that

‖DXT (y)u‖
‖u‖ ≤ 24

25

‖DXT (y)v‖
‖v‖

for all y ∈ U0, v ∈ Ccuy (a), u ∈ DX−T (CsXT y
(a)).

For general t ≥ 0, we write t = kT + r, k ≥ 0, r ∈ [0, T ) and proceed as in the
proof of item (a).

This completes the proof of the proposition on cone invariance, backward con-
traction on stable cones and domination for the cone fields in a neighborhood U0

of the attracting set Λ.

2.2 Extended bundles
Invariant stable bundle extended to U0

Whereas the original splitting TΛM = Es ⊕ Ecu is DXt-invariant, in general
the extension Ecu of the center-unstable direction cannot be assumed invariant.
However we have

Proposition
The continuous bundle Es over U0 can be chosen to be DXt-invariant and uniformly
contracting: ‖DXt | Esx‖ ≤ c−1λ̃t for all t ≥ 0, x ∈ U0, where c > 0, λ̃ ∈ (0, 1) are
the constants in the previous Proposition.

Impossible to extend the central bundle
Let us assume that the extension EcuU0

is invariant.

Lemma
Let Λ be a compact invariant set for a flowXt of a C1 vector fieldX onM and assume
Λ contains a Lorenz-like singularity σ. Given a continuous DXt-invariant splitting
TUM = E ⊕ F on a neighborhood U of σ such that E is uniformly contracted, then
there exists a ngbh. V of σ s.t V ⊂ V ⊂ U and a point x0 ∈ V \ Λ satisfying
X(x0) ∈ Fx.

However, for x0 ∈ V \ Λ close to the singularity, we have for some t > 0 that
xs = Xs(x0) ∈ U for all −t < s < 0, xs is close to W ss(σ) \ {σ} and G(x−t) is
almost parallel to Essσ .

This is a contradiction since the angle between Ess and Ecu is bounded away from
zero (see next picture).

Behaviour in small neighborhood of σ
(Skip the proof of the Lemma)

14



Eσ

c

E
ss
σ

σ

x
0

x−t

Figure 1: The flow direction contained in Ecu in a neighborhood of σ implies that Ecu

is not continuous at σ.

Proof of the Lemma
We denote by π(Ex) : TxM → Ex the projection on Ex parallel to Fx at TxM ,

and likewise π(Fx) : TxM → Fx is the projection on Fx parallel to Ex. We note that
for x ∈ U

X(x) = π(Ex) ·X(x) + π(Fx) ·X(x)

and for t > 0 and x ∈ V such that X [0,t](x) ∈ U , by linearity of DXt and DXt-
invariance of the splitting E ⊕ F

DXt ·X(x) = DXt · π(Ex) ·X(x) +DXt · π(Fx) ·X(x)

= π(EXt(x)) ·DXt ·X(x) + π(FXt(x)) ·DXt ·X(x).

Assuming that π(Ex) · X(x) 6= ~0 for all x ∈ V \ Λ, we choose a sequence of points
xn ∈ V and of times tn > 0 such that tn ↗∞ as follows.

Choice of the sequence of orbit segments in U

Eσ

c

E
ss
σ

σ

x

x
t n

n

y

z

Let xn ∈ V be a sequence converging to z ∈W ss
loc(σ) \ {σ} and tn ↗ +∞ so that

X [0,tn](xn) ⊂ U and xtn = Xtn(xn) tends to y ∈Wu
loc(σ) \ {σ}.
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Exploring the invariance and backward expansion
Since π(Ex) ·X(x) 6= ~0 we get

lim
n→+∞

DX−tn ·X(xtn) = lim
n→+∞

X(xn) = X(z) but also

‖DX−tn · π(Extn
) ·X(xtn)‖ ≥ ceλ̃tn‖π(Extn

) ·X(xtn)‖ −−−−−→
n→+∞

+∞,

because xtn → y and Es is a continuous bundle by assumption.

This is possible only if the angle between Exn
and Fxn

tends to zero when n →
+∞.

Closing angles
Indeed, using the Riemannian metric on TxM , the angle α(x) = α(Ex, Fx) be-

tweenEx and Fx is related to the norm of π(Ex) as follows: ‖π(Ex)‖ = 1/ sin(α(x)).
Thus

‖DX−tn · π(Extn
) ·X(xtn)‖ = ‖π(Exn

) ·DX−tn ·X(xtn)‖

≤ 1

sin(α(xn))
· ‖X(xn)‖, ∀n ≥ 1.

Hence, because ‖X(xn)‖ → ‖X(z)‖ 6= 0 we deduce that α(xn)→ 0.

However, sinceE⊕F is a continuous splitting in U , thenE⊕F are bounded away
from zero in V , which gives a contradiction.

We conclude that in V there must exist a point x0 as in the statement of the
lemma.

Proof of the Proposition (invariant Es)
We begin with the original choice of continuous splitting TU0M = Es ⊕ Ecu.

Let a ∈ (0, 1
4 ] and choose T and U0 as in the Proposition on cone invariance and

domination.

For x ∈ U0, define (as usual in hyperbolic dynamics)

Fx =
⋂
t≥0

DX−t
(
CsXtx(a)

)
.

We show that {Fx} is the desired stable bundle. That is, we show that for all t ≥ 0,

(i) x 7→ Fx is a continuous map from U0 to the Grassmannian bundle G = {Gx, x ∈
U0} where Gx is the space of ds-dimensional subspaces of TxM ,

(ii) Fx = Esx for x ∈ Λ,

(iii) {Fx, x ∈ U0} is DXt-invariant and uniformly contracting.

(Skip the proof of the Proposition)
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Nested family of cones and subspace contained in the intersection
Now {DX−t(CsXtx

(a)), t ≥ 0} is a nested family of closed cones, and by back-
ward invariance, the cones are contained in Csx(a) for t ≥ T . In particular, Fx ⊂ Csx(a).

We can also regard {DX−t(CsXtx
(a)), t ≥ 0} as a nested family of closed subsets

of Gx, so Fx is a closed subset of Gx.

By compactness of Gx, the elements DX−tEsXtx
∈ Gx have a convergent subse-

quence DX−tnE
s
Xtnx

with limit F̃x ∈ Gx.

Since DX−tEsXtx
∈ DX−t(CsXtx

(a)) and Fx is closed, it follows that F̃x ∈ Fx.

Uniqueness of the subspace in the intersection
To summarise, we have shown that there exists a ds-dimensional subspace F̃x such

that F̃x ⊂ Fx and F̃x = limn→∞DX−tnE
s
Xtnx

(in Gx). Without loss we may suppose
that tn ≥ T for all n.

Next we get Fx = F̃x. Choose vectors un ∈ EsXtnx
s.t. ‖DX−tn(Xtnx)un‖ = 1.

Suppose for contradiction that Fx 6= F̃x. Then Fx is a nontrivial cone containing
F̃x, and so there exists v ∈ Ecux nonzero such that wn = DX−tn(Xtnx)un + v ∈ Fx
for n sufficiently large. It follows from the definition of Fx that DXtn(x)wn = un +
DXtn(x)v ∈ CsXtnx

(a). Hence

‖(DXtn(x)v)cu‖ ≤ a‖un + (DXtn(x)v)s‖.

Uniqueness from domination
Since v ∈ Ecux , it follows from forward invariance that DXtn(x)v ∈ Ccux (a) and

hence we obtain

‖(DXtn(x)v)s‖ ≤ a‖(DXtn(x)v)cu‖ and
‖DXtn(x)v‖ ≤ (1 + a)‖(DXtn(x)v)cu‖.

Substituting into the last inequality yields (1−a2)‖(DXtn(x)v)cu‖ ≤ a‖un‖ and then

‖DXtn(x)v‖ ≤ (1 + a)(1− a2)−1a‖un‖.

On the other hand, un ∈ EsXtnx
, v ∈ Ecux , so by domination

‖DXtn(x)v‖
‖v‖ ≥ cλ̃−tn ‖un‖

‖DX−tn(Xtnx)un‖
= cλ̃−tn‖un‖.

Letting n→∞ yields the desired contradiction, and so Fx and F̃x coincide. In partic-
ular, Fx ∈ Gx for all x ∈ U0.
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Continuity of the family of subspaces
To prove continuity of the map x 7→ Fx, fix x ∈ U0 and let U ⊂ G be a neighbor-

hood of Fx.

There exists t0 ≥ 0 such that
⋂
t≤t0 DX−t(C

s
Xtx

(a)) ⊂ U .

By smoothness of the flow, Fy ⊂
⋂
t≤t0 DX−t(C

s
Xty

(a)) ⊂ U for y sufficiently
close to x.

This completes the proof of (i).

It is immediate from invariance of the bundle Es|Λ that Esx ⊂ Fx for all x ∈ Λ.

Since the dimensions are the same, Esx = Fx for all x ∈ Λ establishing item (ii).

Invariance and uniform contraction
For r ≥ 0,

DXrFx =
⋂
t≥0

DXr−t(CsXt−r(Xrx)(a)) =
⋂
t≥r

DXr−t(CsXt−r(Xrx)(a))

=
⋂
t≥0

DX−t(CsXt(Xrx)(a)) = FXrx,

so the bundle {Fx} is DXt-invariant.

Finally, if v ∈ Fx, t ≥ 0, then DXt(x)v ∈ CsXtx(a) so by backward expansion on
stable cones, ‖v‖ ≥ cλ̃−t‖DXt(x)v‖.

Hence ‖DXt | Fx‖ ≤ c−1λ̃t so item (iii) holds.

This completes de proof of the proposition on existence of invariant extension
of the stable direction from Λ to a full neighborhood U0 of Λ in the ambient space.

3 Stable Foliation
Stable foliation in a neighborhood of Λ

Existence of a flow invariant contracting stable manifold
bundle W s over U0 consisting of C1 leaves tangent to Es.

From now on, we suppose that the continuous extension TU0
M = Es ⊕ Ecu of

TΛM = Es ⊕ Ecu is chosen so that Es is invariant and uniformly contracted.
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3.1 Existence
Existence of stable foliation in U0

Let Dk denote the k-dimensional open unit disk and let Embr(Dk,M) denote the
set of Cr embeddings φ : Dk →M endowed with the Cr distance.

Theorem
There is a positively invariant neighborhood U0 of Λ, and a constant 0 < ν < 1 s.t.

(a) ∀x ∈ U0∃W s
x ∈ Embr(Dds ,M) with x ∈W s

x s.t.

(a) TxW s
x = Esx.

(b) Xt(W s
x) ⊂W s

Xtx,∀t ≥ 0.

(c) d(Xtx,Xty) ≤ νtd(x, y),∀y ∈W s
x , t ≥ 0.

(b) there is a continuous map γ : U0 → Emb0(Dds ,M) such that γ(x)(0) = x and
γ(x)(Dds) = W s

x .

(c) {W s
x : x ∈ U0} defines a topological foliation of U0.

(Skip the proof of the Theorem)

Proof of existence of stable foliation on U0

We follow the exposition on Section 6.4(b) of the book by Katok and Hasselblat,
Introduction to the Modern Theory of Dynamical Systems, C.U.P., 1995.

Let T > 0, c > 0, λ̃ ∈ (0, 1) be the constants in the propositions on existence of
cone fields and extension of stable invariant directions to U0.

Increase T > 0 if necessary so that λ̂ = c−1λ̃T ∈ (0, 1) and define the diffeomor-
phism f = XT : U0 → U0.

For each x ∈ U0, we consider the exponential map expx : TxM → M . This
transforms a small enough neighborhood of 0 diffeomorphically onto a neighborhood
of x, and D expx(0) = I .

Setting of local adapted coordinates
Choose orthonormal bases on Rds , Rdcu and, for each x ∈ U0, choose orthonormal

bases on Esx and Ecux .

Let P sx : Rds → Esx, P cux : Rdcu → Ecux be the corresponding isometric isomor-
phisms.

Since U0 3 x 7→ Esx ⊕ Ecux is continuous, we can arrange that x 7→ P sx and
x 7→ P cux are continuous families of isomorphisms.

Define Px,n = P sfnx + Dfn(x)P cux : Rd → TfnxM , which is a continuous
family x 7→ Px,n of isomorphisms for each n. In general Px,n is not an isometric
isomorphism, since Dfn · Ecux is not necessarily orthogonal to Esfnx.
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However, we have DfnEcux ⊂ Ccufnx(a) for some a ∈ (0, 1
4 ], so the angle between

the subspaces Esfnx and DfnEcux is bounded away from zero.
Hence there is a constant C1 ≥ 1 such that

1

C1
≤ ‖Px,n‖ ≤ C1, ∀x ∈ U0, n ≥ 0.

Next, Qx,n = expfnx ◦Px,n : Rd → M maps a neighborhood of 0 in Rd diffeo-
morphically onto a neighborhood of fnx and U0 3 x 7→ Qx,n is a continuous family
of diffeomorphisms for each n.

Let Dρ ⊂ Rd denote the ρ-neighborhood of 0. Using boundedness of ‖Pn‖ and
compactness of Λ, and shrinking U0 if necessary, we can choose ρ > 0 so that Qx,n :
Dρ → M is a diffeomorphism onto its range for all n. Moreover, there is a constant
C2 ≥ 1 such that

C−1
2 ‖p‖ ≤ d(fnx,Qx,n(p)) ≤ C2‖p‖,

for all x ∈ U0, n ≥ 0, p ∈ Dρ.

Local expression for the dynamics
Now define the family fx,n = Q−1

x,n+1 ◦ f ◦Qx,n : Dρ → Rd.

By construction, Dfx,n(0) is identified with Df(fnx) and fx,n are uniformly Cr

close to Dfx,n(0) on Dρ.

Hence for any δ > 0 there exists ρ > 0 and a family of (surjective) Cr diffeomor-
phisms gx,n : Rd → Rd, n ≥ 0, s.t. ‖gx,n−Dfx,n(0)‖C1 < δ and gx,n = fx,n onDρ.
[For a proof of this standard result see e.g. Lemma 6.2.7 in Katok-Hasselblatt book
cited above]

Proposition
For all n ≥ 0 we have ‖Dgx,n(0) | Rds‖ ≤ λ̂ and

‖Dgx,n(0) | Rds‖ · ‖Dgx,n(0)−1 | Rdcu‖ ≤ λ̂.

Dynamics in local coordinates

T Mx

Ex
s

Ex
x

Es
fx

E
fx

f

f(x)

f(x)
T    M

M

  (x)ρ

c

c

x,0
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E

E

c

s

m

m

E
c

E
s
m+1

m+1

ρ ρ

g
gx,m−1
x,m

g
x,m+1

Dynamics in adapted coordinates

Proof of the proposition
Choose a as in the previous Proposition ensuring the existence of invariant cone

fields in U0.

By construction, Dgx,n(0) = Dfx,n(0) is identified with Df(fnx) and

‖Dgx,n(0) | Rds‖ = ‖Df | Esfnx‖ = ‖DXT | DX−TEsXT fnx‖,
‖Dgx,n(0)−1 | Rdcu‖ = ‖Df−1 | Dfn+1Ecux ‖

≤ ‖DX−T | DXT (Ccufnx(a))‖,
where we have used invariance of Es and forward invariance of Ccu(a).

The first estimate is immediate from the proposition on existence and contraction
of the extension of the stable direction to U0.

The second estimate follows from the domination on the cone fields, and concludes
the proof.

A modified Invariant Manifold Theorem
We require a slightly modified version of the Hadamard-Perron Invariant Manifold

Theorem from Theorem 6.2.8, pp 242-257 in Katok-Hasselblatt book.

The only difference from the proof of Theorem 6.2.8 in Katok-Hasselblatt is that
the rates λn, µn may depend on n.

However, the ratios λn/µn are controlled uniformly, and it is easy to check that the
proof in pp 242-257 of Katok-Hasselblatt is valid in this slightly more general setting
with no change in the arguments.

We now state this result for future use.

A Hadamard-Perron Invariant Manifold Theorem
Fix r ≥ 1, λmin > 0 and σ ∈ (0, 1). Then there exists γ, δ > 0 arbitrarily small

so that: for each n let gn : Rd → Rd be a Cr diffeo s.t.

gn(u, v) = (Anu+ αn(u, v), Bnv + βn(u, v)), (u, v) ∈ Rds ⊕ Rdcu ,
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for linear maps An : Rds → Rds , Bn : Rdcu → Rdcu and Cr maps αn : Rd →
Rds , βn : Rd → Rdcu with

αn(0, 0) = 0, βm(0, 0) = 0 and ‖αn‖C1 < δ, ‖βn‖C1 < δ.

Define λn = ‖An‖, µn = ‖B−1
n ‖−1 and suppose that λn ≥ λmin and λn/µn ≤ σ.

Set λ′n = (1 + γ)(λn + δ(1 + γ)), µ′n = µn

1+γ − δ and suppose that λ′n < νn < µ′n
for all n ∈ Z.

Then there exists a unique family of ds-dimensional C1 manifolds

Zn = {(x, ϕn(x)) : x ∈ Rds},
where ϕn : Rds → Rdcu satisfies for all n ∈ Z

ϕn(0, 0) = 0, Dϕn(0, 0) = 0 and ‖Dϕn‖C0 < γ,

and the following properties hold

1. gn(Zn) = Zn+1,

2. ‖gn(q)‖ ≤ λ′n‖q‖ for q ∈ Zn,

3. If ‖gn+k−1 ◦ · · · ◦ gn(q)‖ ≤ Cνn+k−1 . . . νn‖q‖ for all k ≥ 0 and some C > 0,
then q ∈ Zn.

If supn λn < 1 (i.e. we have uniform contraction), then the manifolds Zn are Cr.

Verifying the conditions of the theorem
Fix x ∈ U0. The sequence of diffeos gx,n : Rd → Rd is defined for n ≥ 0.

For n < 0, we set gx,n = gx,0. The diffeos gx,n now have the structure required in
the theorem.

Take σ = λ̂ ∈ (0, 1) and λmin = infx∈U0 ‖DXT | Esx‖ > 0. By Proposition on
adapted coordinates, the linear maps An, Bn satisfy the constraints λmin ≤ λn ≤ σ
and λn/µn ≤ σ.

Choose γ, δ > 0 so small that supn λ
′
n < 1 and supn λ

′
n/µ

′
n < 1.

Choose νn ∈ (λ′n, µ
′
n) such that ν = supn νn < 1. Finally, shrink ρ so that

‖αn‖C1 < δ, ‖βn‖C1 < δ.

This shows that the hypotheses of the theorem are satisfied, with νn ≤ ν < 1 for
all n.

Using the conclusion of the theorem
LetZx,n denote the family of ds-dimensionalCr manifolds and setW s

x = Qx,0(Zx,0∩
Dρ).

Repeating the construction for every x ∈ U0, we get a family Fss = {W s
x , x ∈ U0}

of ds-dimensional Cr manifolds covering U0.

Lemma (Fss is the desired family of stable manifolds)
Let x, y ∈ U0. Then for all n ≥ 0
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(a) d(x, y) < C−1
2 ρ, y ∈W s

x =⇒ d(fnx, fny) ≤ C2
2ν

nd(x, y).

(b) Let C > 0. If d(x, y) < C−1
2 C−1ρ and d(fnx, fny) ≤ Cνnd(x, y) for all

n ≥ 0, then y ∈W s
x .

(c) There exists ε > 0 such that if d(x, y) < ε and y ∈W s
x then fy ⊂W s

fx.

(Skip the proof of the Lemma)

Proof of the lemma
Let Fx,n = fx,n−1 ◦ · · · ◦fx,0, Gx,n = gx,n−1 ◦ · · · ◦gx,0. Note that if Fx,n(q) ∈

Dρ for all 0 ≤ n ≤ N0, or if Gx,n(q) ∈ Dρ for all 0 ≤ n ≤ N0, then Fx,n(q) =
Gx,n(q) for all 0 ≤ n ≤ N0.

(a) Let y ∈ W s
x with d(x, y) < C−1

2 ρ. Then q = Q−1
x,0(y) ∈ Zx,0, so by (1-2) of

the Inv. Manifold Thm.

‖Gx,n(q)‖ ≤ νn‖q‖ = νn‖Q−1
x,0(y)‖ ≤ νnC2d(x, y) < ρ,

for all n ≥ 0. Now fn = Qx,n ◦ Fx,n ◦Q−1
x,0, so

fny = Qx,n ◦ Fx,n(q) = Qx,n ◦Gx,n(q).

Hence

d(fnx, fny) = d(fnx,Qx,n ◦Gx,n(q)) ≤ C2‖Gx,n(q)‖ ≤ C2
2ν

nd(x, y)

completing the proof of item (a).

Characterizing the stable manifold
(b) Suppose that d(x, y) < C−1

2 C−1ρ and

d(fnx, fny) ≤ Cνnd(x, y), ∀n ≥ 0.

Let q = Q−1
x,0(y) so d(x, y) ≤ C2‖q‖.

Now Fx,n = Q−1
x,n ◦ fn ◦Qx,0, so

‖Fx,n(q)‖ = ‖Q−1
x,n ◦ fn(y)‖ ≤ C2d(fnx, fny) ≤ C2Cν

nd(x, y) < ρ.

Hence
‖Gx,n(q)‖ = ‖Fx,n(q)‖ ≤ C2Cν

nd(x, y) ≤ C2
2Cν

n‖q‖.
By item (3) of the Inv. Manif. Thm. q ∈ Zx,0 ∩Dρ and so y = Qx,0(q) ⊂W s

x .

This completes the proof of item (b).
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Forward invariance of the stable manifolds
(c) Let x′ = fx, y′ = fy and choose E ≥ 1 such that d(x, y) ≤ Ed(x′, y′) for all

x, y ∈ U0.

Suppose that y ∈ W s
x and d(x, y) < C−5

2 E−1ρ. Then certainly, d(x, y) < C−1
2 ρ,

so by part (a),

d(fnx′, fny′) = d(fn+1x, fn+1y) ≤ C2
2ν

n+1d(x, y) ≤ C2
2Eν

nd(x′, y′) = Cνnd(x′, y′),

where C = C2
2E.

Also, d(x′, y′) ≤ C2
2d(x, y) < C−3

2 E−1ρ = C−1
2 C−1ρ, so the result follows from

part (b).

This completes the proof of item (c) and of the lemma.

3.2 Topological foliation
The Cr embedded disks W s

x depend continuously on x in the C0 topology

Lemma
There is a continuous map γ : U0 → Emb0(Dds ,M) such that γ(x)(0) = x and
γ(x)(Dds) = W s

x . Moreover, there exists L ≥ 1 such that Lip γ(x) ≤ L for all
x ∈ U0, where

Lip γ(x) = sup
u6=u′

d
(
γ(x)(u), γ(x)(u′)

)
‖u− u′‖ .

(Skip the proof of the Lemma)

Proof of the continuity lemma
Fix x ∈ U0 and recall that W s

x = Qx,0(Zx,0 ∩Dρ).

For y close to x, let Ay = Q−1
x,0(W s

y ). Let py = Q−1
x,0(y) = Q−1

x,0 ◦Qy,0(0) ∈ Ay .

In particular Ax = Zx,0 ∩Dρ and px = 0. Moreover, y 7→ py is continuous.

Now TpyAy = DQ−1
x,0(y)TyW

s
y = DQ−1

x,0(y)Esy , so it follows from smoothness
of Qx,0 and continuity of Es that Ay can be viewed as a graph over Dds ⊂ Rds for y
close to x.

In particular, Ay = {(u, φy(u)) : u ∈ Dds} where φy : Dds → Rdcu .

Hence W s
y = {Qx,0(u, φy(u)) : u ∈ Dds}. The family of functions φy are Cr

with uniform Lipschitz constant. Since py ∈ Ay , there exists uy ∈ Dds such that
py = (uy, φy(uy)).
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=graph(   )φyn

R
ds

R
dcu

u

Ax

A qnyn

pyn

0

Ayn as graph of φyn near Ax.
Define the family of embeddings γ : U0 → Embr(Dds ,M) given by

γ(y)(u) = Qx,0(u, φy(u)).

We claim that y 7→ φy is continuous at x in the C0 topology, and hence the embedding
γ is continuous at x in the C0 topology.

Indeed, suppose that yn → x. By Arzelà-Ascoli, we can pass to a further sub-
sequence such that limn→∞ supu∈Dds ‖φyn(u) − ψ(u)‖ = 0 for some continuous
function ψ : Rds → Rdcu .

Since pyn → 0, for n large enough we have that pyn ∈ D 1
2C
−5
2 ρ.

Now fix u ∈ Dds . Shrinking the disk Dds , we can ensure that qn = (u, φyn(u)) ∈
D 1

2C
−5
2 ρ for n sufficiently large. Hence

d(Qx,0(qn), yn) ≤ d(Qx,0(qn), x) + d(x, yn) ≤ C−3
2 ρ ≤ C−1

2 ρ.

By construction, Qx,0(qn) ∈W s
yn , so by item (a) of the existence lemma for the stable

leaves

d(fk ◦Qx,0(qn), fkyn) ≤ C2
2ν

kd(Qx,0(qn), yn) for all k ≥ 0.

Letting n→∞, we obtain that

d(fk ◦Qx,0(u, ψ(u)), fkx) ≤ C2
2ν

kd(Qx,0(u, ψ(u)), x) for all k ≥ 0.

By item (b) of the existence lemma for the stable leaves Qx,0(u, ψ(u)) ∈ W s
x so

(u, ψ(u)) ∈ Ax. It follows that ψ(u) = φx(u).
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Hence all subsequential limits of φy (as y → x) coincide with φx so limy→x φy =
φx in the C0 topology as required.

This completes the proof of the continuity of the stable manifolds with respect to
the base point.

The stable manifolds are a topological foliation

Lemma
The family of disks {W s

x : x ∈ U0} defines a topological foliation.

To prove this, let x ∈ U0 and choose an embedded dcu-dimensional disk Y ⊂ M
containing x and transverse to W s

x .

By continuity of Es, we can shrink Y so that Y is transverse to W s
y at y for all

y ∈ Y . Let ψ : Dcu → Y be a choice of embedding and define χ : Ds ×Dcu → U0

by setting
χ(u, v) = γ(ψ(v))(u).

Note that χ maps horizontal lines {v = const.} homeomorphically onto stable disks.

Topological foliation chart

x2

x1

x1

x2

Y

s

s
W

W

s
D

χ

D
cu

By the previous lemma (on continuity ofU0 3 x 7→W s
x ), each of these embeddings

is Lipschitz with uniform Lipschitz constant L and using this together with continuity
d(χ(u, v), χ(u0, v0)) ≤

≤ d(γ(ψ(v))(u), γ(ψ(v))(u0)) + d(γ(ψ(v))(u0), γ(ψ(v0))(u0))

≤ L‖u− u0‖+ ‖γ(ψ(v))− γ(ψ(v0))‖C0 → 0,

as (u, v)→ (u0, v0), establishing continuity of χ.

Suppose that χ(u1, v1) = χ(u2, v2) with common value y ∈ U0. Then y ∈W s
x1
∩

W s
x2

where xj = ψ(vj).

We claim that x1 = x2 with common value x̂. In particular v1 = v2.
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But now γ(x̂)(u1) = γ(x̂)(u2) and so u1 = u2. It follows that χ is injective and
hence is a homeomorphism onto a neighborhood of x as required for {W s

x}x∈U0 to be
a topological foliation.

It remains to prove the claim.

Note that W s
x2

can be viewed as a graph over W s
x1

. Let A = W s
x1
∩W s

x2
. We show

that A is open and closed in W s
x1

. Since y ∈ A and W s
x1

is connected, A = W s
x1

and
in particular, x2 = x1 as required.

It is clear that A is closed in W s
x1

. To prove that A is open, suppose that z ∈ A.
SinceW s

xj
are tangent toEsxj

with uniform Lipschitz constant, there exists C > 0 such
that d(x1, x2) ≤ Cd(z, xj) for j = 1, 2.

Let z′ ∈W s
x1

be such that d(z, z′) ≤ (1/2C)d(x1, x2).

Note that this implies d(x1, x2) ≤ 2Cd(z′, x2).

We must show that z′ ∈ A.
Now

d(fnz′, fnx2) ≤ d(fnz′, fnx1) + d(fnx1, f
nz) + d(fnz, fnx2)

≤ C2
2ν

n{d(z′, x1) + d(x1, z) + d(z, x2)}
≤ C2

2ν
n{d(z′, x2) + d(x2, x1)

+ d(x1, x2) + d(x2, z
′) + d(z′, z) + d(z, z′) + d(z′, x2)}

= C2
2ν

n{3d(z′, x2) + 2d(x1, x2) + 2d(z, z′)}
≤ C2

2ν
n{3d(z′, x2) + 4d(x1, x2)}

≤ (3 + 8C)C2
2ν

nd(z′, x2).

We can arrange that χ takes values in Bε(x) where ε is as small as required.

By item (b) of the lemma on existence of stable manifolds, z′ ∈W s(x2) and hence
z′ ∈ A completing the proof.

Flow invariance of the foliation
Corollary
There exists ε > 0 such that Xt(W s

x ∩Bε(x)) ⊂W s
Xtx for all t ≥ 0, x ∈ U0.

To prove this, choose n0 ≥ 1 such that C2
2ν

n0 < 1.

Shrinking ε, it follows from items (a)-(c) of the lemma on existence of stable
leaves, that fn0(W s

x ∩Bε(x)) ⊂W s
fn0x∩Bε(fn0x) and, inductively, that fkn0(W s

x ∩
Bε(x)) ⊂W s

fkn0x
∩Bε(fkn0x) for all k ≥ 0.

Next choose C ≥ 1 such that d(Xrx,Xry) ≤ Cd(x, y) for all x, y ∈ U0, r ∈
[−n0T, n0T ].

Suppose that y ∈ W s
x and let x′ = Xrx, y′ = Xry. By item (a) of the lemma on

existence of stable leaves, for y sufficiently close to x and for all n ≥ 0

d(fnx′, fny′) = d(Xrfnx,Xrfny) ≤ Cd(fnx, fny)

≤ CC2
2ν

nd(x, y) ≤ C2C2
2ν

nd(x′, y′).
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By item (b) of the same lemma, Xry ∈W s
Xrx for y sufficiently close to x.

Hence there exists ε > 0 such that Xr(W s
x ∩Bε(x)) ⊂W s

Xrx for all r ∈ [0, n0T ],
x ∈ U0.

The result for general t follows by writing t = kn0T+r where k ≥ 0, r ∈ [0, n0T ).

The proof is complete.

Completing the proof of existence of the stable foliation
Recall that f = XT . Choose C such that supr∈[0,T ] d(Xrx,Xry) ≤ Cd(x, y) for

all x, y ∈ U . Write t = nT + r, n ≥ 0, r ∈ [0, T ).

By item (a) of the lemma on the existence of stable leaves, if d(x, y) < C−1
2 ρ and

y ∈W s
x , then

d(Xtx,Xty) = d(XnT+rx,XnT+ry) ≤ C2
2Cν

nd(x, y) ≤ C ′ν̃td(x, y),

where C ′ = C2
2Cν

−1 and ν̃ = ν1/T .

Passing to an adapted metric, we can arrange that there are constants ε > 0, ν ∈
(0, 1) such that if d(x, y) < ε and y ∈ W s

x , then d(Xtx,Xty) ≤ νtd(x, y) for all
t ≥ 0.

From now on, we writeW s
x instead ofW s

x∩Bε(x). With this notation, the previous
Corollary states that Xt(W s

x) ⊂W s
Xtx for all x ∈ U0, t ≥ 0.

This completes the proof of the Theorem on the existence of a foliation everywhere
tangent to the extension {Esx}x∈U0 of the stable bundle to the whole of U0.

3.3 Smooth Foliation: bunching condition
Regularity of the stable foliation: with bunching

We recall that Xt is the flow generated by a Cr vector field G where r ≥ 2. Let
q ∈ [0, r].

We suppose that there exists t > 0 so that the following bunching condition
holds:

‖DXt | Esx‖ · ‖DX−t | EcuXtx‖ · ‖DXt | Ecux ‖q < 1 for all x ∈ Λ.

Theorem
Let q ∈ [0, [r] ]. If the q-bunching condition holds for some t > 0, then the bundle Es

is Cq over U0. That is, the map x 7→ Esx is a Cq map from a smaller neighborhood
U1 ⊂ U0 of Λ to G1 (the Grassmann of all one-dimensional subspaces on TU1

M ).
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Consequences of smoothness of the stable bundle

1. It is immediate from domination that a q-bunching condition holds with q = 0.
By smoothness of the flow and compactness of Λ, a q-bunching condition holds
for some q > 0. Hence the stable bundle Es is at least Hölder over U1.

2. When q ≥ 1 in the previous theorem, it follows by a theorem of Frobenius
that the family of stable manifolds {W s

x}x∈U0
already obtained forms a Cq

foliation of U1, in the sense that the foliation charts are Cq .
Moreover, the holonomy maps along the stable leaves are Cq smooth.

Holonomies

x1

x2

Y

s

s
W

W

s
D

χ

D
cu

Y
,

C
q

h

h(x )

h(x )

x2

x1

1

2

Example of non-smooth bundle and holonomy
Let p be a fixed point of an Anosov diffeomorphism f : T3 → T3 with the splitting

TpT3 = Es ⊕ Eu ⊕ Euu into 1d non-trivial subspaces. We assume that f is locally
smooth linearizable at a neighborhood U of p and (fixing an orientation)

0 < λ = ‖Dfp | Es‖ < 1 < µ = ‖Dfp | Eu‖ < σ = ‖Dfp | Eu‖.

We also assume that there exists q = (1, 0, 0) ∈ Wuu(p) t W s(p) \ {p} in U such
that TqWu(p) 3 v = (vs, vc, vu) with (vc, vu) 6= (0, 0).

We set qn = fnq = (λn, 0, 0), vn = Dfnq · v = (λnvs, µnvc, σnvu) and, for
a cross-section D = {z = 1} ∩ U in linearized coordinates, we set rn = hqn and
r = hp, where n ≥ 1 and h : {z = 0} ∩ U → D is the holonomy along the leaves of
the strong-unstable foliation, tangent to the subbundle Eu.

Example of unsmooth foliation/holonomy
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Smooth holonomy leads to a contradiction
If Eu is C1, then h is C1, thus

hqn − hp = Dhp · (qn − q) + L(p, qn) with
‖L(p, qn)‖
‖qn − pn‖

−−−−→
n→∞

0

and so limn
‖hqn−hp‖
‖qn−p‖ = ‖Dhp · e1‖ 6= 0. However, in the linearized, if we write

hqm = rm = (rsm, r
c
m, 1) for some m ≥ 1, then

hqn+m = rm+n = (λnrsm, µ
nrcm, 1) with rcm 6= 0, n ≥ 1.

Since hp = r = (0, 0, 1) and p = (0, 0, 0), we deduce that if Eu (and so h) is smooth,
then µn is comparable to λn.

This contradiction shows that, in this example, the bundleEu cannot be smooth.
(Skip the proof of the theorem)

Proof of the theorem
Choose t as in the q-bunching condition and set f = Xt.

Increasing t if necessary, we can ensure that

‖Df | Esx‖‖Df−1 | Ecufx‖ ≤ ‖Df | Esx‖ · ‖Df−1 | Ecufx‖ · ‖Df | TxM‖q < 1,

for all x ∈ U0. Let TU0M = Es ⊕ Ecu be the continuous splitting with Es invariant
already constructed.

Take TU0
M = F s⊕F cu a Cr approximation of this splitting and for each x ∈ U0,

let L(F sx , F
cu
x ) denote the space of linear maps from F sx to F cux , and let Dx denote the

unit disk in L(F sx , F
cu
x ) (with the norm induced by the Riemannian metric).

Define the corresponding disk bundle D0 = {Dx, x ∈ U0}.
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Invariant section over overflowing diffeomorphism
Let U1 = f(U0) ⊂ U0 and set D1 = {Dx, x ∈ U1}.
Let h = f−1|U1 : U1 → U0. Since h(U1) = U0 ⊃ U1, the Cr diffeomorphism h

is overflowing in the sense of Hirsch-Pugh-Shub, Invariant Manifolds, ’77.

Represent Dh(x) : TxM → ThxM using the splitting F s ⊕ F cu by writing

Dh(x) =

(
Ax Bx
Cx Dx

)
: F sx × F cux → F shx × F cuhx , x ∈ U1.

We define the graph transform Γ : D1 → D0,

Γx(`) = (Cx +Dx`)(Ax +Bx`)
−1, ` ∈ Dx, x ∈ U1.

A Lemma and the Theorem

Lemma
The neighborhood U0 of Λ and the Cr splitting F s ⊕ F cu can be chosen so that Γ :
D1 → D0 is well-defined and Lip(Γx) · ‖Dh−1|ThxM‖q < 1 for all x ∈ U1.

Now we use this result to prove the theorem.

Since Esx can be regarded as graph of an element ω ∈ L(F sx , F
cu
x ) with ‖ω‖ as

close to zero as desired, we can assume without loss of generality that ‖ω‖ ≤ 1, and
hence Es is identified with a continuous Df -invariant section of D1.

Note that Dh(x) graph(`) = graph(Γx(`)) for ` ∈ Dx. Since h = df−1, it
follows that Es : U1 → D1 is a continuous Γ-invariant section.

From the lemma, the graph transform Γ : D1 → D0 defines a fiber contraction over
the overflowing diffeomorphism h : U1 → U0, and this fiber contraction is q-sharp in
the terminology of Hirsch-Pugh-Shub (HPS).

When q is an integer, we have verified the hypotheses of the “Cr Section Theorem
3.5” from HPS (with q playing the role of r, and vector bundles replaced by disk
bundles as in a Remark at p. 36 of HPS).

It follows that Es : U1 → D1 is the unique continuous Γ-invariant section and
moreover that this section is Cq .

This completes the proof in the case that q is an integer.

The general case follows from Remark 2 in p. 38 of HPS.

(Skip the proof of the lemma)
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Proof of the q-sharp graph transform lemma
To prove the lemmma we start noting that by the bunching assumption, we can

choose λx ∈ (0, 1) s.t.

‖Df | Esx‖ · ‖Df−1 | Ecufx‖ < λx and λx ‖Df | TxM‖q < 1,

for all x ∈ U0. Since f is C1 and U0 is compact, there exists δ ∈ (0, 1) such that
(λhx + 2δ)(1− δ)−2 < 1 and

(λhx + 2δ)(1− δ)−2‖Dh−1 | ThxM‖q < 1,

for all x ∈ U0.

Since F s is close to the Df -invariant contracting bundle Es, we can arrange that
‖Cx‖ ≤ 1 and ‖A−1

x ‖ ≤ 1 for all x ∈ U1.

Also, F cu is close to Ecu which is invariant when restricted to Λ so we can arrange
that ‖Bx‖ < δ.

Moreover, A−1
x is close to Df | Eshx and Dx is close to Df−1 | Ecux so we can

ensure that ‖A−1
x ‖‖Dx‖ ≤ λhx for all x ∈ U1.

Let `, `′ ∈ Dx. Note that ‖A−1
x Bx`‖ ≤ δ, so ‖(I + A−1

x Bx`)
−1‖ ≤ (1 − δ)−1.

Similarly, ‖(I +A−1
x Bx`

′)−1‖ ≤ (1− δ)−1. Hence

‖(Ax +Bx`)
−1 − (Ax +Bx`

′)−1‖
= ‖(Ax +Bx`)

−1(Bx(`′ − `))(Ax +Bx`
′)−1‖

≤ ‖A−1
x ‖2δ(1− δ)−2‖`′ − `‖

≤ ‖A−1
x ‖δ(1− δ)−2‖`′ − `‖.

Thus we arrive at

‖Γx(`)− Γx(`′)‖ ≤ ‖Dx(`− `′)‖‖(Ax +Bx`)
−1‖

+ ‖(Cx +Dx`
′)‖‖(Ax +Bx`)

−1 − (Ax +Bx`
′)−1‖

≤ ‖Ax‖−1‖Dx‖(1− δ)−1‖`− `′‖
+ (1 + ‖Dx‖)‖A−1

x ‖δ(1− δ)−2‖`− `′‖
≤ λhx(1− δ)−1‖`− `′‖+ 2δ(1− δ)−2‖`− `′‖,

and so
Lip(Γx) ≤ (λhx + 2δ)(1− δ)−2,

for all x ∈ U1.

In particular, Lip(Γx) < 1 so Γx(Dx) ⊂ Dhx, and hence Γ is well-defined.

The statement of the lemma follows from this estimate combined with

(λhx + 2δ)(1− δ)−2‖Dh−1 | ThxM‖q < 1.
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3.4 Smooth foliation: strong dissipativity
Strong dissipative condition

This is a verifiable condition for smoothness of stable foliations and we can get an
estimate for the degree of smoothness of the stable foliation for the Lorenz attractor.

Recall that ds = dimEsx. Given A = {aij} ∈ Rd×d, let ‖A‖2 = (
∑
ij a

2
ij)

1/2.

Definition
Let q > 1/ds. A partially hyperbolic attractor Λ is q-strongly dissipative if

(a) For every equilibrium p ∈ Λ (if any), the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λd of
DG(p) satisfy λ1 − λds+1 + qλd < 0.

(b) supx∈Λ

{
divG(x) + (dsq − 1)‖(DG)(x)‖2

}
< 0.

Smooth stable foliation

Theorem
Let Λ be a sectional hyperbolic attractor. Suppose that Λ is q-strongly dissipative for
some q ∈ (1/ds, [r] ]. Then there exists a neighborhood U0 of Λ such that the stable
manifolds {W s

x , x ∈ U0} define a Cq foliation of U0.

To prove this, for each t ∈ R, we define ηt : Λ→ R,

ηt(x) = log
{
‖DXt|Esx‖ · ‖DX−t|EcuXtx‖ · ‖DXt|Ecux ‖q

}
Note that {ηt, t ∈ R} is a continuous family of continuous functions each of which is
subadditive, that is, ηs+t(x) ≤ ηs(x) + ηt(X

sx).

Proof of smoothness condition
Let M denote the set of flow-invariant ergodic probability measures on Λ.

We claim that for each m ∈ M, the limit limt→∞
1
t η(x) exists and is negative for

m-almost every x ∈ Λ.

Proposition (Arbieto-Salgado, 2010)
Let {t 7→ ft : Λ → R}t∈R be a continuous family of continuous functions which
is subadditive and suppose that

∫
f̃(x)dµ < 0 for every µ ∈ MX , with f̃(x) :=

lim
t→+∞

1
t ft(x). Then there exist a T > 0 and a constant λ < 0 such that for every

x ∈ Λ and every t ≥ T :
ft(x) ≤ λt.

It then follows that there exists constants C, β > 0 such that exp ηt(x) ≤ Ce−βt

for all t > 0, x ∈ Λ.
In particular, for t sufficiently large, exp ηt(x) < 1 for all x ∈ Λ.

Hence the q-bunching condition is satisfied for such t and the result follows from
the previous theorem and remarks.
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It remains to verify the claim. For each m ∈M, we label the Lyapunov exponents

λ1(m) ≤ λ2(m) ≤ · · · ≤ λd(m).

Since Λ is partially hyperbolic, the Lyapunov exponents λj(m), j = 1, . . . , ds are
associated with Es and are negative, while the remaining exponents are associated
with Ecu.

For m-a.e. x ∈ Λ we have

lim
t→∞

1

t
log ‖DXt|Esx‖ = λ1(m),

lim
t→∞

1

t
log ‖DX−t|EcuXtx‖ = −λds+1(m),

lim
t→∞

1

t
log ‖DXt|Ecux ‖ = lim

t→∞

1

t
log ‖DXt | TxM‖ = λd(m).

Hence, m-almost everywhere,

lim
t→∞

1

t
ηt(x) = λ1(m)− λds+1(m) + qλd(m).

If m is a Dirac delta at an equilibrium p ∈ Λ, then it is immediate from item (a) of
the definition of strong dissipativity that limt→∞

1
t ηt(p) < 0.

If m is not supported on an equilibrium, then there is a zero Lyapunov exponent in
the flow direction. Sectional expansion ensures that λds+1(m) = 0 and λj(m) > 0
for j = ds + 2, . . . , d. Hence, m-almost everywhere,

lim
t→∞

1

t
ηt(x) = λ1(m) + qλd(m) ≤ 1

ds

ds∑
j=1

λj(m) + qλd(m)

=
1

ds

( ds∑
j=1

λj(m) + dsqλd(m)
)
≤ 1

ds

( d∑
j=1

λj(m) + (dsq − 1)λd(m)
)

=
1

ds
lim
t→∞

1

t

(
log |detDXt(x)|+ (dsq − 1) log ‖DXt(x)‖

)
≤ 1

ds
lim
t→∞

1

t

∫ t

0

(
divDG(Xsx) + (dsq − 1)‖DG(Xsx)‖2

)
ds

≤ d−1
s sup

x∈Λ

{
divDG(x) + (dsq − 1)‖DG(x)‖2

}
.

By item (b) of the definition of strong dissipativity, we again have that limt→∞
1
t ηt(x) <

0 for m-almost every x ∈ Λ.

This completes the proof of the claim and the theorem follows.

4 Smoothness of stable foliation and holonomies

4.1 Smoothness estimates
C1+ε stable foliation for dissipative singular-hyperbolic attracting sets
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Using the strong dissipativity and bunching results we estimate
the degree of smoothness of the stable foliation for the Lorenz at-
tractor in the classical parameters

C1+ε stable foliation for dissipative singular-hyperbolic attracting sets
Note that if supΛ divG < 0, then condition (b) holds for q = d−1

s + ε for ε
sufficiently small.

When dimM = 3, we have ds = 1 and hence we deduce that in the dissipative
case singular-hyperbolic attracting sets have a uniformly contracting (stable) foliation
on a full neighborhood of the set and which is C1+ε-smooth, that is, it admits C1+α

foliated charts and the holonomies along the stable leaves are also C1+ε for some
ε > 0.

In the case of the Lorenz attractor in the classical parameters, we can estimate de
value of 1 + ε as follows.

C1+ε-smooth stable foliation for the Lorenz attractor
The classical Lorenz equations

dx

dt
= σ(y − x) σ = 10

dy

dt
= rx− y − xz r = 28

dz

dt
= xy − bz b = 8/3

define a smooth vector field G such that

divG ≡ − 41
3 , λ1 ≈ −22.83, λ2 = − 8

3 , λ3 ≈ 11.83,

are the divergence and the eigenvalues of DG at the unique singularity at the origin,
respectively.

Estimate for the degree of smoothness
Thus, since after the work of W. Tucker (2000) the classical Lorenz attractor is a

geometric Lorenz attractor, we have that it is (1 + ε)-strongly dissipative for ε > 0
sufficiently small.

Hence, the stable foliation is C1+ε for the classical Lorenz attractor, for some ε >
0. In fact, we can prove

Corollary
The stable foliation for the classical Lorenz attractor is at least C1.264.
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Proof of the estimate
Note that By definition, q-strong dissipativity holds for any q < min{q1, q2} where

q1 =
λ2 − λ1

λ3
≈ 1.704,

q2 = 1− divG

supΛ ‖DG‖2
= 1 +

41

3

1

supΛ ‖DG‖2
.

Now
‖DG(x)‖22 = 201 +

64

9
+ 2x2

1 + x2
2 + (x3 − 28)2 ≈ 208.11 + V,

where
V = 2x2

1 + x2
2 + (x3 − 28)2.

Estimate on the size of attracting set
To estimate supΛ ‖DG‖2 there are various explicit estimates on the Lorenz basin

of attraction.

One of the best and easier to state estimates can be found in Giacomini-Neukirch
(1997) [“Integrals of motion and the shape of the attractor for the Lorenz model.” Phys.
Lett. A], which shows that a trapping region is given by ellipsoids of the form

c− 28

10
x2

1 + x2
2 + (x3 − 28)2 = R,

provided R ≥ c2b2

4(b−1) where b = 8/3.

Taking c = 48 we obtain c2b2

4(b−1) = 2457.6 and then we can explicitly calculate
V ≤ 2457.6, and so q2 > 1.264 as stated.

4.2 Hölder-C1 stable holonomies
Hölder-C1 condition on the stable holonomies

In general, even without bunching or strong dissipative condition, for singular-
hyperbolic (three-dimensional) flows, using the low codimension of the stable leaves
inside cross-sections, the holonomy along stable manifolds is differentiable and its
derivaties are Hölder continuous.

Moreover, using this Hölder-C1 property of stable holonomies, we can also show
that the Poincaré return time function to a cross-section is Hölder-continuous.

This is used in a crucial way to study the ergodic theory of singular-hyperbolic
attractors: to prove the existence of physical/SRB measure for the flow on these attrac-
tors and study its statistical properties. However the proof of these properties was only
sketched in the literature.

C1+α stable holonomies and C1+α quotient map
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Partial hyperbolic attracting set with codimension 2 stable direction
Let G be a flow on a manifold M which is partially hyperbolic on a compact

invariant attracting set Λ and the stable direction has codimension 2, that is, there
exists a DXt-invariant and continuous splitting TΛM = EsΛ ⊕ EcΛ such that there are
C, λ > 0 satisfying for every x ∈ Λ and t > 0

• Es is uniformly contracted: ‖DXt | Esx‖ ≤ Ce−λt;

• EcΛ dominates EsΛ: ‖DXt | Ex‖ · ‖DX−t | EcXt(x)‖ < Ke−λt.

• if ds = dimEsΛ, d
c = dimEcΛ and d = dimM = ds + dc, then dc = 2 and

ds = d− 2.

We assume from now on that Λ =
⋂
t>0X

t(U0) for an open neighborhood U0 of Λ in
M .

Extensions of the stable bundle and central-unstable cone field.
We also assume that the splitting has been extended to a continuous decom-

position of TU0M = Es ⊕ Ec where Es is DXt-invariant for t > 0 and there
exists a continuous family (Ccux )x∈U0

of central unstable cones so that Ecx ⊂ Cux and
Esx ∩ Ccux = {~0} for all x ∈ U0.

Now let Σ ⊂ U0 be a cross-section to the flow, that is, a C2 embedded compact
disk transverse to G at every point x ∈ Σ. Set τ0 = inf{|t| : Xtx ∈ Σ, t 6= 0}, which
is strictly positive by compactness of Σ.

For x ∈ Σ we defineW s
x(Σ) to be the connected component of Σ∩

(⋃
|t|≤τ0/2X

t(W s
x)
)

which contains x. This is the stable foliation on the cross-section.

Codimension one stable foliation on Σ
Note that because Es is always Hölder-continuous on U0 then W s

X is a C1+ε im-
mersed smooth submanifold of U0, for some ε > 0.

In addition, since Σ and
(⋃
|t|≤τ0/2X

t(W s
x)
)

are codimension one submanifolds
of class C1+ε of U0 which are, moreover, transverse by construction, then its intersec-
tion W s

x(Σ) is a codimension one submanifold of Σ. These leaves form a codimen-
sion one foliation F s

Σ of Σ.
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Let γ0, γ1 be a pair of smooth curves contained in Σ given by γi : [0, 1]→ Σ, i =
0, 1 whose tangent space is everywhere contained in the center-unstable cone: for
some small a > 0

γ′i(t) ∈ Ccuγi(t)(a) ∩ Tγi(t)Σ, for all t ∈ [0, 1], i = 0, 1.

Hölder-C1 stable holonomy on cross-sections
We further assume that γi crosses Σ, that is, γi([0, 1]) t W s

x(Σ) = γi([0, 1]) ∩
W s
x(Σ) is a single point for all x ∈ Σ, i = 0, 1.

Hence there exists a map h : γ0 → γ1 associating to each γ0(t) the unique
(transversal) intersection point of W s

γ0(t)(Σ) with γ1; this is the holonomy map of
Fs(Σ) from γ0 to γ1.

Theorem
The holonomy h is differentiable and its derivative is Hölder.

To prove this we need to consider the holonomies of the stable foliation Fs of
the flow.

Holonomies on the cross-section and on U0

π1

Σ

γ

γ

γ

0

1

0
ε

1

ε

1

h

H ξ

γ

Figure 2: The cross-section Σ to the flow together with the curves γi and surfaces
γεi , i = 0, 1, the holonomy H (along the stable leaves of the flow) restricted to γ0 and
the holonomy h (along the stable leaves on the cross-section) after composing with the
projection π1.

Consequence of the Theorem
A consequence of the theorem on Hölder-C1 smoothness of the stable holonomy

on cross-sections is that if we consider the quotient map of a Poincaré map to the
cross-section Σ over the stable foliation F s(Σ), then this quotient map becomes a
C1+ε one-dimensional map for some ε > 0.
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This is the crucial feature that enables us to use the ergodic theory of one-
dimensional dynamics to study the ergodic theory of these attracting sets without
assuming bunching or dissipative conditions.

(Skip the proof of the theorem)

The stable holonomy for the flow on U0

We consider the surfaces γεi =
⋃
t∈[−ε,ε]X

t(γi), i = 0, 1 (at least of classC2 since
both γ0 and Xt belong to this class) for some fixed 0 < ε < τ0/2.

These are transverse to the stable foliation Fs of the flow, by construction.

We can then consider the holonomy H : γε0 → γε1 given for each z ∈ γε0 by the
unique (transversal) intersection of W s

z with γε1 .

Proof of the Theorem
We write h as a composition of the restriction h̃ = H |γ0 : γ0 → ξ1 = H(γ0) ⊂ γε1

with πi : γεi → γi, i = 0, 1, which is the natural projection along flow lines. That is
h = π1 ◦ h̃ where we set

π1(z) = γ1(s) ⇐⇒ ∃|t| < ε : Xt(γ1(s)) = z.

for some s ∈ [0, 1].

Then we can write the image ξ1 = h̃(γ0) as the following graph in γε1 over γ1:

ξ1 = {Xξ(γ1(s))(γ1(s)) : s ∈ [0, 1]}

for a map ξ : γ1 → R.
Remember that h̃ is given by the restriction H | γ0.

Now Hölder continuity of the holonomy maps H along strong-stable laminations
is a general feature of C1+α partially hyperbolic dynamics for any α > 0; see Pugh-
Shub-Wilkinson “Hölder foliations“. Duke Math. J. ’97.

Hence ξ : γ1 → R is Hölder-continuous because [0, 1] 3 s 7→ ξ1(s) = Xξ(γ1(s))(γ1(s))
is a Hölder continuous curve in γε1 and (t, s) 7→ Xt(γ1(s)) is a C1 parametrization of
the surface γε1 ⊃ ξ1.

Moreover, in this setting, these holonomies are also absolutely continuous with
respect to the induced smooth measures mi on γεi , i = 0, 1 from the Rieman-
nian volume on M ; see Pesin-Sinai “Gibbs measures for partially hyperbolic attrac-
tors” ETDS ’82 or Pugh-Shub “Ergodic Attractors” TAMS ’89. This means that
H∗(m0)� m1.

Hölder Jacobians
This also means that H admits a Jacobian, that is, there exists JH : γε0 → [0,+∞)

such that m1(H(A)) =
∫
A
JH dm0 for all Borel subsets A of γε0 .

In addition, this Jacobian is a Hölder-continuous map; see e.g. Theorem 8.6.13,
p 255 in Barreira-Pesin “Nonuniform hyperbolicity” CUP ’07.
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Let us denote by λi the measure induced on γi by the area measuremi from γεi , i =
0, 1.

Altogether this ensures that h : γ0 → γ1 is absolutely continuous in the sense that
h∗(λ0)� λ1 and its Jacobian is also Hölder-continuous, which implies that the Radon-
Nikodym derivative d(h∗λ0)

dλ1
can be seen as λ1-a.e. equal to h′, and so h becomes a

Hölder-C1 map!

Holonomy has derivative which is Hölder
Indeed, given any open interval (a, b) ⊂ [0, 1] we define λi(γi(a, b)) = mi(π

−1
i γi(a, b)), i =

0, 1 and so

λ1

(
h(γ0(a, b))

)
= λ1

(
π1h̃(γ0(a, b))

)
= λ1

(
π1H(π−1

0 γo(a, b))
)

= m1

(
H(π−1

0 γ0(a, b))
)

=

∫
π−1
0 γ0(a,b)

JH dm0 =

∫
γ0(a,b)

JH d((π0)∗m0)

=

∫
γ0(a,b)

JH dλ0

we see that the Jacobian of h can be seen as the restriction of JH to the image of γ0.

Absolute continuity and a.e. differentiability
Finally, absolutely continuous maps as h are differentiable λ0-a.e., that is h′

exists λ0-a.e. and, moreover, are primitives of the derivative. So we have

λ1

(
h(γ0(a, b))

)
=

∫
γ0(a,b)

|h′| dλ0

for all 0 ≤ a < b ≤ 1.

Since we also know that |h′ ◦γ0| = JH ◦γ0, λ0-a.e. and JH is Hölder-continuous,
then we can extend h′ to a Hölder-continuous function [0, 1]→ R which is the deriva-
tive of h.

This concludes the proof of the Hölder-C1 smoothness of holonomies in this sett-
ting.

4.3 Piecewise expansion
Piecewise expansion for the quotient map

If we also assume that Ec is seccionally expanding, then we can
find a collection of cross-sections to the flow and a Poincaré return
map which admits a one-dimensional quotient map over the stable
foliation that is a C1+ε piecewise expanding map.
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Cross-sections and Poincaré maps
Given two cross-sections Σ, Σ̃ to the flow, let us assume that there exists x ∈ int(Σ)

and τ > 0 so that Xτ (x) ∈ int(Σ̃) (we write int(Σ) for the interior of Σ as a manifold
with boundary).

The Tubular Flow Theorem ensures that there exists an open neighborhood Ux of
x in Σ and a uniquely defined smooth Poincaré map

f : Ux ⊂ Σ→ Σ̃, r(x) = Xr(x)(x) (1)

for a suitable Poincaré return time function r : Ux → R+ with r(x) = τ , in such a
way that f |Ux

becomes a diffeomorphism onto an open neighborhood Vfx = f(Ux)

of fx in Σ̃ and as smooth as the vector field G.

Holonomies on cu-curves
Note that, in general, f needs not correspond to the first time the orbits of Ux ⊂ Σ

encounter Σ̃, nor it is defined everywhere in Σ.

Note that the return time function r : Σ → (0,+∞) belongs to the same differen-
tiability class as the flow, since the cross-sections Σ, Σ̃ are smooth embedded disks on
M .

Let us assume that Σ, Σ̃ are endowed with cu-curves γ0, γ̃0 which cross each cross-
section and also Ux and Vfx, respectively.

We denote p : Ux → γ0, p′ : Vfx → γ̃0 the projections along the stable foliation
FsΣ and Fs

Σ̃
on each neighborhood.

Locally quotienting over the stable foliation
The open ngbh. Ux where f is defined projects onto V = p(Ux) which is an open

neighborhood of p(x) in γ0. Since stable leaves are invariant, we can define

y ∈ V 7→ f̄(y) = p′
(
f(p−1(y) ∩ Ux)

)
∈ γ̃0.

From previous results, this is a composition of a C1+α map with the Poincaré map, and
thus f̄ is a C1+α map, for some 0 < α < 1.

If we have that

• f is defined on all points of Σ, and that

• f sends leaves of FsΣ into the interior of leaves of Fs
Σ̃

;

then, taking the cu-curves γ0, γ̃0 crossing Σ, Σ̃, respectively, the previous procedure
defines a quotient map f̄ : γ0 → γ̃0 which is a C1+α map.
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Partial hyperbolicity of Poincaré maps
The splitting Es⊕Ecu over U0 induces a continuous splitting Es(Σ)⊕Ecu(Σ) of

the tangent bundle TΣ (and analogously for Σ̃)

Esy(Σ) = Ecsy ∩ TyΣ and Ecuy (Σ) = Ecuy ∩ TyΣ, y ∈ Σ

where Ecsy = Esy ⊕ EGy and EGy is the direction of the flow at y.

The DXt-invariance of the splitting Es ⊕ Ecu on Λ and the invariance of Es on
U0 ensures that

• Df · Esx(Σ) = Esfx(Σ) for all x ∈ Σ, and

• Df · Ecux (Σ) = Ecufx(Σ) for all x ∈ Λ ∩ Σ.

Partial hyperbolic Poincaré map
The next result shows that, if TΛM = EsΛ⊕EcΛ is a partial hyperbolic splitting and

the Poincaré time r(x) is sufficiently large, then Es(Σ) ⊕ Ecu(Σ) defines a partially
hyperbolic splitting for the transformation f on the cross-sections.

Proposition
Let f : Σ → Σ̃ be a Poincaré map with Poincaré time r. For every given 0 < λ < 1
there exists T1 = T1(Σ, Σ̃, λ) > 0 such that if inf r > T1, then

• ‖Df | Esx(Σ)‖ < λ, and

• ‖Df | Esx(Σ)‖ ·
∥∥(Df | Ecux (Σ)

)−1∥∥ < λ

for all x ∈ Σ.

Proof of the proposition
Note that for v ∈ TxΣ we have

Df(x)v = D(Xr(x)(x))v = DXr(x) · v +
(
Dr(x) · v)G(fx) ∈ TfxΣ̃

which is the same as

Df(x)v = πΣ̃(fx) ·
(
DXr(x) · v

)
where πΣ̃(fx) : TfxM → TfxΣ̃ is the projection corresponding to the splitting
TfxM = TfxΣ⊕

(
R ·G(fx)

)
.

Since πΣ̃(z) has uniformly bounded norm for z ∈ Σ̃ by compactness and transver-
sality, then the statement of the proposition is a straightforward consequence of partial
hyperbolicity, as long as r is big enough.
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Standard parametrization for cross-sections
In this way we can always achieve an arbitrarily large contraction rate along the

stable direction at any given pair of cross-sections, as long as we take λ sufficiently
close to zero and, consequently, a big enough threshold time T1.

Given a cross-section Σ there is no loss of generality in assuming that it is the
image of the square I2 by a C1+α diffeomorphism h, for some 0 < α < 1, which
sends vertical lines inside leaves of Fs(Σ), where I = [−1, 1] . We denote by int(Σ)
the image of int(I2) = (−1, 1)2 under the above-mentioned diffeomorphism, which
we call the interior of Σ.

We also say that ∂I×I ' ∂uΣ is the unstable-boundary of Σ and that I×∂I ' ∂sΣ
is the stable-boundary of Σ. Notice that ∂sΣ is formed by two curves inside the stable
foliation.

We also assume that each cross-section Σ is contained in U0, so that every x ∈ Σ
is such that ω(x) ⊂ Λ. For convenience, from now on we assume that cross-sections
are of this kind.

Generalized Lorenz singularity
A generalized Lorenz singularity is an equilibrium σ of G such that the spectrum

of DG(σ) has two largest real eigenvalues satisfying λ2 < 0 < λ3 and the rest of the
spectrum is contained in {z ∈ C : <(z) < λ2}.

Hence such singularities have a strong-unstable one-dimensional manifold Wu
σ , a

strong-stable (d − 2)-dimensional manifold W ss
σ and a stable (d − 1)-dimensional

manifold W s
σ .

However, the derivative DG(σ) of the flow at σ is not necessarily area expanding
along the directions corresponding to the eigenvalues λ2, λ3, as is the case of a Lorenz-
like singularity.

Cross-sections near a Lorenz-like equilibrium

Global Poincaré map

Theorem
Let G be a C2 vector field on a d-dimensional compact manifold having a partial hy-
perbolic attracting set Λ, with TΛM = EsΛ ⊕EcΛ and dimEsΛ = d− 2, and containing
generalized Lorenz singularities.

For S(Λ) = {σ ∈ Λ : G(σ) = ~0} we assume that W ss
σ ∩ Λ = {σ} for all

σ ∈ S(Λ).

Then there exists α > 0 and a finite family Ξ of cross-sections and a global (n-th
return) Poincaré map R : Ξ0 → Ξ, R(x) = Xτ(x)(x) such that
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x2
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W ss
loc(σ)

W u
loc(σ)

Global Poincaré map (continued)

Theorem (continued)

1. the domain Ξ0 = Ξ \ Γ contains the cross-sections with a family Γ of finitely
many smooth arcs removed and τ : Ξ0 → [τ0,+∞) is a smooth function
bounded away from zero by some uniform constant τ0 > 0.

2. We can choose coordinates on Ξ so that the mapR can be written as F : Q̃→ Q,
F (x, y) = (f(x), g(x, y)), where Q = I × I and Q̃ = Q \ Γ0, with Γ0 = C× I
and C = {c1, . . . , cn} ⊂ I a finite set of points.

3. The map f : I \ C → I is piecewise C1+α with n + 1 strictly monotonous
branches defined on the connected components of I \ C.

Global Poincaré map (terminates!)

Theorem (continued again)

(4) The map g : Q̃ → I preserves and uniformly contracts the vertical foliation
F = {{x}×I}x∈I ofQ: ∃0 < λ < 1 s.t. dist(g(x, y1), g(x, y2)) ≤ λ · |y1−y2|,
∀y1, y2 ∈ I .

If we assume, in addition, that EcuΛ is sectionally expanding, then we can replace item
(3) above by

(5) The map f : I \ C → I is piecewise expanding C1+α with n + 1 strictly
monotonous branches defined on the connected components of I \ C and sat-
isfies |Df | > 2 wherever defined.
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Flow-boxes near equilibria
Since the equilibria σ in our setting are all Lorenz-like, using the linearization given

by the Hartman-Grobman Theorem or, in the absence of resonances, the smooth lin-
earization results provided by e.g. Sternberg, orbits of the flow in a small neighborhood
U of the equilibrium are solutions of a linear vector field modulo a continuous/smooth
change of coordinates.

Then for δ > 0 we choose cross-sections

• Σo± at points y± in different components of Wu
loc(σ) \ {σ}

• Σi± at points x± in different components of W s
loc(σ) \W ss

loc(σ)

and Poincaré first hitting time maps R± : Σi± \ `± → Σo− ∪ Σo+, where `± =
Σi± ∩W s

loc(σ), satisfying

Cross-sections near singularities

1. every orbit in the attractor passing through a small neighborhood of the equilib-
rium σ intersects some of the incoming cross-sections Σi±;

2. R± maps each connected component of Σi± \ `± diffeomorphically inside a
different outgoing cross-section Σo±, preserving the corresponding stable folia-
tions.

These cross-sections may be chosen to be planar relative to some linearizing system of
coordinates near σ, e.g., for a ε > 0

Σi,± = {(x1, x2,±1) : |x1| ≤ ε, |x2| ≤ ε} and

Σo,± = {(±1, x2, x3) : |x2| ≤ ε, |x3| ≤ ε},

where the x1-axis is the unstable manifold near σ = ~0, the x2-axis is the strong-stable
manifold and the x3-axis is the weak-stable manifold of the equilibrium.

Cross-sections near a Lorenz-like equilibrium

Covering of Λ by flow boxes
Around each singularity σ ∈ S(Λ) there exists a flow-box covering a neighborhood

Uσ of σ and at each regular point x ∈ Λ there exists a cross-section Σx to the vector
field.

Define for any cross-section Σ the δ-subsection

Σδ = {x ∈ Σ : d(x, ∂sΣ) > δ}.

Take flow boxes near singularties with ingoing and outgoing subcross-sections Σi±,δσ ,Σo±,δσ

covering a corresponding neighborhood Uδσ of σ ∈ S(Λ) and, for each Σx in Λ \
∪σ∈S(Λ)U

δ
σ take a cross-section Σx to the vector field and its subsection Σδx.

Using a tubular neighborhood construction, we linearise the flow in an open set
U δΣ = X(−ε0,ε0)(int(Σδx)) for a small ε0 > 0, containing the interior of the cross-
section Σδx.
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This provides an open cover of the compact set Λ by flow-boxes near the singular-
ities and tubular neighborhoods around regular points.

We let Ξδ = {U δΣi
, Uδσk

: i = 1, . . . , l; k = 1, . . . , s} be a finite cover of Λ, where
s ≥ 1 is the number of singularities in Λ, and we set T2 > 0 to be an upper bound for
the time it takes any point z ∈ UΣi to leave this tubular neighborhood under the flow,
for any i = 1, . . . , l.

The global Poincaré return map
Let T3 = max{T2, T1(Σ, Σ̃, λ),Σ, Σ̃ ∈ Ξδ} and consider the value T > T3 so that

diam
(
XT (W s

x(Σ))
)
≤ cλT diam(W s

z (Σ) <
δ

100
, for all Σ ∈ Ξ

(note that here we consider Σ ∈ Ξ instead of Σ ∈ Ξδ). Then define

R(z) = Xτ(XT (z)

(
XT (z)

)
where τ(w) = inf{t > 0 : Xt(w) ∈ Ξδ}.

Note that τ is not defined at points w ∈ U0 which do not return to Ξδ , which is
only possible if XT (w) ∈ W s

loc(σ) for some σ ∈ S(Λ), since the flow-boxes through
the sections of Ξδ provide an open cover for the attracting set Λ.

The adapted Poincaré map
Let Ξδ0 ⊂ Ξδ be the set of points such that R is well-defined. By the choice of T

we have that for every x ∈ Ξδ0 there exist Σ, Σ̃ ∈ Ξ such that

R
(
W s
x(Σ)

)
⊂ Σ̃δ/2.
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This means that all points in W s
x(Σ) do return to Σ̃δ/2, then we have proved

Proposition
There exists a cover of Λ by flow-boxes through cross-sections near regular points Ξ
and a Poincaré return mapR : Ξ0 ⊂ Ξ→ Ξ such that for all x ∈ Ξ0 there are Σ, Σ̃ ∈ Ξ
such that R

(
W s
x(Σ)

)
⊂ Σ̃δ/2 and so R

(
W s
x(Σ)

)
⊂ int

(
W s
Rx(Σ̃)

)
.

Finitely many strips in the domain of R
Now we focus of Ξ0. Let ∂sΞ denote the union of all the leaves forming the stable

boundary of every cross-section in Ξ.

Lemma
The set of discontinuous points of R together with points where R is not defined in
Ξ \ ∂sΞ is contained in the set of points x ∈ Ξ \ ∂sΞ so that

1. either R(x) is defined and belongs to ∂sΞ;

2. or there is some time 0 < t ≤ T such thatXt(x) ∈W s
loc(σ) for some σ ∈ S(Λ).

Moreover this set is contained in a finite number of stable leaves of the cross-sections
Σ ∈ Ξ.

The global one-dimensional quotient map f
Let Γ be the finite set of stable leaves of Ξ provided by the previous lemma together

with ∂sΞ. Then the complement Ξ\Γ ⊂ Ξ0 of this set is formed by finitely many open
strips where R is smooth.

We choose a C2 cu-curve γΣ transverse to F s
Σ in each Σ ∈ Ξ. Then the projection

pΣ along leaves of F s
Σ onto γΣ is a C1+α map, for some α > 0, since this is also the

holonomy between cu-curves crossing F s
Σ. We set

J =
⋃

Σ,Σ̃∈Ξ

int
(
{x ∈ Σ : Rx ∈ Σ̃}

)
∩ γΣ

which is diffeomorphic to a finite union of non-degenerate open intervals I1, . . . , In+1

by a C1+α diffeomorphism, and pΣ | p−1
Σ (J) becomes a C1+α submersion.

After rescalling we make the identification I =
(
∪n+1
i=1 Ii

)
∪ C, where C is a finite

set of points in I which are boundaries of the open intervals I1, . . . , In+1 in I .

Note that since Ξ is finite we can choose γΣ so that pΣ has bounded derivative:
there exists β0 > 1 such that

1

β0
≤
∣∣DpΣ | γ

∣∣ ≤ β0 for every cu-curve γ inside any Σ ∈ Ξ.

Since the Poincaré map R : Ξ0 → Ξ takes stable leaves of F s
Σ inside stable leaves

of the same foliation, is hyperbolic and, in addition a cu-curve γ ⊂ Σ is taken by R
into a cu-curve R(γ) in the image cross-section, the map

f : I \ C→ I given by I \ C 3 z 7→ pΣ̃

(
R
(
W s
z (Σ) ∩ Σ̃

))
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for Σ, Σ̃ ∈ Ξ is C1+α for points in the interior of Ii, i = 1, . . . , n+ 1.

Moreover, it also satisfies∣∣Df | = ∣∣D(pΣ̃ ◦R ◦ γΣ

)∣∣ ≥ 1

β0
·
∥∥D(R ◦ γΣ)

∥∥ > 0

since R(γ) is a cu-curve if γ is a cu-curve.

This completes the proof of items (1-4) of the Theorem.

The singular-hyperbolic case
We assume now the extra condition thatEc is seccionally expanded. In this setting,

the singularities S(Λ) become Lorenz-like singularities.

Given a cross-section Σ, a positive number ρ, and a point x ∈ Σ, we define the
unstable cone of width ρ at x by

Cuρ (x) = {v = vs + vu : vs ∈ EsΣ(x), vu ∈ EcuΣ (x) and ‖vs‖ ≤ ρ‖vu‖}.

Let ρ > 0 be any small constant.

Hyperbolicity of Poincaré maps

Proposition
LetR : Σ→ Σ̃ be a Poincaré map as before with Poincaré time t(·). ThenDRx

(
Esx(Σ)

)
=

EsRx(Σ̃) at every x ∈ Σ and DRx
(
Ecux (Σ)

)
= EcuRx(Σ̃)) at every x ∈ Λ ∩ Σ. In ad-

dition, for every given 0 < λ < 1 there exists T3 = T3(Σ, Σ̃, λ) > 0 such that, if
t(·) > T3 at every point, then

‖DR | Esx(Σ)‖ < λ and ‖DR | Ecux (Σ)‖ > 1/λ, ∀x ∈ Σ ∩ Λ.

Moreover, any x ∈ Σ, we have DR(x)(Cuρ (x)) ⊂ Cuρ/2(Rx) and

‖DRx(v)‖ ≥ 5

6
λ−1 · ‖v‖ for all v ∈ Cuρ (x).

Sketch of the proof of the proposition
The proof of this result is based on the observation that the volume expansion along

the bidimensional bundle EcΛ translated into expansion in the Ecu(Σ) direction since
the vector field in invariant and non-expanding transversely to Σ.

Then, for small ρ > 0, the vectors in Cuρ (x) can be written as the direct sum
of a vector in Ecux , which is expanded at a rate λ−1, with a vector in Ecsx , which is
contracted at a rate λ.

Hence, for small ρ, the center-unstable component dominates the stable component
and the length of the vector is increased at a rate close to λ−1.
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Completing the proof of the theorem
In this way we can always achieve an arbitrarily large expansion rate along the

directions of the unstable cone as long as we take λ sufficiently close to zero and,
consequently, a big enough threshold time T3.

Using this in the construction of Ξ choosing T in such a way that besides the con-
ditions in the previous subsection, it also satisfies T > T3, we obtain

|Df | ≥ sin^
(
Fs

Σ̃
(R ◦ γΣ), γΣ̃

)
· ‖DR ◦ γΣ · γ′Σ‖ > ω,

as long as we take the threshold time T large enough, since the angle between the
cu-curves γ0, γ̃0 and the stable foliation on the cross-sections are bounded away from
zero.

This completes the proof of the Theorem.

Finally, we have reached...

THE END.
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4.4 Robust transitivity
Unstable cone-fields on cross-section and singular hyperbolicity

We present a proof of a claim made by Tucker in Section 2.4 of

• W. Tucker. A rigorous ODE solver and Smale’s 14th problem. Found. Com-
put. Math. 2 (2002) 53–117.

which to the best of the authors knowledge is missing in the literature.
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What Tucker proved via a computer algorithm
In the above cited paper Tucker proved, through the successful run of a computer

algorithm, that there exists:

• a compact set N contained in the cross-section Σ = {z = 27} of the flow G of
the Lorenz equations for which:

– the first Poincaré return map R : N \ Γ → N is well-defined away from
the curve Γ ⊂ N , given by the intersection of the local stable manifold of
the singularity with N ;

– moreover, it is proved also that R(N \Γ) ⊂ N , so that in N there exists an
attracting set ΛN =

⋂
n≥0R

n(N).

The unstable cone field in the return region
In addition, there exists a cone field {Cux}x∈N ⊂ TNΣ s.t.

DRxC
u
x ⊂ CuRx, x ∈ N

(forward invariance) and also satisfies

Proposition (Proposition 5.1 from Tucker)
There exists F ⊂ N s.t. F ⊃ Γ and contains a fundamental domain of R (i.e. every
R-orbit has some element in F )

1. each x0 ∈ F whose positive orbit eventually leaves F satisfies for every return
xn ∈ F

min{‖DRnx0
· v‖/‖v‖ : v ∈ Cux0

} ≥ 2;

2. each x0 ∈ F whose positive orbit is contained in F satisfies min{‖DRnx0
·

v‖/‖v‖ : v ∈ Cux0
} ≥ 2n/2 for all n ≥ 1.

Consequences
It follows from the algorithms developed and studied by Tucker that these are robust

properties of the flow (i.e. they hold true also for all vector fields sufficiently C1 close
to G) and are enough to prove transitivity for the return map.

Lemma 2 (Transitivity lemma). For each x ∈ N and y ∈ ΛN and open neighborhoods
V of x and W of y in N , there is m ≥ 1 s.t. RmV ∩W 6= ∅.

Recall that the maximal invariant subset Λ =
⋂
t>0Xt(U) for some positively

invariant neighborhood U satisfies Λ ∩N = ΛN is the maximal invariant subset at the
cross-section.

Hence the above lemma implies the robust transitivity of Λ. We present a proof
in what follows.
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Robust transitivity and singular-hyperbolicity
Robust transitivity implies that Λ is a singular-hyperbolic attractor following

• C. A. Morales, M. J. Pacifico and E. R. Pujals. Robust transitive singular sets
for 3-flows are partially hyperbolic attractors or repellers. Ann. of Math. (2) 160
(2004) 375–432.

From what has already been proved we get

Claim (Section 2.4 of Tucker’s paper)
R admits an invariant contracting C1+α foliation.

Existence of physical/SRB measure
Hölder-C1 smoothness is crucial to obtain the existence of a physical/SRB mea-

sure for Λ: this ensures that the one-dimensional quotient map is a piecewise expansive
C1+ε map for some ε > 0.

Then we can apply results from the ergodic theory of piecewise expanding
maps of the interval, ensuring the existence of a unique absolutely continuous
invariant measure ν for this map.

From this, through standard constructions of ergodic theory, a physical measure µ
for the flow can be induced from the a.c.i.m. ν for the one-dimensional quotient map.

(Skip the proof of the transitivity lemma)

Proof of transitivity for the Poincaré return map
Let N \ Γ = N+ ∪N− be the components of N away from Γ; see next figure.

There exist ω± the limit points of images R(xn) when xn → Γ with xn ∈ Γ±, due
to the dynamics of the flow near the singularity at the origin.

Then we can define for ε > 0 and k ∈ Z+ the neighborhood of Γ in N

Γkε = {x ∈ N+ : Rk(x) ∈ Bε(Rk−1(ω+))}
∪ {x ∈ N− : Rk(x) ∈ Bε(Rk−1(ω−))}.

Before the proof: two remarks

• The previous Proposition from Tucker ensures the existence ofK > 0 and σ > 1
such that

‖DRnx · v‖ ≥ Kσn‖v‖
for all n ≥ 1, v ∈ Cux and x ∈ N such that Rkx /∈ Γ for k = 0, . . . , n.

• The expansion rate provided by the same Proposition ensures that every curve
ξ : [0, 1] → N such that ξ′(s) ∈ Cuξ(s) (a Cu-curve in what follows) admits
N = N(ξ) ∈ Z+ so that Rnξ crosses N and also Γ1

ε for all n ≥ N .
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Figure 3: An approximation of ΛN (the two curved “lines”) with the most contract-
ing directions for one iterate of R. The (almost) straight line cutting across the two
branches of ΛN is Γ, the intersection of the stable manifold of the origin and the return
plane. The bounding box is [−6, 6]2 × {27}.

Proof of the transitivity lemma
Let y ∈ ΛN and x ∈ N be given and fix neighborhoods V of x and W of y in N .

Fix also a Cu-curve ξ : [0, 1]→ V containing x.

From the previous remarks, consider n > 0 such that a neighborhood V0 ⊂ V of x
satisfies that Rn(V0 ∩ ξ) contains a curve ζ which crosses N and in particular crosses
Γ1
ε.

Let ε > 0 be small enough so that B3ε(y) ⊂W .

We split the argument in two cases, as follows.

Case A For z ∈ Bε(y)∩ΛN and zk ∈ ΛN so thatRkzk = z, then zk ∈ N \Γkε ,∀k ≥
1.

Case A
The assumption ensures that Wk = R−kW ⊂ N \ Γkε is diffeomorphic to W for

k = 1, . . . , ` for some maximal ` ≥ 1.

Note that ` can be made arbitrarily big by reducing the size of the neighborhood
W .

Let η : [0, 1]→W be a Cs-curve, that is, a regular curve such that η′(s) ∈ Csη(s) =

Tη(s)Σ \ Cuη(s) for all 0 ≤ s ≤ 1.

The forward invariance of the cone field Cu implies the backward invariance of the
interior of its complement Cs, which is also a cone field.

Hence ηk = R−kη is also a Cs-curve.
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R forward contracts area uniformly
Since divG ≤ −c < 0 for a constant c > 0 there is C > 0 and 0 < λ < 1 s.t.

|detDRj | ≤ Cλj for j ≥ 0.

Indeed, since N ⊂ Σ is a cross-section to the flow G, if x ∈ N and R(x) ∈ N is
given by Xτ(x)(x), where τ(x) is the Poincaré return time to N , then

e−cτ(x) = |detDXτ (x)x| = |detDRx|
sin^(G(Rx), TRxΣ)

sin^(G(x), TxΣ)

≥ C|detDRx|.

Since τ(x) ≥ τ0 > 0 for all x ∈ N by compactness, the uniform contraction of area of
R is clear.

ηk is forward contracted at a uniform rate
By the backward invariance of the stable cones, there exists θ > 0 for which

^(η′k(s), v) ≥ θ for all s ∈ [0, 1], v ∈ Cuηk(s) and 1 ≤ k ≤ `. We deduce

|detDRkηk(s)| =
‖DRkηk(s)η

′
k(s)‖ · ‖DRkηk(s)v‖ sin^(η′(s), DRkηk(s)v)

‖η′k(s)‖ · ‖v‖ sin^(η′k(s), v)

≥
‖DRkηk(s)η

′
k(s)‖

‖η′k(s)‖ ·Kσk · sin θ

and so ‖η′(s)‖ = ‖DRkηk(s)η
′
k(s)‖ ≤ C

K sin θ

(
λ
σ

)k‖η′k(s)‖ is uniformly forward con-
tracted.

A stable backward invariant cone field
The length of ηk grows exponentially with k and, since ηk is a Cs-curve, then ηk

crosses N transversely to the unstable cone field.
In particular, Cs,Cu behave as hyperbolic cone fields

• besides forward invariance of CU we have DR−1
x Csx ⊂ CsR−1x, x ∈ R(N);

• from the previous estimates we get

– backward expansion: ‖DR−kx ·u‖ ≥ K sin θ
C

(
σ
λ

)k‖u‖ for all k ≥ 1, u ∈ Csx
and x ∈ Rk(N \ Γ);

– domination: ‖DR
k
xv‖

‖v‖ ≥ Kσk ‖DR
k
xu‖

‖u‖ for all k ≥ 1, for all non-zero vectors
v ∈ Cux, u ∈ DR−kx · CsRkx and x ∈ N such that Rix /∈ Γ for i =
0, . . . , k − 1.
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Conclusion in Case A
Hence, lettingW be a smaller neighborhood if needed, we may assume without loss

of generality that η` crosses ζ transversely in a single point {z`} = η` t ζ (observe
that η` cannot “bend” in N since it is tangent to the cone field Cs).

Finally note that R`zk ∈ W ∩ Rn+`V and we have completed the proof of the
transitivity Lemma in this case (Case A).

Now for the final case.

Case B There exists y′ ∈ Bε(y), k ≥ 1 and y′k ∈ ΛN such that Rky′k = y′ and
y′k ∈ Γkε .

The final Case B
Since Γkε ⊂ Γ1

ε, we can find x′ ∈ V0 ∩ ξ such that Rnx′ ∈ Γkε .

Hence we obtain that

Rn+kx′, Rky′k ∈ Bε(Rk−1ω±)

which means in particular that Rn+kx′ ∈ B2ε(y
′).

By the choice of ε, we see that Rn+kx′ ∈ B3ε(y) ⊂W and so W ∩Rn+kV 6= ∅.
This concludes the proof of the transitivity Lemma also in this case.
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