
LECTURES ON SRB MEASURES

YAKOV PESIN

1. SRB measures for hyperbolic attractors

1.1. Topological attractor. M - a compact smooth Riemannian manifold,
f : M →M a C2 (or C1+α) diffeomorphism.

U ⊂M open and f(U) ⊂ U - a trapping region.

Λ =
⋂
n≥0 f

n(U) a topological attractor for f . We allow the case Λ = M .

Exercise 1. Show that Λ is compact, f -invariant and maximal (i.e., if
Λ′ ⊂ U is invariant, then Λ′ ⊂ Λ).

1.2. Natural measures. m is volume, mU = 1
m(U)m|U is the normalized

volume in U ,

(1.1) µn =
1

n

n−1∑
k=0

fk∗mU

is an evolution of m.

Exercise 2. Show that the sequence µn is compact in the weak∗ topology.

There is µnk
→ µ a natural measure for f on Λ. If and only if for any

h ∈ C1(M): ∫
Λ
h(x)dµn =

1

n

n−1∑
k=0

∫
Λ
h(fk(x))dmU →

∫
Λ
hdµ.

Exercise 3. Show that µ is supported on Λ and is f -invariant.

1.3. Basin of attraction. µ is an (ergodic) measure on Λ.

Bµ =
{
x ∈ U :

1

n

n−1∑
k=0

h(fk(x))→
∫

Λ
hdµ for any h ∈ C1(M)

}
basin of attraction of µ. We say that µ has positive basin of attraction if
µ(Bµ) > 0.
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A (ergodic) natural measure µ on the attractor Λ is a physical measure
if its basin of attraction has positive volume. An attractor with a physical
measure is called a Milnor attractor.

1.4. Hyperbolic measures.

χ(x, v) = lim sup
n→∞

1

n
log ‖dfnv‖, x ∈M.v ∈ TxM

the Lyapunov exponent of v at x.

χ(x, ·) takes on finitely many values, χ1(x) ≤ · · · ≤ χp(x)(x), p(x) ≤
dimM and χ(f(x)) = χ(x), i.e., the values of the Lyapunov exponent are
invariant functions, also p(f(x)) = p(x).

µ is hyperbolic if χi(x) 6= 0 and χ1(x) < 0 < χp(x)(x) that is

χ1(x) ≤ . . . χk(x) < 0 < χk+1(x) ≤ · · · ≤ χp(x)(x).

If µ is ergodic, then χi(x) = χi(µ) and p(x) = p(µ) for a.e. x that is

χ1(µ) ≤ . . . χk(µ) < 0 < χk+1(µ) ≤ · · · ≤ χp(µ).

If µ is hyperbolic, then for a.e. x ∈ Λ

(1) TxM = Es(x)⊕ Eu(x) where

Es(x) = {v ∈ TxM : χ(x, v) < 0}, Es(x) = {v ∈ TxM : χ(x, v) < 0}
stable and unstable subspaces at x and
(a) dfEs,u(x) = Es,u(f(x)),
(b) ∠(Es(x), Eu(x)) ≥ K(x);

(2) there are V s(x), V u(x) stable and unstable local manifolds at x:
(a) we have

d(fn(x), fn(y)) ≤ C(x)λn(x)d(x, y), y ∈ V s(x), n ≥ 0,

d(f−n(x), f−n(y)) ≤ C(x)λn(x)d(x, y), y ∈ V u(x), n ≥ 0

(b) C(x) > 0, K(x) > 0,

C(f(x)) ≤ C(x)eε(x), K(f(x)) ≥ K(x)e−ε(x),

0 < λ(x) < 1, ε(x) > 0 and

λ(f(x)) = λ(x), ε(f(x)) = ε(x).

(3) r(x) the size of local manifolds and r(f(x)) ≥ r(x)e−ε(x).

Exercise 4. Show that V u(x) ⊂ Λ for every x ∈ Λ (for which the local
unstable manifold is defined.

Fix 0 < λ < 1 and set Λλ = {x ∈ Λ : 0 < λ(x) < λ}. Λλ is invariant and
there is λ s.t. µ(Λλ) > 0. We set Λ = Λλ.

` > 1, Λ` = {x ∈ Λ : C(x) ≤ `, K(x) ≥ 1
`} regular set of level `.



LECTURES ON SRB MEASURES 3

(1) Λ` ⊂ Λ`+1,
⋃
`≥1 Λ` = Λ;

(2) the subspaces Es,u(x) depend continuously on x ∈ Λ; in fact, Hölder
continuously:

dG(Es,u(x), Es,u(y)) ≤M`d(x, y)α,

where dG is the Grasmannian distance in TM ;
(3) the local manifolds V s,u(x) depend continuously on x ∈ Λ; in fact,

Hölder continuously:

dC1(V s,u(x), V s,u(y)) ≤ L`d(x, y)α;

(4) r(x) ≥ r` for all x ∈ Λ`.

1.5. SRB measures. We can assume that Λ` are compact and we can
choose ` s.t. µ(Λ`) > 0. For x ∈ Λ` and small δ` > 0 set

Q`(x) =
⋃

y∈B(x,δ`)∩Λ`

V u(y).

Let ξ` be the partition of Q`(x) by V u(y), µu(y) the conditional measures
generated by µ on V u(y) and mV u(y) the leaf volume on V u(y). Both mea-
sures are probability (normalized) measures on V u(y).

µ is an SRB measure if µ is hyperbolic and for every ` with µ(Λ`) > 0,
a.e. x ∈ Λ` and a.e. y ∈ B(x, δ`) ∩ Λ`, we have µu(y) ∼ mV u(y).

For y ∈ Λ`, z ∈ V u(y) and n > 0 set

ρun(y, z) =

n−1∏
k=0

Jac(df |Eu(f−k(z)))

Jac(df |Eu(f−k(y)))
.

Exercise 5. Show that

(1) for every ε > 0 there is N > 0 s.t. for every n ≥ N
max
y∈Λ`

max
z∈V u(y)

|ρun(y, z)− ρu(y, z)| ≤ ε;

in particular,

ρu(y, z) = lim
n→∞

ρun(y, z) =
∞∏
k=0

Jac(df |Eu(f−k(z)))

Jac(df |Eu(f−k(y)))
;

(2) ρu(y, z) depends continuously on y ∈ Λ` and z ∈ V u(y);
(3) ρu(y, z)ρu(z, w) = ρu(y, w).

If µ is an SRB measure, then

dµu(y)(z) = ρu(y)−1ρu(y, z)dmV u(y)(z),

where

(1.2) ρu(y) =

∫
V u(y)

ρu(y, z) dmV u(y)(z)
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is the normalizing factor; in particular, ρu(y)−1ρu(y, z) is the density of the
SRB measure.

1.6. Ergodic properties of SRB measures.

Theorem 1.1 (Ledrappier). Let µ be an SRB measure on an attractor Λ
for a C1+α diffeomorphism. Then there are An ⊂ Λ, n = 1, 2, . . . s.t.

(1) f(An) = An,
⋃
n≥0 = Λ, µ(An) > 0 for n > 0 and µ(A0) = 0;

(2) f |An is ergodic;
(3) for each n > 0 there are mn ≥ 1 and Bn ⊂ An s.t. the sets f i(Bn)

are disjoint for i = 0, . . . ,mn − 1 and fmn(Bn) = Bn, fmn |Bn is a
Bernoulli diffeomorphism;

(4) for each n > 1 there are `n and xn ∈ Λ`n s.t.

An =
⋃
m∈Z

fm(Q`n(xn));

In addition, one can show that a hyperbolic measure µ on Λ is an SRB
measure if and only if

(1) µ(Bµ) = 1;
(2) the Kolmogorov-Sinai entropy hµ(f) of µ is given by the entropy

formula:

hµ(f) =

∫
Λ

∑
χi(x)>0

χi(x) dµ(x);

For smooth measures (which are a particular case of SRB measures) the
upper bound for the entropy was obtained by Margulis (and extension to
arbitrary Borel measures by Ruelle) and the lower bound was proved by
Pesin (thus implying the entropy formula in this case). The extension to
SRB measures was given by Ledrappier and Strelcyn. The fact that a hyper-
bolic measure satisfying the entropy formula is an SRB measure was proved
by Ledrappier and for arbitrary (not necessarily hyperbolic) measures this
result was obtained by Ledrappier and Young.

The limit measures for the sequence of measures (1.1) are natural candi-
dates for SRB measures.

Exercise 6. Construct f s.t. µn → µ, µ(Bµ) > 0 and

(1) µ is not hyperbolic;
(2) µ is hyperbolic but is not an SRB measure.

In this regard we state the following result by Tsujii.

Theorem 1.2. Let Λ be an attractor for a C1+α diffeomorphism f and
suppose there is a positive Lebesgue measure set S ⊂ Λ such that for every
x ∈ S

(1) the sequence of measures 1
n

∑n−1
k=0 δx converges weakly to an ergodic

measure which we denote by µx;
(2) the Lyapunov exponents at x coincide with the Lyapunov exponents

of the measure µx;
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(3) the measure µx has no zero and at least one positive Lyapunov ex-
ponent.

Then µx is an SRB measure for Lebesgue almost every x ∈ S.

It follows from Theorem 1.1 that f admits at most countably many er-
godic SRB measures. J. Rodriguez Hertz, F. Rodriguez Hertz, R. Ures and
A. Tahzibi have shown that a topologically transitive C1+α surface diffeo-
morphism can have at most one SRB measure but the result is not true in
dimension higher than two, see Section 2.4.

1.7. Hyperbolic attractors.

1.7.1. Definition of hyperbolic attractors. Λ a topological attractor for f . It
is (uniformly) hyperbolic if for each x ∈ Λ there is a decomposition of the
tangent space TxM = Es(x)⊕Eu(x) and constants c > 0, λ ∈ (0, 1) s.t. for
each x ∈ Λ:

(1) ‖dxfnv‖ ≤ cλn‖v‖ for v ∈ Es(x) and n ≥ 0;
(2) ‖dxf−nv‖ ≤ cλn‖v‖ for v ∈ Eu(x) and n ≥ 0.

Es(x) and Eu(x) are stable and unstable subspaces at x.

Exercise 7. Show that Es(x) and Eu(x) depend continuously on x.

In particular, ∠(Es(x), Eu(x)) is uniformly away from zero. In fact, Es(x)
and Eu(x) depend Hölder continuously on x.

For each x ∈ Λ there are V s(x) and V u(x) stable and unstable local man-
ifolds at x. They have uniform size r, depend continuously on x in the C1

topology and V u(x) ⊂ Λ for any x ∈ Λ.

1.7.2. An example of hyperbolic attractor. Consider the solid torus P =
D2×S1. We use coordinates (x, y, θ) on P ; x and y give the coordinates on
the disc, and θ is the angular coordinate on the circle. Fixing parameters
a ∈ (0, 1) and α, β ∈ (0,min{a, 1− a}), define a map f : P → P by

f(x, y, θ) = (αx+ a cos θ, βy + a sin θ, 2θ).

The action of f on P may be described as follows:

(1) Take the torus and slice it along a disc so that it becomes a tube.
(2) Squeeze this tube so that its cross-sections are no longer circles of

radius 1, but ellipses with axes of length α and β.
(3) Stretch the tube along its axis until it is twice its original length.
(4) Wrap the resulting longer, skinnier tube twice around the z-axis

within the original solid torus.
(5) Glue the ends of the tube together.

P is a trapping region and Λ =
⋂
n≥0 f

n(P ) is the attractor for f , known as
the Smale-Williams solenoid.
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1.7.3. Existence of SRB measures.

Theorem 1.3 (Sinai, Ruelle, Bowen). Assume that f is C2 (or C1+α). The
following statements hold:

(1) Every limit measure µ of the sequence of measures µn is an SRB
measure on Λ.

(2) There are at most finally many ergodic SRB measures on Λ.
(3) If f |Λ is topologically transitive, then the sequence of measures µn

converges to a unique SRB-measure µ on Λ and Bµ has full measure
in U .

Let µ be an SRB measure on Λ and A its ergodic component of pos-
itive measure. Then there is x ∈ Λ s.t. A =

⋃
m∈Z f

m(Q(x)), where
Q(x) =

⋃
y∈V u(x) V

s(y). Note that Q(x) is open and contains a ball of

radius δ > 0. This implies that µ has only finitely many ergodic compo-
nents and they are open (mod 0). It follows that there are at most finally
many ergodic SRB measures on Λ and if f |Λ is topologically transitive, then
the SRB measure is unique.

To prove existence consider x ∈ Λ and V = V u(x). For y ∈ V u(x) let

c0 = 1 and cn =
(n−1∏
k=0

Jac(df |Eu(fk(x)))
)−1

for n ≥ 1

and consider the sequence of measures given by

dκn(x)(y) = cnρ
u(fn(x), y)dmfn(V u(x))(y).

Lemma 1.4. κn(x) = fn∗ κ0(x).

Proof of the lemma. For a measurable set F ⊂ V u(x), w ∈ F and
y = fn(w) ∈ fn(F ),

κn(F ) = κn(fn(f−n(F ))

=

∫
f−n(F )

cnρ
u(fn(x), fn(w))

n−1∏
k=0

Jac(df |Eu(fk(w)) dmV u(x)(w)

=

∫
f−n(F )

cnρ
u(fn(x), fn(w))

n−1∏
k=0

Jac(df |Eu(fk(w)) ρ(x,w)−1dκ0(x)(w)

=

∫
f−n(F )

dκ0(x)(w) = κ0(f−n(F )).

Let

νn =
1

n

n−1∑
k=0

κk =
1

n

n−1∑
k=0

fk∗ κ0,

where we view κk and νn as measures on Λ. We shall show that every limit
measure for this sequence of measures is an SRB-measure. In fact, every
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SRB-measure can be constructed in this way, i.e., it can be obtained as the
limit measure for a subsequence of measures νn.

We have that

dνn(x)(y) = cnρ
u(fn(x), y)mu

n(x)(y),

where

mu
n(x) =

1

n

n−1∑
k=0

mfk(V u(x)).

To prove that ν is an SRB measure. Let z be a Lebesgue point of ν, so that
ν(B(z, r)) > 0 for every r > 0. Consider the set Q(z) and its partition ξ
into unstable local manifolds V u(y), y ∈ B(z, r)∩Λ. We identify the factor
space Q(z)/ξ with W = V s(z) ∩ Λ and we denote by Vn = fn(V ). Set

An = {y ∈W : V u(y) ∩ Vn 6= ∅},
Bn = {y ∈W : V u(y) ∩ ∂Vn 6= ∅},

Cn = An \Bn, Dn =
⋃
y∈Bn

V u(y),

Fn = {y ∈ Vn : du(y, ∂Vn) ≤ 2r},
where du is the distance in Vn induced by the Riemannian metric. Note
that Bn ⊂ An, Dn ⊂ Fn and that An, Bn and Cn are finite set. If h is a
continuous function on Λ with support in Q(z), then∫

Λ
h dνn =

∫
Q(z)

h dνn

=
∑
y∈An

∫
V u(z)∩Vn

h dνn

=
∑
y∈Cn

∫
V u(z)∩Vn

h dνn +
∑
y∈Bn

∫
V u(z)∩Vn

h dνn

= I(1)
n + I(2)

n .

We have that

κn(Fn) = cn

∫
Fn

ρu(fn(x), y) dmfn(V u(x))(y)

= cn

∫
f−n(Fn)

ρu(fn(x), fn(w))
n−1∏
k=0

Jac(df |Eu(fk(w)))
)
mV u(x)(w)

=

∫
f−n(Fn)

ρu(x,w) dmV u(x)(w) ≤ Cκ0(f−n(Fn)) ≤ C(λ+ ε)−n2r,

where C > 0 is a constant and ε is sufficiently small so that λ + ε < 1. It
follows that

I(2)
n ≤ Cνn(Dn) ≤ Cνn(Fn) ≤ C

n
.
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Denote by δn the measure on W , which is the uniformly distributed point
mass on Cn. We have that∫

Λ
h dκn = cn

∑
y∈Cn

ρu(fn(x), y)

∫
V u(y)

h(w)ρu(y, w) dmV u(y)(w)

=

∫
W
cnρ

u(fn(x), y)ρu(y) dδn(y)

∫
V u(y)

h(w)
ρu(y, w)

ρu(y)
dmV u(y)(w),

where ρu(y) is given by (1.2). Hence,

I(2)
n =

1

n

n−1∑
k=0

∫
W
ckρ

u(fk(x), y)ρu(y) dδk(y)

∫
V u(y)

h(w)
ρu(y, w)

ρu(y)
dmV u(y)(w),

The desired result is now a corollary of the following statement.

Lemma 1.5. Let νn be a sequence of Borel probability measures on Q(z)
such that

(1) if (δn, ν
u
n(y)) is the systems of conditional measures for νn with re-

spect to the partition ξ, so that δn is a measure on the factor space
W = Q(z)/ξ and νun(y)) is a measure on V u(y), then

dνun(y)(w) = Pn(y, w)dmV u(y)(w),

where Pn(y, w) is a continuous function on Q(z);
(2) there is a sequence of numbers n` s.t. the sequence of measures νn`

converges in the weak∗ topology to a measure ν on Q(z);
(3) the sequence of functions Pn`

(y, w) converges uniformly in Q(z) to
a continuous function P (y, w).

Then the system of conditional measures for ν with respect to the partition
ξ has the form (δ, νu(y)) where δ is the measure on the factor space W that
is the limit of measures δn`

and νu(y) is a measure on V u(y) for which

dνu(y)(w) = P (y, w)dmV u(y)(w).

We stress that in the definition of the sequence of measures νn one can
replace the local unstable manifold V u(x) with any admissible manifold, i.e.,
a local manifold passing through x and sufficiently close to V u(x) in the C1

topology.

If f |Λ is topologically transitive, then the SRB measure is unique and
hence, the sequence of measures converges to ν.

Exercise 9. Show that the sequence of measures µn converges to ν.

In the particular, case when Λ = M that is f is a C2 Anosov diffeomor-
phism, the above theorem guaranties existence and uniqueness of the SRB
measure µ for f (provided f is topologically transitive). Reversing the time
we obtain the unique SRB measure ν for f−1. One can show that µ = ν if
and only if µ is a smooth measure.
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2. SRB measures for partially hyperbolic attractors

2.1. Definition of partially hyperbolic attractors. Λ a topological at-
tractor for f . It is (uniformly) partially hyperbolic if for each x ∈ Λ there
is a decomposition of the tangent space TxM = Es(x)⊕Ec(x)⊕Eu(x) and
for n ≥ 0:

(1) ‖dxfnv‖ ≤ cλn‖v‖ for v ∈ Es(x);
(2) c−1λn1‖dxfnv‖ ≤ cλn2‖v‖;
(3) ‖dxf−nv‖ ≤ cλn‖v‖ for v ∈ Eu(x).

Es(x), Ec(x) and Eu(x) are strongly stable, central and strongly unstable
subspaces at x. They depend (Hölder) continuously on x. In particular, the
angle between any two of them is uniformly away from zero.

For each x ∈ Λ there are V s(x) and V u(x) strongly stable and strongly
unstable local manifolds at x. They have uniform size r, depend continu-
ously on x in the C1 topology and V u(x) ⊂ Λ for any x ∈ Λ.

An example of a hyperbolic attractor is a map which the direct product
of a map f with a hyperbolic attractor Λ and Id map of any manifold.

2.2. u-measures. µ is a u-measure if for every x ∈ Λ and y ∈ B(x, δ) ∩ Λ,
we have µu(y) ∼ mV u(y).

Theorem 2.1 (Pesin, Sinai). Any limit measure of the sequence of measures
µn is a u-measure and so is any limit measure of the sequence of measures
νn.

Properties of u-measures:

(1) Any measure whose basin has positive volume is a u-measure;
(2) If there is a unique u-measure for f , then its basin has full volume

in the topological basin of attraction;
(3) Every ergodic component of a u-measure is again a u-measure.

Exercise 10. Give an example of a map f with a partially hyperbolic
attractor and a u-measure whose basin has zero volume.

2.3. u-measures with negative central exponents. We say that f has
negative (positive) central exponents (with respect to µ) if there exists an in-
variant subset A ⊂ Λ with µ(A) > 0 s.t. the Lyapunov exponents χ(x, v) < 0
(respectively, χ(x, v) > 0) for every x ∈ A and every vector v ∈ Ec(x).

If f has negative central exponents on a set A of full measure with respect
to a u-measure µ, then µ is an SRB measure for f .

Theorem 2.2. Assume that f has negative central exponents on an invari-
ant set A of positive measure with respect to a u-measure µ for f . Then the
following statements hold:
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(1) Every ergodic component of f |A of positive µ-measure is open (mod 0);
in particular, the set A is open (mod 0) (that is there exists an open
set U s.t. µ(A4U) = 0).

(2) If for µ-almost every x the trajectory {fn(x)} is dense in supp(µ),
then f is ergodic with respect to µ.

Proof. f |A has non-zero Lyapunov exponents with TxM = E−(x) ⊕
Eu(x) for every z ∈ A where E−(x) = Es(x) ⊕ Ec(x). While the unstable
local manifold V u(x) have size which is uniformly away from zero, the stable
local manifolds V −(x) have variable sizes and we will consider the collection
of regular sets A`. The measure µ|A is an SRB measure for f |A and hence, it
has at most countably many ergodic components of positive measure. Each
such component is of the form

⋃
n∈Z f

n(Q`(x)) where

Q`(x) =
⋃

y∈B(x,δ`)∩A`

V u(y).

This set is open (mod 0) and so is every ergodic component and hence the
set A itself. The first statement follows. Under the second assumption f |A
is topologically transitive and hence, F |A is ergodic. It remains to show that
A = Λ (0). Assume for a contradiction that D = Λ \ A has nonzero mea-
sure. In particular, D ⊂ supp(µ). Since A is open (mod 0), it follows from
the assumption that almost every trajectory is dense, that we can choose
n ≥ 1 such that µ{x ∈ D : fn(x) ∈ A} > 0. However, this contradicts the
f -invariance of A (and of D).

We provide the following criterion, which guarantees the density assump-
tion in Statement (2) of the previous theorem.

Theorem 2.3. Assume that for every x ∈ Λ the orbit of the global strongly
unstable manifold W u(x) is dense in Λ. Then for any u-measure µ on Λ
and µ-almost every x the trajectory {fn(x)} is dense in Λ.

This result is an immediate corollary of the following more general state-
ment. Given ε > 0, we say that a set is ε-dense if its intersection with any
ball of radius ε is not empty.

Theorem 2.4. Let f be a C1 diffeomorphism of a compact smooth Riemann-
ian manifold M possessing a partially hyperbolic attractor Λ. The following
statements hold:

(1) For every δ > 0 and every ε ≤ δ the following holds: assume that for
every x ∈ Λ the orbit of the global strongly unstable manifold W u(x)
is ε-dense in Λ. Then for any u-measure µ on Λ and µ-almost every
x the trajectory {fn(x)} is δ-dense in Λ.

(2) Assume that for every x ∈ Λ the orbit of the global strongly unstable
manifold W u(x) is dense in Λ. Then supp(µ) = Λ for every u-
measure µ.
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Proof. The second statement is an immediate corollary of the first state-
ment. To prove the first statement choose an open set U ⊂ Λ. There
is a ball B(δ) of radius δ that is contained in U . It follows from the as-
sumption of Statement 1 that for every x ∈ Λ there exists n = n(x, U) s.t.
fn(W u(x)) ∩ U 6= ∅. Let now µ be a u-measure on Λ. We shall show that
µ-almost every x ∈ Λ there is m = m(x) s.t. fm(x) ∈ U . To this end
consider the set Y of points whose positive semi-trajectories never visit U
and assume by contradiction that Y has positive µ-measure. Then by the
definition of u-measure, there is a point x ∈ Λ s.t. mu(V u(x) ∩ Y ) > 0. It
follows that there is a point y ∈ V u(x)∩ Y s.t. for every γ > 0 one can find
r > 0 such that

mu(Bu(y, r) ∩ Y )

mu(Bu(x, r))
≥ 1− γ,

where Bu(y, r) is an r-ball in the leaf V u(x) centered at y. However, this
contradict the following statement.

Lemma 2.5. There exists η > 0 s.t. for every x ∈ Λ and every r > 0

mu(Bu(x, r) \ Y )

mu(Bu(x, r))
> η,

where Bu(x, δ) is a δ-ball in the leaf V u(x) centered at x and mu is the leaf
volume in V u(x).

Proof of the lemma. Given x ∈ Λ and δ > 0, set Ax,δ = Bu(x, δ) \ Y .
Observe that there is γ > 0 such that for all x,

mu(Bu(x, δ))

mu(Bu(x, δ(1 + γ)))
≥ 1

2
.

Given ∆ > 0, we can choose m ≥ 1 s.t. for all y ∈ Λ,

(2.1) fm(Bu(y, δγ/2)) ⊃ Bu(fm(y),∆).

We can then choose a cover by ∆-balls,

fm(Bu(x, δ)) ⊂
⋃
i

Bu(fm(xi),∆).

By (2.1), we obtain that

Bu(fm(xi),∆) ⊂ fm(Bu(x, δ(1 + γ))).

In particular,

mu(Ax,δ(1+γ))

mu(Bu(x, δ))
≥

mu(
⋃
i f
−m(Afm(xi),∆))

mu(
⋃
i f
−m(Bu(fm(xi),∆)))

.

Moreover, using the Besicovitch Covering Lemma, we can assume without
loss of generality that for this cover each point lies in at most K balls, for
some fixed constant K > 0. We then have a lower bound

mu(
⋃
i f
−m(Afm(xi),∆))

mu(
⋃
i f
−m(Bu(fm(xi),∆)))

≥ 1

K

∑
im

u(f−m(Afm(xi),∆))∑
im

u(f−m(Bu(fm(xi),∆)))
.
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Using standard bounded distortion estimates we can write

mu(f−m(Afm(xi),∆))

mu(f−m(Bu(fm(xi),∆)))
=

∫
Afm(xi),∆

Jac(df−m)dmu∫
Bu(fm(xi),∆) Jac(df−m)dmu

≥ c
mu(Axi,∆)

mu(Bu(xi,∆))
,

where

c = inf
m≥0

inf
y1,y2∈Bu(x,∆)

Jac(dy1f
−m)

Jac(dy2f
−m)

> 0

Observe that the set Y is compact and that the leaf volumes mu(y) vary
continuously with y ∈ Y . It follows that we can choose ∆ > 0 such that

ρ = min
y∈Λ

{
mu(Ay,∆)

mu(Bu(y,∆))

}
> 0.

Combining all of the above inequalities we get

mu(Ax,δ(1+γ))

mu(Bu(x, δ(1 + γ)))
≥ cρ

2K
.

Since δ > 0 can be chosen arbitrarily small, the proof of the lemma is
complete.

2.4. Uniqueness of u-measures and SRB measures. In the case of a
hyperbolic attractor, topological transitivity of f |Λ guarantees that there
is a unique u-measure for f on Λ. In contrast, in the partially hyperbolic
situation, even topological mixing is not enough to guarantee that there is a
unique u-measure. Indeed, consider F = f1× f2, where f1 is a topologically
transitive Anosov diffeomorphism and f2 a diffeomorphism close to the iden-
tity. Then any measure µ = µ1 × µ2, where µ1 is the unique SRB measure
for f1 and µ2 any f2-invariant measure, is a u-measure for F . Thus, F has a
unique u-measure if and only if f2 is uniquely ergodic. On the other hand,
F is topologically mixing if and only if f2 is topologically mixing.

Theorem 2.6. Let f be a C1+α diffeomorphism of a compact smooth Rie-
mannian manifold M possessing a partially hyperbolic attractor Λ. Assume
that:

(1) there exists a u-measure µ for f with respect to which f has neg-
ative central exponents on an invariant subset A ⊂ Λ of positive
µ-measure;

(2) for every x ∈ Λ the orbit of the global strongly unstable manifold
W u(x) is dense in Λ.

Then µ is the only u-measure for f and f has negative central exponents at
µ-almost every x ∈ Λ. In particular, (f, µ) is ergodic, supp(µ) = Λ, and the
basin B(µ) has full volume in the topological basin of attraction of Λ. µ is
the only SRB measure for f .
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Proof. Let µ be a u-measure for f with negative central exponents on a
subset A ⊂ Λ of positive measure. It follows from the previous theorem that
f has negative central exponents µ-a.e. and is ergodic with respect to µ.
Let now ν be a u-measure for f (we do not assume at this point that ν has
negative central exponents on a set of positive ν-measure). By the assump-
tions of the theorem, for every z ∈ Λ the intersection W u(fn(z))∩ V −(y) is
not empty for some n ∈ Z and for every y ∈ V u(x) ∩ A`. Moreover, by the
absolute continuity property of local stable manifolds, for every z ∈ Λ the in-
tersection W u(fn(z))∩B has positive leaf volume where B =

⋂
y∈A`

V −(y).
Since ν is a u-measure, it follows that f has negative central exponents on
an invariant subset Aν ⊂ Λ of positive ν-measure. We conclude that f has
negative central exponents ν-a.e. and is ergodic with respect to ν. Note that
f has negative central exponents a.e. with respect to the measure 1

2(µ+ ν)
and is ergodic with respect to this measure. This implies that µ = ν.

2.5. Small perturbations of systems with zero central exponents.
Shub and Wilkinson considered the direct product F0 = f × Id, where f is a
linear Anosov diffeomorphism and the identity acts on the circle. The map
F0 preserves volume. Shub and Wilkinson showed that arbitrary close to F0

(in the C1 topology) there is a volume-preserving diffeomorphism F whose
only central exponent is negative on the whole of M .

2.6. Density of unstable leaves. Bonatti and Diaz have shown that there
is an open set of transitive diffeomorphisms near F0 = f×Id (f is an Anosov
diffeomorphism and Id is the identity map of any manifold) as well as near
the time-1 map F − 0 of a topologically transitive Anosov flow. This result
was used by Bonatti and Diaz and Ures to construct examples of partially
hyperbolic systems with minimal unstable foliation (i.e., every unstable leaf
is dense in the manifold itself).

If f is a small perturbation of F0 then f is partially hyperbolic and by [?],
the central distribution of f is integrable. Furthermore, the central leaves
are compact in the first case and there are compact leaves in the second
case.

Theorem 2.7. Assume that there is a compact periodic central leaf C for f
such that fn(C) = C and the restriction fn|C is a minimal transformation.
Then the unstable foliation for f is minimal.

2.7. Stable ergodicity for dissipative maps. Let Λf be a topological
attractor for a diffeomorphism f . We say that f is stably ergodic if there
exists a neighborhood U of f in Diffr(M), r ≥ 1 s.t. any diffeomorphism
g ∈ U possesses a topological attractor Λg and there is a unique SRB measure
µg on Λg (and hence, g is ergodic with respect to µg).

If the attractor Λf is (partially) hyperbolic then there exists a neigh-

borhood U of f in Diff1(M) s.t. any diffeomorphism g ∈ U possesses a
(partially) hyperbolic attractor Λg.
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Theorem 2.8. Let Λf be a partially hyperbolic attractor for a diffeomor-
phism f . If f satisfies the conditions of Theorem 3.6, then f is stably ergodic
with r = 1 + α.

Proof. f is ergodic with respect to its unique SRB measure. This mea-
sure is a unique u-measure with negative central exponents a.e. Therefore,
there exists a > 0 s.t. for a.e. x ∈ Λf ,

lim
n→+∞

1

n
ln ‖dfn|Ecf (x)‖ < −a.

Integrating over Λf we obtain

lim
n→∞

1

n

∫
Λf

ln ‖dfn|Ecf (x)‖ dµ(x) < −a.

In particular, there exists n0 > 0 such that

1

n0

∫
Λf

ln ‖dfn0 |Ecf (x)‖ dµ(x) < −a
2
.

Without loss of generality we may assume that n0 = 1, so that∫
Λf

ln ‖df |Ecf (x)‖ dµ(x) < −a
2
.

If a diffeomorphism g is sufficiently close to f in the C1+α topology, then
for any u-measure ν on Λg we have∫

Λg

ln ‖dg|Ecg(x)‖ dν(x) < −a
4
.

Take a u-measure µg for g on Λg. It follows that there exists a subset Ag
with µg(Ag) > 0 s.t. for every x ∈ Ag

lim
n→+∞

1

n

n−1∑
j=0

ln ‖dg|Ecg(gj(x))‖ ≤ −a
4
.

Hence,

lim
n→+∞

1

n
ln ‖dgn|Ecg(x)‖ ≤ −a

4
for every x ∈ Ag and hence, µg has negative central exponents on a set of
positive measure. Restricting to an ergodic component of positive measure,
we may assume that µg is ergodic. We need the following result:

Lemma 2.9. Let f be a C1+α diffeomorphism possessing a partially hyper-
bolic attractor Λf . Then for every a > 0 there exist r0 = r0(a, f) > 0, which
depends continuously on f in the C1+α topology, s.t. the following state-
ment holds. Let µ be a u-measure for f with negative central exponents on
an invariant subset A of positive µ-measure. Assume that |χ(x, v)| ≥ a for
µ-a.e. x ∈ A and all v ∈ TxM . Then for µ-a.e. x ∈ A there is n−n(x) ≥ 0
s.t. the size V −(f−n(x) is at least r0.
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Take a small ε. If g is sufficiently close to f , then the orbit of W u(x) is
ε-dense in Λg. It follows that any u-measure ν for g coincides with µg and
the desired result follows.

One can show that in fact if f has a unique SRB measure µf with negative
central exponents, then f is stably ergodic with r = 1 + α.

Our results clearly hold true for uniformly hyperbolic (Axiom A) attrac-
tors (for which Ec = 0). In particular, our approach gives a proof of stable
ergodicity of topologically transitive Axiom A attractors.
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3. SRB measures for non-uniformly hyperbolic attractors

Problem. Assume that χi(x) 6= 0 for every i and mU -a.e. x. Then there
is µnk

→ µ and i s.t. χi(x) 6= 0 for µ-a.e. x.

3.1. Statements. Given x ∈ M , a subspace E(x) ⊂ TxM , and θ(x) > 0,
the cone at x around E(x) with angle θ(x) is

K(x,E(x), θ(x)) = {v ∈ TxM | ](v,E(x)) < θ(x)}.
If E is a measurable distribution on A ⊂ M and the angle function θ is
measurable, then we have a measurable cone family on A.

We make the following standing assumption.

(H1) There exists a forward-invariant set A ⊂ U of positive volume with
two measurable cone families Ks(x),Ku(x) ⊂ TxM s.t.

(a) Df(Ku(x)) ⊂ Ku(f(x)) for all x ∈ A;

(b) Df−1(Ks(f(x))) ⊂ Ks(x) for all x ∈ f(A).
(c) Ks(x) = K(x,Es(x), θs(x)) and Ku(x) = K(x,Eu(x), θu(x))

are s.t. TxM = Es(x) ⊕ Eu(x); moreover ds = dimEs(x) and
du = dimEu(x) do not depend on x.

Such cone families automatically exist if f is uniformly hyperbolic on Λ. We
emphasize, however, that in our setting Ks,u are not assumed to be con-
tinuous, but only measurable and the families of subspaces Eu,s(x) are not
assumed to be invariant.

Let A ⊂ U be a forward-invariant set satisfying (H1). Define

λu(x) = inf{log ‖Df(v)‖ | v ∈ Ku(x), ‖v‖ = 1},
λs(x) = sup{log ‖Df(v)‖ | v ∈ Ks(x), ‖v‖ = 1}.

We define the defect from domination at x to be

∆(x) = 1
α max(0, λs(x)− λu(x)),

where α ∈ (0, 1] is the Hölder exponent of Df . Roughly speaking, ∆(x)
controls how much the curvature of unstable manifolds can grow as we go
from x to f(x).

The following quantity is positive whenever f expands vectors in Ku(x)
and contracts vectors in Ks(x):

λ(x) = min(λu(x)−∆(x),−λs(x)).

The upper asymptotic density of Γ ⊂ N is

δ(Γ) = lim sup
N→∞

1

N
#Γ ∩ [0, N).

An analogous definition gives the lower asymptotic density δ(Γ).

We say that a point x ∈ A is effectively hyperbolic if
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(EH1)

lim inf
n→∞

1

n

n−1∑
k=0

λ(fk(x)) > 0,

(EH2)

lim
θ̄→0
{n | θ(fn(x)) < θ̄} = 0.

Condition (EH1) says that not only are the Lyapunov exponents of x posi-
tive for vectors in Ku and negative for vectors in Ks, but λu gives enough
expansion to overcome the ‘defect from domination’ given by ∆.

Condition (EH2) requires that the frequency with which the angle be-
tween the stable and unstable cones drops below a specified threshold θ̄ can
be made arbitrarily small by taking the threshold to be small.

If Λ is a hyperbolic attractor for f , then every point x ∈ U is effectively
hyperbolic.

Let A satisfy (H1), and let S ⊂ A be the set of effectively hyperbolic
points. Observe that effective hyperbolicity is determined in terms of a for-
ward asymptotic property of the orbit of x, and hence S is forward invariant
under f .

Theorem 3.1. Let f be a C1+α diffeomorphism of a compact manifold M ,
and Λ a topological attractor for f . Assume that

(1) f admits measurable invariant cone families as in (H1);
(2) the set S of effectively hyperbolic points satisfies LebS > 0.

Then f has an SRB measure supported on Λ.

A similar result can be formulated given information about the set of ef-
fectively hyperbolic points on a single ‘approximately unstable’ submanifold
usually called admissible; the precise definition is not needed for the state-
ment of the theorem; all we need here is to have TxW ⊂ Ku(x) for ‘enough’
points x. W ⊂ U . Let du, ds, and A be as in (H1), (EH1) and (EH2), and
let W ⊂ U be an embedded submanifold of dimension du.

Theorem 3.2. Let f be a C1+α diffeomorphism of a compact manifold M ,
and Λ a topological attractor for f . Assume that

(1) f admits measurable invariant cone families as in (H1);
(2) there is a du-dimensional embedded submanifold W ⊂ U s.t. mW ({x ∈

S ∩W | TxW ⊂ Ku(x)}) > 0.

Then f has an SRB measure supported on Λ.

3.2. Related results. Let f be a C2 diffeomorphism and A a forward-
invariant compact set. A splitting TAM = Es ⊕Eu is dominated if there is
χ < 1 s.t.

‖Df |Es(x)‖ < χ‖Df |−1
Eu(x)‖

−1 for all x ∈ A;
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equivalently, the splitting is dominated if λs(x) < λu(x) for all x ∈ A. Alves,
Bonatti, and Viana considered systems with a dominated splitting for which

(1) Es is uniformly contracting : λs(x) ≤ −λ̄ < 0 for all x ∈ A;

(2) Eu is mostly expanding : there is S̃ ⊂ A with positive volume and

(3.1) lim inf
n→∞

1

n

n−1∑
j=0

λu(f jx) > 0 for all x ∈ S̃.

Under these conditions they proved that f has an SRB measure supported
on Λ =

⋂∞
j=0 f

j(A), and that the same result is true if (4.1) holds on a
positive Lebesgue measure subset of some disk transverse to Es. A similar
result for the (easier) case when Eu is uniformly expanding and Es is mostly
contracting was given earlier by Bonatti and Viana. A stronger version of
this result was recently obtained by Alves, Diaz, Luzzatto and Pinheiro.

Given a dominated splitting with a uniformly contracting Es, we see im-
mediately that ∆(x) = 0 and λ(x) = λu(x) for all x ∈ A, so that our
requirement is equivalent to (3.1). Moreover, by continuity and compact-
ness, the angle between Eu and Es is bounded away from 0, so our second
requirement is automatic, and we conclude that the set S̃ in the above result
is exactly the set S from our theorems.

The proof of the above result requires the notion of hyperbolic times,
introduced by Alves. These are times n s.t. for some fixed σ < 1, and every
0 ≤ k ≤ n, we have

n∏
j=n−k+1

‖Df−1|Ecu
fj(x)
‖ ≤ σk; equivalently,

n−1∑
j=n−k

λu(f jx) ≥ k| log σ|.

If x satisfies (3.1), then Pliss’ lemma guarantees that the set of hyperbolic
times for x has positive lower asymptotic density. A similar strategy runs
through the heart of our main results: our conditions (EH1)–(EH2) guaran-
tee a positive lower asymptotic density of effective hyperbolic times at which
we can apply a version of the Hadamard–Perron theorem, allowing us to
carry out the geometric construction of an SRB measure.

Overall, we can summarize the situation as follows. In the geometric
approach to construction of SRB measures, one needs good information
on the dynamics and geometry of admissible manifolds and their images.
Ideally one wants hyperbolicity: the unstable direction expands, the stable
direction contracts. If this happens all the time, we are in the uniformly
hyperbolic setting and one can carry out the construction without too much
trouble. If hyperbolicity does not hold all the time, then we are in the
non-uniformly hyperbolic setting and need two further conditions in order
to play the game.
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(1) Domination: if one of the directions does not behave hyperbolically,
then it at least is still dominated by the other direction.

(2) Separation: the stable and unstable directions do not get too close
to each other.

In the case of dominated splittings these two conditions hold uniformly and
so one only needs to control the asymptotic hyperbolicity (expansion and
contraction along stable and unstable directions). For our more general set-
ting, both domination and separation may fail at some points, and in order
to control the geometry and dynamics of images of admissible manifolds, we
need to replace ‘hyperbolicity’ with ‘effective hyperbolicity’. The two con-
ditions (EH1) and (EH2) control the failures of domination and separation,
respectively: the presence of ∆(x) lets us control curvature of admissible
manifolds when domination fails, and the condition on θ(x) guarantees that
separation does not fail too often.

3.3. Maps on the boundary of Axiom A: neutral fixed points. We
give a specific example of a map for which the conditions of our main theorem
can be verified. Let f : U →M be a C1+α Axiom A diffeomorphism onto its
image with f(U) ⊂ U , where α ∈ (0, 1). Suppose that f has one-dimensional
unstable bundle.

Let p be a fixed point for f . We perturb f to obtain a new map g that has
an indifferent fixed point at p. The case when M is two-dimensional and f
is volume-preserving was studied by Katok. We allow manifolds of arbitrary
dimensions and (potentially) dissipative maps. For example, one can choose
f to be the Smale-Williams solenoid or its sufficiently small perturbation.

We suppose that there exists a neighborhood Z 3 p with local coordinates
in which f is the time-1 map of the flow generated by

ẋ = Ax

for some A ∈ GL(d,R). Assume that the local coordinates identify the split-
ting Eu ⊕ Es with R ⊕ Rd−1, so that A = Au ⊕ As, where Au = γIdu and
As = −βIds for some γ, β > 0. In the Katok example we have d = 2 and
γ = β since the map is area-preserving.

Now we use local coordinates on Z and identify p with 0. Fix 0 < r0 < r1

s.t. B(0, r1) ⊂ Z, and let ψ : Z → [0, 1] be a C1+α function such that

(1) ψ(x) = ‖x‖α for ‖x‖ ≤ r0;
(2) ψ(x) = 1 for ‖x‖ ≥ r1;
(3) ψ(x) > 0 for x 6= 0 and ψ′(x) > 0.

Let X : Z → Rd be the vector field given by X (x) = ψ(x)Ax. Let g : U →M
be given by the time-1 map of this vector field on Z and by f on U \ Z.
Note that g is C1+α because X is C1+α.
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Theorem 3.3. The map g has an SRB measure.

Note that g does not have a dominated splitting because of the indifferent
fixed point. We also observe that if ψ is taken to be C∞ away from 0, then
g is also C∞ away from the point p.

3.4. Outline of the proof.

3.4.1. Description of geometric approach for uniformly hyperbolic attractors.
We revisit the construction of SRB measures for uniformly hyperbolic at-
tractors Λ for f . Note that in this case the cones Ku(x) and Ks(x) can be
extended to the neighborhood U and are continuous. Let W ⊂ U be an
admissible manifold ; that is, a du-dimensional submanifold that is tangent
to an unstable cone Ku(x) at some point x ∈ U and has a fixed size and
uniformly bounded curvature.

Consider the leaf volume mW on W and take the pushforwards fn∗mW

given by

(3.2) (fn∗mW )(E) = mW (f−n(E)).

To obtain an invariant measure, we take Césaro averages:

(3.3) µn =
1

n

n−1∑
k=0

fk∗mW .

By weak* compactness there is a subsequence µnk
that converges to an in-

variant measure µ on Λ which is an SRB measure. We present an argument
that can be adapted to our setting of effective hyperbolicity.

Consider the images fn(W ) and observe that for each n, the measure
fn∗mW is absolutely continuous with respect to leaf volume on fn(W ). For
every n, the image fn(W ) can be covered with uniformly bounded multi-
plicity (this requires a version of the Besicovitch covering lemma) by a finite
number of admissible manifolds Wi, so that

(3.4) fn∗mW is a convex combination of measures ρi dmWi ,

where ρi are Hölder continuous positive densities on Wi. We refer to each
(Wi, ρi) as a standard pair ; this idea of working with pairs of admissible
manifolds and densities was introduced by Chernov and Dolgopyat and is
an important recent development in the study of SRB measures via geomet-
ric techniques.

To proceed in a more formal way, fix constants γ, κ, r > 0, and define
a (γ, κ)-admissible manifold of size r to be V (x) = expx graphψ, where
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ψ : BEu(x)(0, r) = B(0, r) ∩ Eu(x)→ Es(x) is C1+α and satisfies

(3.5)

ψ(0) = 0 and Dψ(0) = 0,

‖Dψ‖ := sup
‖v‖<r

‖Dψ(v)‖ ≤ γ,

|Dψ|α := sup
‖v1‖,‖v2‖<r

‖Dψ(v1)−Dψ(v2)‖
‖v1 − v2‖α

≤ κ.

Now fix L > 0 and write K = (γ, κ, r, L) for convenience. Then the space of
admissible manifolds

RK = {expx(graphψ) | x ∈ U,ψ ∈ BEu(x)(r) → Es(x) satisfies (4.5)}

and the space of standard pairs

R′K = {(W,ρ) |W ∈ RRK, ρ ∈ Cα(W, [ 1
L , L]), |ρ|α ≤ L}

can be shown to be compact in the natural product topology.
A standard pair determines a measure Ψ(W,ρ) on U in the obvious way:

(3.6) Ψ(W,ρ)(E) :=

∫
E∩W

ρ dmW .

Moreover, each measure η on R′K determines a measure Φ(η) on U by

(3.7)

Φ(η)(E) =

∫
R′K

Ψ(W,ρ)(E) dη(W,ρ)

=

∫
R′K

∫
E∩W

ρ(x) dmW (x) dη(W,ρ).

Write M(U) and M(R′K) for the spaces of finite Borel measures on U and

R′K, respectively. It is not hard to show that Φ: M(R′K)→M(U) is contin-
uous; in particular, MK = Φ(M≤1(R′K)) is compact, where we write M≤1

for the space of measures with total weight at most 1.

On a uniformly hyperbolic attractor, an invariant probability measure
is an SRB measure if and only if it is in MK for some K. We see from
(3.4) that MK is invariant under the action of f∗, and thus µn ∈ MK for
every n. By compactness ofMK, one can pass to a convergent subsequence
µnk
→ µ ∈MK, and this is the desired SRB measure.

3.4.2. Constructing SRB measures with effective hyperbolicity. Now we move
to the setting of our Main Theorems. One can show that the hypotheses of
the second theorem imply the hypotheses of the first, so here we consider
a du-dimensional manifold W ⊂ U for which mW (S) > 0, where we write
S for the set of effectively hyperbolic points x ∈ W with the property that
TxW ⊂ Ku(x). In this setting, there are two major obstacles to overcome.

(1) The action of f along admissible manifolds is not necessarily uni-
formly expanding.
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(2) Given n ∈ N it is no longer necessarily the case that fn(W ) contains
any admissible manifolds in RK, let alone that it can be covered
by them. When fn(W ) contains some admissible manifolds, we will
need to control how much of it can be covered.

To address the first of these obstacles, we need to consider admissible mani-
folds for which we control not only the geometry but also the dynamics; thus
we will replace the collection RK from the previous section with a more care-
fully defined set (in particular, K will include more parameters). Since we
do not have uniformly transverse invariant subspaces Eu,s, our definition of
an admissible manifold also needs to specify which subspaces are used, and
the geometric control requires an assumption about the angle between them.

Given θ, γ, κ, r > 0, write I = (θ, γ, κ, r) and consider the following set of
(γ, κ)-admissible manifolds of size r with transversals controlled by θ:

(3.8) PI = {expx(graphψ) | x ∈ f(U), TxM = G⊕ F, G ⊂ Ku(x),

](G,F ) ≥ θ, ψ ∈ C1+α(BG(r), F ) satisfies (4.5)}.

Elements of PI are admissible manifolds with controlled geometry. We also
impose a condition on the dynamics of these manifolds. Fixing C, λ̄ > 0,
write J = (C, λ̄) and consider for each N ∈ N the collection of sets

(3.9) QJ,N = {fN (V0) | V0 ⊂ U, and for every y, z ∈ V0, we have

d(f j(y), f j(z)) ≤ Ce−λ̄(N−j)d(fN (y), fN (z)) for all 0 ≤ j ≤ N}.

Elements of PI ∩ QJ,N are admissible manifolds with controlled geometry
and dynamics in the unstable direction. We also need a parameter β > 0 to
control the dynamics in the stable direction, and a parameter L > 0 to con-
trol densities in standard pairs (as before). Then writing K = I∪J∪{β, L},
we define in (Id??) a set RK,N ⊂ PI ∩ QJ,N for which we have the added
restriction to control the dynamics in the stable direction; the corresponding
set of standard pairs will be written R′K,N .

The set R′K,N carries a natural product topology; an element of R′K,N is

specified by a quintuple (x,G, F, ψ, ρ), and a small neighborhood Ω ⊃ x on
can be identified with Rn via the exponential map. Then the second coordi-
nate can be identified with the set of all k-dimensional subspaces of Rn, the
third with all (n − k)-dimensional subspaces, the fourth with C1 functions
BRk(r) → Rn−k, and the fifth with C0 functions BRk(r) → [ 1

L , L]. This
specifies a natural topology on each coordinate: the Grassmanian topology
on subspaces, and the C1 and C0 topologies on functions. Thus we may de-
fine a topology on R′K,N as the product topology over each such Euclidean

neighborhood in U . One can show that R′K,N is compact in this topology

and that the map Φ defined in (3.7) is continuous.
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LetM≤1(R′K,N ) denote the space of measures on R′K,N with total weight
at most 1. The resulting measures on U will play a central role:

(3.10) MK,N = Φ(M≤1(R′K,N )).

One should think ofMK,N ⊂M(U) as an analogue of the regular level sets
that appear in Pesin theory. Measures in MK,N have uniformly controlled
geometry, dynamics, and densities via the parameters in K, and MK,N is
compact. However, at this point we encounter the second obstacle men-
tioned above: because f(W ) may not be covered by admissible manifolds in
RK,N , the set MK,N is not f∗-invariant.

Thus we must establish good recurrence properties to MK,N under the

action of f∗ onM(U); this will be done via effective hyperbolicity. Consider
for x ∈ A and λ̄ > 0 the set of effective hyperbolic times.

(3.11) Γeλ̄(x) =

{
n |

n−1∑
j=k

(λu −∆)(f j(x)) ≥ λ̄(n− k) for all 0 ≤ k < n

}
.

One can show that for every x and almost every effective hyperbolic time
n ∈ Γe

λ̄
(x), there is a neighborhood W x

n ⊂ W containing x s.t. fn(W x
n ) ∈

PI∩QJ,N . With a little more work, one can produce a uniformly large set
of points x and times n s.t. fn(W x

n ) ∈ RK,N , and in fact fn∗mWx
n
∈MK,N .

We use this to obtain measures νn ∈MK,N s.t.

(3.12) νn ≤ µn = 1
n

n−1∑
k=0

fk∗mW and lim sup
n→∞

‖νn‖ > 0.

Once this is achieved, we can use compactness of MK,N to conclude that
there is a non-trivial ν ∈

⋂
NMK,N s.t. ν ≤ µ = limk µnk

. In order to
apply the absolute continuity properties of ν to the measure µ, we define a
collection Mac of measures with good absolute continuity properties along
admissible manifolds, for which we can prove a version of the Lebesgue de-
composition theorem that gives µ = µ(1) + µ(2), 0 6= ν ≤ µ(1), and the
definition of R′K,N will guarantee that the set of points with non-zero Lya-
punov exponents has positive measure with respect to ν, and hence also
with respect to µ(1). Thus some ergodic component of µ(1) is hyperbolic,
and hence is an SRB measure.
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4. SRB measures for hyperbolic attractors with singularities

4.1. Topological attractors with singularities. M smooth compact man-
ifold, U ⊂M an open bounded connected subset, the trapping region, N ⊂ U
a closed subset and f : U \N → U a C2 diffeomorphism s.t.

(4.1)
‖d2fx‖ ≤ C1d(x,S+)−α1 for any x ∈ U \N,
‖d2f−1

x ‖ ≤ C2d(x,S−)−α2 for any x ∈ f(U \N),

where S+ = N ∪ ∂U is the singularity set for f and S− = f(S+) that is

S− = {y ∈ U : there is z ∈ S+ and zn ∈ U\S+ such that zn → z, f(zn)→ f(z)}
is the singularity set for f−1. We will assume that m(S+) = m(S−) = 0.

Define
U+ = {x ∈ U : fn(x) /∈ S+, n = 1, 2, . . . }

and the topological attractor with singularities

D =
⋂
n≥0

fn(U+), Λ = D̄.

Given ε > 0 and ` > 1, set

D+
ε,` = {z ∈ Λ : d(fn(z),S+) ≥ `−1e−εn, n = 0, 1, 2, . . . },

D−ε,` = {z ∈ Λ : d(fn(z), N−) ≥ `−1e−εn, n = 0, 1, 2, . . . },

D0
ε,` = D+

ε,`

⋂
D−ε,`,

D0
ε =

⋃
`≥1

D0
ε,`.

The set D0
ε is the core of the attractor and it may be an empty set as it may

be the set D.

Theorem 4.1. Assume that there are C > 0 and q > 0 s.t. for any ε > 0
and n > 0

(4.2) m(f−n(U(ε,S+) ∩ fn(U+))) ≤ Cεq,
where U(ε,S+) is a neighborhood of the (closed) set S+. Then there is an
invariant measure µ on Λ s.t., µ(D0

ε) > 0, in particular, the core is not
empty.

Proof. Let νn = fn∗m. Since m(S+) = 0, this measure is well defined in
Ū and so is the sequence of measures

µn =
1

n

n−1∑
k=0

νk,

which is compact in the week∗-topology. Let µ be a limit measure. Consider
the set

D̂+
ε,` = {z ∈ Λ : d(fn(z),S+) ≥ `−1e−εn, n = 0, 1, 2, . . . }.
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Choose γ > 0 and ε > 0. For ` > γ−1

U \ D̂+
ε,` ⊂ {x ∈ U : there exists i > 0 s.t. f i(x) ∈ U(γe−εi,S+)}.

Therefore, Assumption (4.2) implies

νn(U \ D̂+
ε,`) ≤

∞∑
i=0

m(f−i(U(γe−εi,S+) ∩ f i(U)))

≤ Cγq
∞∑
i=0

e−qεi ≤ C1γ
q,

where C1 > 0 is a constant. It follows that

µn(D̂+
ε,`) ≥ 1− C1γ

q

for all large enough `. Since the sets D̂+
ε,` are closed we have that

µ(D+
ε,`) = µ(D̂+

ε,`) ≥ 1− C1γ
q.

We conclude that µ(D+
ε ) = 1 and hence, µ(S+) = 1 and the desired result

follows.

4.2. Hyperbolic attractors with singularities. We say that a topolog-
ical attractor with singularities Λ is hyperbolic, if there exist two families of
stable and unstable cones

Ks(x) = K(x,E1(x), θ(x)), Ku(x) = K(x,E2(x), θ(x)), x ∈ U \ S+

s.t.

(1) the angle ∠(E1(x), E2(x)) ≥ const. ;
(2) df(Ks(x)) ⊂ Ks(f(x)) for any x ∈ U \ S+ and df−1(Ku(x)) ⊂

Ku(f(x)) for any x ∈ f(U \ S+);
(3) for some λ > 1

(a) ‖dfxv‖ ≥ λ‖v‖ for x ∈ U \ S+ and v ∈ Ku(x);
(b) ‖df−1

x v‖ ≥ λ‖v‖ for x ∈ f(U \ S+) and v ∈ Ks(x).

Theorem 4.2. Let Λ be a hyperbolic attractor with singularities for a C1+α

map and assume that Condition (4.2) holds. Then f admits an SRB measure
on Λ.

4.3. Examples. We describe the following three examples of hyperbolic at-
tractors with singularities which satisfy requirement (4.2).

The Lorenz attractor. Let I = (−1, 1), U = I × I, N = I × 0 ⊂ U and
f : U \N → U is given by

f(x, y) = ((−B|y|ν0 +Bssign(y)|y|ν + 1)sign(y), ((1 +A)|y|ν0 −A)sign(y)),

where

0 < A < 1, 0 < B <
1

2
, ν > 1,

1

1 +A
< ν0 < 1.
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This attractor appears in the Lorenz system of ODE :

ẋ = −σx+ σy, ẏ = rx− y − xz, ż = xy − bz
for the values of the parameters σ = 10, b = 8

3 and r ∼ 24.05

The Lozi attractor. Let I = (−c, c) for some 0 < c < 1 and let
U = I × I, N = 0× I ⊂ U and f : U \N → U is given by

f(x, y) = (1 + by − a|x|, x),

where 0 < a < a0 and 0 < b < b0 for some small a0 > 0 and b0 > 0.

Up to a change of coordinates this map was introduced by Lozi as a sim-
ple version of the famous Hénon map in population dynamics.

The Belykh attractor. Let I = (−1, 1), U = I × I, N = {(x, y) : y =
kx} ⊂ U and f : U \N → U is given by

f(x, y) =

{
(λ1(x− 1) + 1, λ2(y − 1) + 1) for y > kx,

(µ1(x+ 1)− 1, µ2(y + 1)− 1) for y < kx,

where

0 < λ1, µ1 <
1

2
, 1 < λ2, µ2 <

2

1− |k|
, |k| < 1.

If λ1 = mu1 and λ2 = µ2 this map was introduced by Belykh as one of the
simplest models in the phase synchronization theory in radiophysics.
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