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Preface

Over the last few decades financial mathematics has become an area that attracted
mathematicians, economists, econometricians, physicists, psychologists and many more.
The main reason for this is the emergence of new technical ideas that may help people
to understand the delicate nature of risk more fully, and to to find ways to reduce it.

Understanding and reducing risk has been a major motivation for such classical stud-
ies as the Markowitz-model in portfolio theory that captures the trade-off between returns
and risk, see Markowitz [41]. Another classic example is the the Capital Asset Pricing
Model (CAPM) of Sharp [50], that quantifies the relationship between the return and
the risk of a financial instrument under certain ideal market conditions.

A major breakthrough in finance was the emergence of so-called derivative instru-
ments that are defined in terms of fundamentals, such as the future price of wheat, or
the future exchange rate between the US Dollar and the Euros. Writing a contract for
having the option to buy say 10,000 US Dollar at a fixed exchange rate one year from
now is an excellent mean of reducing the risk of the buyer. Trading in derivatives today
makes up a significant fraction of the overall trade on stock exchanges, with options on
foreign currencies making up as much as 90% plus of all the trade. Pricing of derivative
instruments, such as buy options, has become the prime area of research in financial
mathematics, prompted by the seminal papers of Black and Scholes [6] and Merton [42].

Modelling risk calls for modelling the dynamics of financial data, such as returns of
share prices, foreign exchange rates and stock indices etc. A variety of models have
been proposed, starting with the simplest classic model of Louis Bachelier, the founding
father of modern financial mathematics. He thought that price movements over any fixed
equidistant subdivision of time are independent and identically distributed (i.i.d.). This
hypothesis lead him to model the price process by a so-called Wiener-process (wt) with
drift:

St = bt+ wt.

A Wiener-process (wt) is a mathematical model of diffusion, with wt denoting the random
position of a particle at time t. Its main characteristics are that the increments wt′ −
wt, t < t′ are stochastically independent of the prehistory of w prior to time t, moreover
these increments have Gaussian distribution with 0 mean and variance t′ − t.

Unfortunately, this model would imply that at some time we may have negative
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prices. A better model has been proposed by Paul Samuelson in which the assumed that
the returns, rather that the increments, are considered i.i.d. This lead him to modelling
the price of an asset as a geometric Brownian motion with drift:

St = exp{bt+ σwt},

where b is the fixed, guaranteed log-return, while the Brownian motion wt takes care of
uncertainty.

Although widely accepted in option pricing, this model fails to capture some basic
features of log-price processes obtained from data collected on financial markets. These
so-called stylized facts include among others the phenomenon of so-called volatility clus-
tering, heavy-tailed distributions, skewness of distributions and sudden price movements.
Therefore we are going to present a variety of alternative models that are constructed by
mathematical speculations so as to have the potential to exhibit some of these stylized
facts.

The complexity of financial time series is exhibited on the figures below. On the first
figure we present historic data of the prices of an individual stock, namely IBM stock
prices in the period of 1991-2011.

Figure 1: Historic daily closing prices of IBM stocks, 1991-2011

In the second figure we present historic data of the prices of an index, representing
the overall dynamics of a collection of stock prices, namely the NASDAQ index values
in the period of 1991-2011:

These models are called technical models, as opposed to fundamental models in which
the minute details of the market, in particular the behavior of the agents, are described.
The advantage of using technical models is that they lead to tractable mathematical
problems. In addition, simulation results show, that financial data generated using an
assumed micro-structure of the market, can be superbly described, in a statistical sense,
by an appropriately fitted technical model.

An early powerful alternative to the random walk model is the so-called linear model,
in which the dynamics of the market with its millions of small feedback effects is reflected
in the fact that we the model has a a non-zero, (but fading) memory. Linear models are
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Figure 2: Historic NASDAQ index values 1991-2011

quite acceptable for preprocessed data, having non-zero means, linear trends or periodic
cycles removed by appropriate methods. Linear models also have a highly developed and
sophisticated theory thanks to their multiple relevance in circuit theory, communication
and systems and control theory, with major contribution by the R. Kalman.

Linear models are quite acceptable for preprocessed data, having non-zero means,
linear trends or periodic cycles removed by appropriate methods. A neuralgic point in
using a linear model is that it is completely specified by second order statistics, and finer
properties of the return processes may not be reflected. In particular, within the class of
linear models all second order stationary orthogonal processes (often called white noise
precesses) are statistically equivalent, or indistinguishable.

To model the phenomenon of volatility clustering we would need a to consider a
finer model structure in which today’s returns influence tomorrow’s conditional volatility.
On the other hand we wold like to get a model which is mathematically tractable. A
breakthrough in dealing with the above problem was provided by the classical paper of
Engle [22], in which the so-called ARCH (autoregressive conditional heteroscedasticity)
model was introduced. The proposed application area in that paper was the analysis
of macroeconomic data. Standard generalizations of ARCH models are the so-called
GARCH (generalized ARCH) models, introduced by Bollerslev [7]. It turned out that
GARCH models are excellent candidates for modelling financial data with exhibiting
stochastic volatility.

The extraordinary attention paid to these models in the academic community is
due to the fact that this a technical model defined via a relatively simple dynamics,
yet leading to a variety of interesting theoretical problems, and at the same time it is
versatile enough when fitting to real data. Robert Engle is the the winner of the 2003
Nobel Memorial Prize in Economic Sciences, sharing the award with Clive Granger, ”for
methods of analyzing economic time series with time-varying volatility (ARCH)”.

Another important development in modeling financial time is the construction of high
frequency (continuous time) model classes allowing to model shocks or jumps in the price
process. Thus we come to model classes using so-called Lévy processes. A rough idea of
the latter can be given as follows: take the limit of a so-called compound Poisson process
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which has a finite number of jumps in a finite interval at times the number of which follows
a Poisson distribution. There are a number of models using Lévy processes to model
financial time series, such as the Variance Gamma or the CGMY model. The special
feature of these models is that the characteristic function rather than the distribution
function of the price is known explicitly, possibly modulo a few unknown constants.

In this course we discuss selected topics of the theory of stochastic processes with
special attention to areas used in modelling financial time series, as discussed above.
The basic question in connection with financial time series is very simple: predict future
values of financial instruments as accurately as possible to support a decision to buy or
sell. While there are powerful model-free methods for prediction based on the patterns
of past ups and downs, prediction theory and practice is still dominated by model-based
approaches. In this setting we first try to understand the mechanism by which our data
has been generated.

First we need to construct potential classes of models that may be appropriate for
modeling. Finally, the properties of these models have to be understood and a theory of
prediction has to be developed. Then we have to derive methods to describe real data
by a single element of the proposed model class. This last step is called estimation in
the mathematical statistics literature, while the terminology identification is accepted in
the engineering literature.

As for the selection of the course material we should note that the development of
the theory of stochastic processes was significantly inspired by telecommunication and
later by systems and control theory, and the interaction between engineering and finance
is not over yet.

The course is suitable for students with a solid basic training in basic probability
theory and introductory functional analysis. To assist the learning process many of the
smaller mathematical facts are formulated as exercises. Some of these are marked with a
∗ to indicate that their solution may require a bit more than straightforward, one-minute
application of known facts.

Moreover, course material is supplemented with a number of sophisticated interactive
simulation programs available at

http://digitus.itk.ppke.hu/~vago/Financial_Time_Series/

It is hoped that experimenting with these programs will help the student to develop
a feeling for the variety of behaviors of data generated by our models.
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Chapter 1

Basic concepts

1.1 Wide sense stationary processes

A discrete time stochastic process y = (yn) is simply a sequence of random variables over
a fixed probability space (Ω,F , P ). The subscript n indicates time, the range of which
is assumed to be typically −∞ < n < +∞ for the sake of mathematical convenience.
When we speak about a random variable we assume that it is real valued, unless explicitly
stated otherwise. Complex valued random variables will indeed play an eminent role in
our discussions. Depending on the application area a stochastic process may be called a
time series (economics) or a random signal (telecommunication and control).

A key property of a stochastic process is the dependence structure between the ran-
dom variables yn. Dependence is what makes prediction possible. Another key property
of a stochastic process is a kind of statistical homogenity in time, which again makes
prediction possible.

The simplest measure of dependence is covariance or correlation. Thus in most part
of the course we will restrict ourselves to processes such as that

E(y2
n) < +∞ for all n.

Equivalently, we have yn ∈ L2(Ω,F , P ) for all n. Here L2(Ω,F , P ) stands for the Hilbert
space of equivalence classes of real valued random variables ξ with E(ξ2) < ∞. In this
course we will identify a class of a.e. identical random variables with a representative of
its class.
To model statistical homogenity first we will assume that for some m

Eyn = m for all n.

A good measure of dependence is the covariance

Cov(yn+τ , yn).
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Statistical time-homogenity then would mean that the above covariance is independent
of n. Thus we arrive at the following concept:

Definition 1.1. A real valued stochastic process y = (yn), −∞ < n < +∞ is called
wide sense stationary, w.s.st. for short, if E(y2

n) < +∞ for all n, and for some m

Eyn = m, for all n,

and
r(τ) = ry(τ) = Cov(yn+τ , yn)

is independent of n. The function ry(τ) is called the autocovariance function.

Three examples of so-called AR(1) processes (see Chapter 5) are shown below:

Figure 1.1: AR(1) process with an almost unstable positive pole

Figure 1.2: AR(1) process with a stable positive pole

An alternative terminology is that y = (yn) is a second order stationary process
or weakly stationary process. A standard assumption will be in this course that the
expectation of yn is 0 for all n, i.e.

Eyn = 0 for all n.
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Figure 1.3: AR(1) process with an almost unstable negative pole

Then the autocovariance function is defined as

r(τ) = ry(τ) = E(yn+τyn).

Remark. The assumption Eyn = 0 is not restrictive. If we have a general w.s.st. process
y = (yn), then the process y′ = (y′n) defined by y′n = yn −m will be a zero mean w.s.st.
process.

Note, that the autocovariance function is symmetric, or even:

r(τ) = r(−τ),

and that
r(0) = E(y2

n) = σ2 = const.

If we allow yn to be complex valued then the above definition, restricted to the case of
zero mean processes, is modified by requiring that E|yn|2 < +∞ for all n, and, assuming
m = 0,

Eyn = 0 for all n,

and
r(τ) = E(yn+τyn)

is independent of n, where y denotes the complex conjugate. For complex w.s.st.
processes we have

r(τ) = ry(τ) = r(−τ).

The condition E|yn|2 < +∞ will also be expressed by saying that yn ∈ Lc2(Ω,F , P ), the
Hilbert space of complex valued random variable ξ with E|ξ|2 <∞. Here again we will
consider identical r.v.-s which are identical a.e.

The autocovariance function of an AR(1)-process is fairly trivial. The closest non-
trivial example is the autocovariance function of a so-called AR(2) process, two examples
for which are given below:
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Figure 1.4: Autocovariance of an AR(2) process with a pair of complex poles of length
0.8 and argument ±0.3π.

Figure 1.5: Autocovariance of an AR(2) process with a pair of complex poles of length
0.8 and argument ±0.6π.

Exercise 1.1. Let (yn) be a wide sense stationary process and let us define

un = a1yn−1 + · · ·+ apyn−p, with ak real, k = 1, . . . p.

Show that (un) is also a wide sense stationary process.

Let us compute Eu2
n. We have

Eu2
n =

p∑
k=1

p∑
l=1

akalr(l − k).

Define the p× p matrix R = (Rk,l) by

Rk,l = r(l − k), k, l = 1, . . . p, (1.1)

and the p vector
a = (a1, . . . , ap)

T .

Then we can write
Eu2

n = aTRa.
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The matrix R is obviously symmetric and positive semi-definite. In addition, its elements
are constant along any sub-diagonal:

R =


r(0) r(1) . . . . . . r(p− 1)
r(−1) r(0) r(1) . . . r(p− 2)
r(−2) r(−1) r(0) . . . r(p− 3)

...
...

. . . . . .

r(−p+ 1) r(−p+ 2) . . . . . . r(0)


Such a matrix is called a Toeplitz matrix.

Exercise 1.2. Set
Y = (yn−1, . . . , yn−p)

T . (1.2)

Prove that the matrix R defined under (1.1) can also be written as R = E(Y Y T ).

Exercise 1.3. Using the representation R = E(Y Y T ) prove that R is symmetric and
positive semidefinite.

To sum up our findings we have:

Proposition 1.2. The matrix R defined under (1.1) is a symmetric, positive semi-
definite Toeplitz matrix.

For complex-valued processes we have a similar result:

Exercise 1.4. Let y = (yn) be a complex-valued w.s.st. process with auto-covariance
function ry(·). Show that the matrix R = (Rk,l) defined by

Rk,l = ry(l − k), k, l = 1, . . . p

is a Hermitian, positive semi-definite Toeplitz matrix.

1.2 Orthogonal processes and their transformations

How do we get a wide sense stationary process? Let us start with the simplest pos-
sible w.s.st. process (en) called w.s.st. orthogonal process. This is a w.s.st. process
characterized by

Eenem = σ2δn,m for all n, m. (1.3)

Below we plot the graph of an orthogonal process:
The last condition can be expressed in the geometry of Hilbert spaces by saying that

the random variables en and em are orthogonal for n 6= m. This explains the terminology.
In terms of the autocovariance function we may say that

re(τ) = 0 for τ 6= 0.

To summarize:
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Figure 1.6: The graph of an orthogonal process

Definition 1.3. A w.s.st. process e = (en) satisfying (1.3) is called a w.s.st. orthogonal
process.

An alternative terminology is that e = (en) is a white noise process.
As a practical example we mention that an often used assumption in modeling finan-

cial time series is that the return processes are identically and independently distributed,
in short, they are i.i.d. They can also be assumed to have zero mean after discounting.
If, in addition, they have finite second moments, then they form a w.s.st. orthogonal
process. Although it should be mentioned, that the price dynamics based on the as-
sumption of i.i.d. returns fails to reproduce some basic features of a real price process.
In fact, daily return data from the past, called also historical data, exhibit a small cor-
relation. In addition, the assumption on i.i.d. returns would lead to a price process
the variance of which is unbounded, contradicting basic theoretical speculations. This
contradiction is particularly obvious with agricultural products, the prices of which are
tied to meteorological data, which are inherently bounded.

Now let us consider a practical example from engineering for a mechanism through
which more general w.s.st. processes are generated from w.s.st. orthogonal processes.
Let us think of (en) as the vertical displacement of a road surface properly normalized
by its mean, measured at equidistant points not too close to each other. Then we may
rightly assume that the en-s are uncorrelated. Now if a car rolls along this road then
the unevenness of the road surface causes the body of the car (via a damping device) to
vibrate. An exact description of this effect is given in the literature on so-called half-
car models. Denoting the vertical displacement of the body of the car by (yn) properly
normalized by its mean, the overall picture is that (en) is transformed into (yn). Naive
physics suggests that past values of e may effect the present value of y. Assuming that
this transformation is linear we arrive at the following representation of yn:

yn =
∞∑
k=0

hken−k. (1.4)
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Here the hk-s are the so-called impulse responses of the ”system”, represented by the
body of the car, mapping e to y.

To ensure that (yn) given in (1.4) is well defined in some sense we resort to the Hilbert
space theory. Assuming that

∞∑
k=0

h2
k < +∞,

the right hand side of (1.4) converges in L2(Ω,F , P ). Thus yn is well defined. To see
this, for a fixed n consider the random variables

yn,N =
N∑
k=0

hken−k, N ∈ N.

Exercise 1.5. Show that the sequence (yn,N) is a Cauchy sequence in L2 norm.

Indeed, for N < M we have by the orthogonality of (ek)

‖yn,M − yn,N‖2 =
M∑

k=N+1

h2
k < ε,

if N is large enough, since by assumption (hk) ∈ `2.
In a Hilbert space every Cauchy sequence is convergent, thus yn is well defined.

Exercise 1.6. Show that y = (yn) given in (1.4) is a wide sense stationary process.

The variance of (yn) is obtained as

E(y2
n) =

∞∑
k=0

h2
kσ

2.

As we shall see later the class of wide sense stationary processes given by (1.4) is not
only an interesting instance, but actually most w.s.st. processes of practical interest fall
into this class.

A special case of the above is a wide sense stationary process, which is obtained by
taking a finite moving average of an orthogonal process e = (en). Thus let e = (en) be a
wide sense stationary orthogonal process and define

yn =
r∑

k=0

cken−k. (1.5)

Definition 1.4. A wide sense stationary process defined by (1.5) is called a moving
average or MA process.
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If cr 6= 0, then r is called the order of the process. If we wish to emphasize the order,
we say that y is an MA(r) process. In engineering terminology we would say that yn is
obtained by passing an orthogonal process through a finite impulse response (FIR) filter.

It is interesting to note that even in the simplest cases of r = 1 and r = 2 the visual
variety of the graphs of MA processes is remarkable. In all the examples below we take
c0 = 1. For r = 1 and c1 < 0 we take a weighted difference of the white noise process
resulting in similar processes:

Figure 1.7: MA(1) process with a medium positive zero, c0 = 1, c1 = −0.6.

Figure 1.8: MA(1) process with a large positive zero, c0 = 1, c1 = −0.9.

For r = 1 and c1 > 0 we take a weighted sum of the white noise process resulting in
a kind of averaging and smoother trajectories:

For r = 2 the combination of the above models results in an enhanced effect:

1.3 Prediction

A fundamental problem of the theory of time series is the prediction of future values.
In the case of a one-step ahead prediction we would like to predict yn for some fixed n
knowing past values (yn−i) for i = 1, 2, . . . . In other words we assume that the complete,
infinite past of y up to time n− 1 is known. This assumption is a matter of convenience
for certain theoretical arguments.
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Figure 1.9: MA(1) process with a large positive zero, c0 = 1, c1 = 0.6.

Figure 1.10: MA(1) process with a large positive zero, c0 = 1, c1 = 0.9.

Figure 1.11: MA(2) process with two positive zeros, 0.6 and 0.9.

However in practice we have to work with finite segment of data. Therefore we
consider first the following problem: predict yn based on the finite segment of past data
yn−1, . . . , yn−p. We restrict ourselves to linear prediction of the form:

ŷn =

p∑
k=1

αkyn−k, (1.6)

with the coefficients α1, . . . , αp still to be specified. The quality of our predictor is
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Figure 1.12: MA(2) process with two negative zeros, −0.6 and −0.9.

measured by mean square error (MSE):

J(α) = E(ŷn − yn)
2.

Minimizing J(α) with respect to α yields the least squares (LSQ) predictor of yn within
the class of linear predictors.

Obviously, J(α) is quadratic in α = (α1, . . . , αp), hence its minimization is trivial by
direct arithmetic. However, more instructive way of solving this minimization problem
is to use a geometric approach.

A geometric approach to LSQ will simplify the solution of the prediction problem.
Let us consider the linear space spanned by the random variables (yn, yn−1, . . . , yn−p),
i.e. consider all random variables of the form:

u =

p∑
k=0

αkyn−k.

Let us denote this linear space by Hn,n−p, or, if we want to stress the dependence on y,
write Hy

n,n−p. Since y is a wide sense stationary process and thus Ey2
l < +∞ for all l,

Hy
n,n−p is a finite dimensional subspace of L2(Ω,F , P ) equipped with a scalar product:

〈ξ, η〉 = Eξη.

From now on, Hy
n,n−p will denote the space above equipped with the scalar product

inherited from L2(Ω,F , P ). Thus Hy
n,n−p is a Euclidean space. The problem of best linear

prediction is then equivalent to the following geometric problem: find the orthogonal
projection of yn on the subspace Hy

n−1,n−p.
We will use the following notations: if H is a Hilbert space and H ′ is a subspace of

H (i.e. a linear subspace of H which is closed), then for y ∈ H the projection of y onto
H ′ will be denoted by

ŷ = (y|H ′).
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The projection ŷ is uniquely defined by the following two properties:

ŷ ∈ H ′ and (y − ŷ)⊥u ∀u ∈ H ′.

The existence and uniqueness of such a projection is a fundamental result of the Hilbert-
space theory. In the case of Euclidean spaces we refer to basic linear algebra.

The best linear predictor of yn in terms of yn−1, . . . , yn−p is then uniquely defined by
the orthogonal properties:

(yn − ŷn)⊥yn−j, j = 1, . . . p.

This can be written equivalently as

Eŷnyn−j = Eynyn−j, j = 1, . . . p.

Substituting (1.6) for ŷ and working out the left hand side we get

E

p∑
k=1

αkyn−kyn−j =

p∑
k=1

αkr(j − k).

Introducing the notation
r = (r(1), . . . r(p))T

the right hand side becomes simply r. Thus the above equation becomes

Rα = r,

and we arrive at the following result:

Proposition 1.5. Assume that R is nonsingular. Then the LSQ linear predictor of yn
in terms of yn−1, . . . , yn−p is uniquely defined as

ŷn =

p∑
k=1

αkyn−k,

where α = (α1, . . . , αp) is the solution of

Rα = r.

We shall discuss prediction in more detail in Chapter 5. Here we present only two
graphs of two AR(2) processes and their predictor, marked yellow:
Remark. The coefficients of the best linear predictor are uniquely determined if R is
nonsingular, or equivalently, if R is positive definit. What if R is singular? Then we
have a non-zero vector v such that

vTRv = 0,
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Figure 1.13: Prediction of an AR(2) process with a pair of complex poles of length 0.8
and argument ±0.3π

Figure 1.14: Prediction of an AR(2) process with a pair of complex poles of length 0.8
and argument ±0.6π

which is equivalent to writing that

E

∣∣∣∣∣
p∑

k=1

vkyn−k

∣∣∣∣∣
2

= 0.

Exercise 1.7. Show that if R is singular then yn can be predicted with 0 error.

We would not want to consider stochastic processes which can be predicted with
0 error as truly random. We shall therefore single out such processes with the name
”singular processes”. For details see below.

We conclude this section with two non-trivial exercises:

Exercise 1.8. ∗ Show that for the process (yrn) we have

Hyr

−∞ = {0}.

Exercise 1.9. ∗ Show that
Hy
−∞ = Hys

−∞.
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Chapter 2

Prediction, innovation and the Wold
decomposition

2.1 Prediction using the infinite past

Let us now consider the prediction problem with p = ∞. Predicting yn using infinite
past looks impractical at first. However, it provides us with a fundamental insight into
the structure of the process, Moreover, as we shall see, it can often be realized by a finite
recursion. To formulate the problem, we need a little more care. Define the linear space

Lyn−1 =

{
k∑
i=1

αiyn−i : with α1, . . . , αk real, k = 1, 2, . . .

}
.

Obviously
Lyn−1 ⊂ L2(Ω,F , P ).

The closure of Lyn−1 in L2(Ω,F , P ) is a subspace of L2(Ω,F , P ) which will be denoted
by Hy

n−1. Formally we write
Hy
n−1 = clLn−1.

Thus Hy
n−1 consists of all random variables that can be approximated arbitrarily well in

L2(Ω,F , P )-sense by linear combinations of the form

p∑
k=1

αkyn−k.

Then the best linear predictor of yn in terms of infinite past is defined as

ŷn = (yn|Hy
n−1).
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A key object in the theory of wide sense stationary processes is the prediction error

en = yn − (yn|Hy
n−1).

Loosely speaking the random variable en expresses the information content of yn not
contained in (yn−1, yn−2, . . . ) when we restrict ourselves to linear approximations.

Definition 2.1. The process
en = yn − (yn|Hy

n−1)

is called the innovation process of (yn).

Exercise 2.1. Prove that

(yn|Hy
n−1) = lim

p→∞
(yn|Hy

n−1,n−p) in L2(Ω,F , P ).

Proposition 2.2. (en) is a wide sense stationary orthogonal process.

Proof. Obviously
yn − (yn|Hy

n−1,n−p)

is a wide sense stationary process. (Why? ) Taking limit we get, that (en) is wide sense
stationary. The orthogonality of (en) is obvious.

Processes with the property that a finite segment of past values is sufficient to compute
the best linear predictor ŷn = (yn|Hy

n−1) are of particular interest. If y is such a process
then we can write

yn =

p∑
k=1

akyn−k + en, (2.1)

where (en) is the innovation process of (yn).

Definition 2.3. A wide-sense stationary process (yn) satisfying (2.1) is called an au-
toregressive or AR process.

If ap 6= 0, then p is called the order of the process. If we wish to emphasize the order, we
say that y is an AR(p) process.
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2.2 Singular processes

A ”truly random” process has a non-trivial innovation, i.e. en 6= 0. Thus Hy
n ⊃ Hy

n−1

in a strict sense. A process with zero innovation would thus be an anomaly. For such a
process we would have

Hy
n = Hy

n−1 for all n.

Exercise 2.2. Show that if Hy
n = Hy

n−1 for a single n, then Hy
n = Hy

n−1 for all n.

Definition 2.4. A process y is singular, if

Hy
n = Hy

n−1

holds for all n.

It follows that yn can be arbitrarily accurately approximated by linear combinations

of the form

p∑
k=1

αkyn−k, in the L2 sense. The question arises: ”How we can construct

such a process?”
Consider the complex-valued process:

yn = ξeinω, n = 0,±1,±2, . . . ,

where ω 6= 0 is a fixed frequency, ξ is an eventually complex-valued random variable with

Eξ = 0, E|ξ|2 = σ2 < +∞.

Exercise 2.3. Show that the above process is wide sense stationary:

Eyn = Eξeinω = 0,

and
Eyn+τyn = Eξei(n+τ)ωξe−inω = σ2eiτω

is independent of n.

Note that the autocovariance function does not decay in absolute value, as τ increases,
indicating a strong dependence between past and present.

The above process is not ”truly random” in the sense that two values of y, say y0 and
y1, uniquely determine the (random value of) ξ and ω, and thus the complete future of
y is known. Formally, we are tempted to assume that ω is obtained from eiω = y1/y0.
But thus ω would be a non-linear(!) function of y. In spite of this, our intuition is right.
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Exercise 2.4. Show that y is singular, i.e.

Hy
n = Hy

n−1 for all n.

A simple proof is obtained by applying the result given in the following exercise:

Exercise 2.5. Let y be a w.s.st. process such that dim(Hy
n) < ∞ for some n. Then y

is singular.

Consider now a finite sum of complex-valued singular processes of the form

yn =
m∑
k=1

ξke
inωk (2.2)

where ωk 6= ωk′ for k 6= k′. Assume that

Eξk = 0, E|ξk|2 = σ2
k < +∞ for all k.

In addition, assume that the random coefficients are mutually orthogonal, i.e.

Eξkξk′ = 0 for k 6= k′.

The last condition is crucial in proving the following result:

Proposition 2.5. The process defined by (2.2) is a wide sense stationary process.

Proof. Obviously we have Eyn = 0 for all n. The autocovariance function for yn

Eyn+τ ȳn =
m∑
k=1

m∑
k′=1

Eξkξ̄k′e
i(n+τ)ωke−inωk′ =

m∑
k=1

E|ξk|2eiτωk =
m∑
k=1

σ2
ke
iτωk = r(τ)

is indeed independent of n.

Exercise 2.6. Prove that the process y defined above by (2.2) is singular, i.e.

Hy
n = Hy

n−1 for all n.

(Hint : Apply previous Exercise.)
The variance of yn is obtained by setting τ = 0:

E|yn|2 =
n∑
k=1

σ2
k

23



We conclude, that the contribution of the frequency ωk to the variance of yn is σ2
k. In

telecommunication E|yn|2 is the energy of the random signal. Correspondingly, the values
σ2
k show how the energy of yn is spread along different frequencies.

This simple and to some extent artificial construction of a wide sense stationary
process can be significantly extended. In fact, we will see that by an appropriate extension
of the representation given in (2.2) we can recover any wide sense stationary process.
Needless to say that in such an extension the anomaly of singularity may disappear.

Remark. It would be wrong to believe that all singular processes are of the form given in
(2.2). There are examples for singular processes, where singularity can not be established
by direct inspection.

A simple example for a real-valued singular process is given by

yn = cos(ωn+ ϕ) ω 6= 0,

where ϕ is a random phase with uniform distribution on [0, 2π].

Exercise 2.7. Show that (yn) is a wide sense stationary process.

Exercise 2.8. Show that (yn) is singular. (Hint: Apply the identity cos(α + β) =
cos(α) cos(β)− sin(α) sin(β)).

2.3 Wold decomposition

Let us now consider a process y which is not singular, i.e.

Hy
n ⊃ Hy

n−1

in a strict sense, or equivalently, its innovation process

en = yn − (yn|Hy
n−1)

is not zero. We have seen that e = (en) is a wide sense stationary orthogonal process.
Write

yn = en + (yn|Hy
n−1).

Now decompose the second term (yn|Hy
n−1) as

(yn|Hy
n−1) = vn−1 + (yn|Hy

n−2),

where vn−1 ⊥ (yn|Hy
n−2). Note that any random variable v such that vn ∈ Hy

n and
vn ⊥ Hy

n−1 can be written as
vn = cen
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with some real c. (Why? ). Then we can write

vn−1 = c1en−1.

Continuing this argument we get

yn =

p∑
k=0

cken−k + (yn|Hy
n−p−1),

with c0 = 1. The question now arises, how to deal with the residual term.
Let us define the Hilbert space of distant past, or prehistory of y as

Hy
−∞ =

⋂
m≥0

Hy
−m.

Lemma 2.6. For any random variable ξ ∈ L2(Ω,F , P ) we have

lim
m→∞

(ξ|H−m) = (ξ|H−∞).

Exercise 2.9. ∗ Prove Lemma 2.6

To prove Lemma 2.6, we first formulate a dual result:

Lemma 2.7. Let Hn ⊂ L2(Ω,F , P ) be a monotone increasing sequences of Hilbert sub-
spaces, i.e. Hn ⊂ Hn+1. Let

H∞ = cl (∪nHn),

with cl denoting the closure. Then for any x ∈ L2(Ω,F , P ) we have

lim
n→∞

(x|Hn) = (x|H∞).

Exercise 2.10. ∗ Prove Lemma 2.7.

Define
ysn = (yn|Hy

−∞) (2.3)

and

yrn =
∞∑
k=0

cken−k

with the limit interpreted in L2(Ω,F , P ). Then we arrive at the following decomposition
of y:

yn = yrn + ysn.
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Exercise 2.11. Show that the processes (ysn) and (yrn) are orthogonal, ys ⊥ yr, meaning
that

ysn ⊥ yrm for all n, m.

(H int. Note that for any v ∈ Hy
−∞ and any k we have v ⊥ ek.)

Exercise 2.12. Show that for the process yr = (yrn) we have

Hyr

−∞ = {0}.

(Hint : First show that Hyr

n ⊂ He
n for all n, then show that He

−∞ = {0}. The latter
follows from the fact that en⊥He

−∞ for all n.)

Definition 2.8. A process (yn) is called completely regular if

Hy
−∞ = {0}.

Proposition 2.9. The process (ysn) defined under (2.3) is singular and

Hy
−∞ = Hys

−∞.

Proof. First we show that the infinite past of the off-spring process ys is contained in the
the infinite past of y, i.e.

Hy
−∞ ⊃ Hys

−∞.

To see this, note that the definition en = yn − (yn|Hy
n−1) implies en ∈ Hy

n for all n,
which in turn implies He

n ⊂ Hy
n for all n. But then the representation of yrn as a linear

combination of past values of e implies

yrn ∈ Hy
n, for all n,

and hence for ysn = yn − yrn we also have

ysn ∈ Hy
n, for all n.

We conclude from here that

Hys

n ⊂ Hy
n for all n,

which implies Hys

−∞ ⊂ Hy
−∞, as stated.

Now to prove the opposite inclusion, note that the decomposition of y as yn = yrn+ysn
with yr⊥ys implies

Hy
−n = Hyr

−n ⊕Hys

−n
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for all n, where ⊕ denotes orthogonal direct sum. Now formally taking intersection over
n, and using the fact that Hyr

−∞ = {0} would give the result. This formal argument can
be elaborated as follows. Let v ∈ Hy

−∞. Then v ∈ Hy
−n for all n. Let us write v as

v = vr−n + vs−n

with vr−n ∈ H
yr

−n and vs−n ∈ H
ys

−n. Then

vr−n = (v|Hyr

−n).

Now letting n tend to infinity we get that

lim
n→∞

vr−n = lim
n→∞

(v|Hyr

−n) = (v|Hyr

−∞)

by Lemma 2.6. But Hyr

−∞ = {0}, hence vr−n → 0 and we conclude that

v = lim
n→∞

vs−n.

Obviously, the right hand side belongs to Hys

−m for all m and hence it belongs to Hys

−∞.
Thus we arrive to the following result, which is known as the Wold decomposition of

a w.s.st. process:

Proposition 2.10. Any wide sense stationary process can be decomposed as

yn = yrn + ysn,

where (yrn) is completely regular, (ysn) is singular and ys ⊥ yr. Moreover

Hy
−∞ = Hys

−∞.

The singular component of the process contains ’a priori’ randomness, or randomness in
the distant past or prehistory of y.

To complete the above result, consider now a completely regular process y. By the
construction of e we have He

n ⊂ Hy
n. On the other hand the representation

yn =
∞∑
k=0

cken−k

implies Hy
n ⊂ He

n. Thus we arrive at the following result.

Proposition 2.11. Let (en) be the innovation process of a completely regular process
(yn). Then

yn =
∞∑
k=0

cken−k with c0 = 1,

with
∑∞

k=0 c
2
k <∞ and

He
n = Hy

n for all n.
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Chapter 3

Spectral theory, I.

3.1 The need for a spectral theory

Let us revisit the problem of prediction. Let (yn) be a completely regular stochastic
process that can be written in the form

yn =
∞∑
k=0

hken−k,

where h0 = 1, and (en) is the innovation process of y. Then the LSQ predictor of yn is
given by

ŷn =
∞∑
k=1

hken−k.

By this the problem of prediction seems to be solved. But in fact this is not the case:
we would like to express ŷ in terms of y rather than in terms of the (unobserved) e.

Let us simplify the problem and assume that the representation of (yn) is actually an
MA(r) process:

yn =
r∑

k=0

hken−k.

A useful tool for future calculation is the backward shift operator acting on doubly infinite
sequences as follows:

(q−1y)n = yn−1.

Introducing a polynomial of q−1 as

H(q−1) =
r∑

k=0

hkq
−k,
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the defining equation for the MA process above can be rewritten as

y = H(q−1)e. (3.1)

Similarly, the process ŷ formed of the one-step ahead predictors ŷn can be defined via

ŷ =
(
H(q−1)− 1

)
e.

To express e via y a formal procedure, often adapted in the engineering literature, is to
invert (3.1) as

e = H−1(q−1)y.

To see if a meaning can be given to this step it is best to see an example. Let

yn = en + cen−1.

Then
en = −cen−1 + yn,

and iterating this equation we get, assuming |c| < 1,

en =
∞∑
k=0

(−c)kyn−k.

Exercise 3.1. Show that the right hand side above is well defined.

However, the situation becomes much more complicated for higher order MA models,
so the interpretation of the operator H−1(q−1) needs extra care.

To find an appropriate interpretation to our formal procedure let us make a brief
excursion to the theory of linear time invariant (LTI) systems. A linear time invariant
system is defined by

yn =
∞∑
k=0

hkun−k, n ≥ 0.

Here u = (un), n ≥ 0 is the input process, y = (yn), n ≥ 0 is the output process, and
the coefficients hk are called impulse responses of the linear system. A standard tool for
studying the linear time invariant systems is the so-called z-transform. Briefly speaking,
consider a linear system such that

∞∑
k=0

|hk| <∞.

Consider a deterministic and bounded input signal u = (un). Then, as it is easily seen,
the output signal y = (yn) will also be bounded. Define

U(z−1) =
∞∑
k=0

ukz
−k, Y (z−1) =

∞∑
k=0

ykz
−k and H(z−1) =

∞∑
k=0

hkz
−k
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with |z| > 1. Then we have the very simple multiplicative description of our linear time
invariant system as follows:

Y (z−1) = H(z−1) U(z−1).

To extend this ingenious device to two sided processes we run into the problem of choosing
the range for z. Neither |z| > 1, nor |z| < 1 would do. The only option, with a vague
hope of success is to try |z| = 1. Thus we are led to the study of a formal object of the
form

∞∑
n=−∞

yne
−inω.

The ultimate objective of spectral theory of w.s.st. processes is to give a meaning to this
formal object.

3.2 Fourier methods for w.s.st. processes

Obviously, the infinite sum above is unlikely to converge in any reasonable sense. To
see how a meaning can be given, consider our benchmark example for a singular process
given as

yn =
m∑
k=1

ξke
inωk . (3.2)

A natural first alternative to the infinite sum above is a finite sum appropriately weighted:

ξN(ω) =
1

2N + 1

N∑
n=−N

yne
−inω. (3.3)

Proposition 3.1. We have

lim
N→∞

ξN(ωk) = ξk,

lim
N→∞

ξN(ω) = 0 for ω 6= ωk

in the sense of L2(Ω,F , P ) and also w.p.1.

Exercise 3.2. Prove Proposition 3.1.

Corollary 3.2. The spectral weights σ2
k can be obtained as

σ2
k = E|ξk|2 = lim

N→∞
E

∣∣∣∣∣ 1

2N + 1

+N∑
n=−N

yne
−inωk

∣∣∣∣∣
2

.
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Exercise 3.3. Prove the above corollary.

This follows simply from the fact that ξN(ωk) → ξk in L2(Ω,F , P ). Now the question
arises, whether the above arguments can be extended to general processes.

Let us consider a general wide sense stationary process (yn). We can ask ourselves:
does the finite, normalized Fourier series

1

2N + 1

N∑
n=−N

yne
−inω =: ξN(ω)

have a limit in any sense? For a start we can ask a simpler question: does the sequence

E

∣∣∣∣∣ 1

2N + 1

N∑
n=−N

yne
−inω

∣∣∣∣∣
2

have a limit? Forgetting about the normalization by 1/(2N+1) and expanding the above
expression we can express the above expectation as

E
N∑

n=−N

N∑
n′=−N

ynyn′e
−inωein

′ω =
2N∑

τ=−2N

r(τ) e−iωτ (2N + 1− |τ |). (3.4)

Indeed, the value of E(ynyn′) depends only on τ = n−n′, and the number of occurrences
of r(τ) is 2N + 1 − |τ |. (To double-check this note that the number of occurrences of
r(0) is 2N + 1, while the number of occurrences of r(±2N) is 1.)

Now at this point we shall make the assumption that

+∞∑
τ=−∞

r2(τ) < +∞. (3.5)

This assumption would then enable us to apply Fourier theory. (Note, however, that
with this assumption our benchmark examples for singular process are excluded!) Now,
the right hand side of (3.4) can be related to the partial sums of the Fourier series of
r(τ) as follows. Defining

sn(ω) =
+n∑

τ=−n

r(τ)e−iωτ

we can write the r.h.s. of (3.4) as
2N∑
n=0

sn(ω).
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Now assumption (3.5) implies that

f(ω) =
+∞∑

τ=−∞

r(τ)e−iωτ

is well-defined in the sense that the right hand side converges in L2[0, 2π] = L2([0, 2π], dω),
where dω stands for the standard Lebesgue-measure. It follows by the celebrated Fejér’s
theorem that the Fourier series of f(ω) also converges in the Cesaro sense a.s., i.e.

lim
N→∞

1

N

N∑
n=0

sn(ω) = f(ω) a.s.

Thus we come to the following conclusion.

Proposition 3.3. Under condition (3.5)

lim
N→∞

1

N
E

∣∣∣∣∣
N∑

n=−N

e−inωyn

∣∣∣∣∣
2

= f(ω)

exists a.s. on [0, 2π] w.r.t. the Lebesgue-measure, and we have

f(ω) =
+∞∑

τ=−∞

r(τ)e−iωτ

where the r.h.s. converges in L2[0, 2π] and also in Cesaro sense a.s. with respect to the
Lebesgue-measure.

3.3 Herglotz’s theorem

From Proposition 3.3 immediately get a special form of the celebrated Herglotz’s theorem:

Proposition 3.4. Under condition (3.5) we have

r(τ) =
1

2π

∫ 2π

0

eiωτf(ω)dω

with some f(ω) ≥ 0, f(ω) ∈ L2[0, 2π). In particular

r(0) =
1

2π

∫ 2π

0

f(ω)dω.

32



A remarkable fact is that the latter proposition, in a slightly modified form, is true
for any autocovariance sequence. More exactly we have the following result:

Proposition 3.5. (Herglotz’s theorem) Let r(τ) be the autocovariance function of a
wide sense stationary process. Then we have

r(τ) =
1

2π

∫ 2π

0

eiωτdF (ω),

where F (·) is a nondecreasing, left-continuous function with finite increment on [0, 2π),
with F (0) = 0. We have

r(0) =
1

2π
F (2π)

in particular.

The function F is called the spectral distribution function, and the corresponding
measure dF is the spectral measure. The integral above can be interpreted as a Riemann-
Stieltjes integral. The distribution function is like a probability distribution function
except that we may have F (2π) 6= 1.
Remark. At this point we need to recall that there is a dichotomy in defining a probability
distribution function. If ξ is a random variable then its distribution function may be
defined either as F (x) = P (ξ < x) or F (x) = P (ξ ≤ x), depending on local traditions.
In the former case F is continuous from left, in the latter case F is continuous from right.
In this lecture we will assume that F is left-continuous. Thus the dF measure assigned
to an interval [a, b) is F (b)− F (a). Let us now see the proof of Herglotz’s theorem.

Proof. Let us truncate the autocovariance sequence r(τ) by setting

rN(τ) =


r(τ) for |τ | ≤ N

0 for |τ | ≥ N + 1.

Exercise 3.4. Show that the truncated rN(τ) sequence itself is an auto-covariance se-
quence.

Obviously, rN(τ) is a positive semi-definite sequence. Hence it is an auto-covariance
sequence.

Then we have by the special form of Herglotz’s theorem that

rN(τ) =
1

2π

∫ 2π

0

e−iτω fN(ω) d(ω)

with fN(ω) ≥ 0. Defining FN(ω) by

FN(ω) =

∫ ω

0

fN(λ) dλ
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we have

rN(τ) =
1

2π

∫ 2π

0

e−iωτdFN(ω), for |τ | ≤ N.

Obviously FN is nondecreasing for all N . Now we have

1

2π

∫ 2π

0

dFN(ω) = FN(2π) = r(0) <∞ ∀N.

Now we can refer ro Helly’s theorem stating that there exists a subsequence Nk and a
monotone nondecreasing function F (x) such that

lim
k→∞

FNk
(x) = F (x)

at all continuity point of F , and F (2π) = r(0). This is also expressed as saying that FNk

converges to F weakly, or formally writing:

dFNk
⇒ dF.

It then follows by classical results of introductory probability theory that for every
bounded continuous function g we have

lim
n→∞

∫
R
g dµn =

∫
R
g dµ.

For g(ω) = einω in particular we have for any fixed τ

r(τ) = lim
N→∞

1

2π

∫ 2π

0

e−iωτdFN(ω) =
1

2π

∫ 2π

0

e−iωτdF (ω).

Q.e.d.

3.4 Effect of linear filters

To see the power of Herglotz’s theorem, we present the following simple result:

Proposition 3.6. Let (yn) be a wide sense stationary process. Then for any finite linear

combination

p∑
k=0

akyn−k we have

E

∣∣∣∣∣
p∑

k=0

akyn−k

∣∣∣∣∣
2

=
1

2π

∫ 2π

0

|A(eiω)|2 dF (ω), (3.6)

where

A(eiω) =

p∑
k=0

ake
−iωk.
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Exercise 3.5. Prove the above proposition.

To extend the above result, the question can be raised: how we can conveniently
express the auto-covariance function of the process

vn =
m∑
k=0

hkyn−k, hk ∈ R, (3.7)

obtained from y by applying a finite impulse response (FIR) filter. Or in other terms:
how do we get the spectral distribution of v from that of y?

Note that we have:

rv(τ) = Evn+τvn =
m∑
k=0

m∑
l=0

hkhl yn+τ−kyn−l =
m∑
k=0

m∑
l=0

hkhl r
y(l − k + τ).

Now expressing ry(l− k+ τ) via Herglotz’s theorem we get, after interchanging the sum
and the integrand,

rv(τ) =
1

2π

∫ 2π

0

m∑
k=0

m∑
l=0

hkhl e
iω(l−k+τ) dF y(ω) =

1

2π

∫ 2π

0

eiωτ

∣∣∣∣∣
m∑
k=0

hke
iωk

∣∣∣∣∣
2

dF y(ω).

Introducing

H(e−iω) =
m∑
k=0

hke
−iωk

we come to the following conclusion:

Proposition 3.7. For the spectral distribution of the process v we have

dF v(ω) =
∣∣H(e−iω)

∣∣2 dF y(ω).

If y has a spectral density f y(ω) then v also has a spectral density and we have

f v(ω) =
∣∣H(e−iω)

∣∣2 f y(ω).

The complex valued function H(e−iω) is called the transfer function or frequency res-
ponse function of the FIR filter. If |H(e−iω)| > 1 than the energy contained at frequency
ω will be amplified, for |H(e−iω)| < 1 it will be attenuated. For appropriately chosen
weights hk the filter H may be such that |H(e−iω)| is close to zero except for a small
band around a specific frequency ω0. An ideal case would be when∣∣H(e−iω)

∣∣ = 1 for ω0 − δ < ω < ω0 + δ,

and 0 otherwise. Such a filter is called band-pass filter. It is readily seen that such a
filter can not be represented as an FIR filter. (Why?)
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Chapter 4

Spectral theory, II.

4.1 First construction of the spectral representation

measure

Let us now return to the Fourier transform of the series of (yn) itself:

N∑
n=−N

yne
−inω.

At this point assume that
∞∑
τ=0

r2(τ) <∞.

Let the spectral density of (yn) be denoted by f(ω). We can not expect that the Fourier
transform of (yn) will converge in any reasonable sense (unless yn ≡ 0). On the other
hand, if yn ≡ 1 then, using a heuristics that can be made precise, (yn) is the inverse
Fourier transform of the Dirac delta function assigning a unit mass at the point 0. Hence
the Fourier transform of (yn) itself is the the Dirac delta function. While the Dirac delta
function is a generalized function, its integral is an ordinary function (namely the unit
step function). These observations motivate us to consider the integrated process

ζN(ω′) =

∫ ω′

0

N∑
n=−N

yne
−inω dω.

We can write

ζN(ω′) =
N∑

n=−N

yn

∫ ω′

0

e−inω dω =
N∑

n=−N

yncn,
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Note that
1√
2π
cn can be interpreted as the Fourier coefficients of the characteristic

function of the interval [0, ω′), which we denote by χ[0,ω′).
Let us now compute E|ζN(ω′)|2. We have

E|ζN(ω′)|2 = E

∣∣∣∣∣
N∑

n=−N

yncn

∣∣∣∣∣
2

=
1

2π

∫ 2π

0

|CN(eiω)|2 f(ω) d(ω), (4.1)

where

CN(eiω) =
N∑

n=−N

cne
inω.

Write CN(eiω) as

CN(eiω) = 2π
N∑

n=−N

cn
(2π)1/2

einω

(2π)1/2
.

Now the latter sum is the Fourier series of the characteristic function χ[0,ω′)(·). Thus

lim
N→∞

1

2π
CN(ω) = χ[0,ω′)(ω)

in L2[0, 2π). Since f(ω) is an element of L2[0, 2π), and the scalar product in L2[0, 2π) is
continuous in its variables, we conclude from (4.1) that

lim
N→∞

E|ζN(ω′)|2 = 2π

∫ 2π

0

χ[0,ω′)(ω)f(ω)dω = 2πF (ω′).

By similar arguments we can see that if we now look at the increments of ζN(ω′) on two
non-overlapping intervals [a, b) and [c, d) contained in [0, 2π) then we get

lim
N→∞

E(ζN(a)− ζN(b))(ζN(d)− ζN(c)) = 2π

∫ 2π

0

χ[a,b)χ[a,b)(ω)f(ω)dω = 0.

Using the same train of thought it is easily seen that ζN(ω′) is a Cauchy sequence in
Lc2(Ω,F , P ), hence it converges to some element of Lc2(Ω,F , P ) denoted by ζ(ω′):

lim
N→∞

ζN(ω′) = ζ(ω′).

Furthermore, if we take two non overlapping intervals [a, b) and [c, d) then we have

E(ζ(a)− ζ(b))(ζ(d)− ζ(c)) = dω = 0.

We will express this fact by saying that ζ(ω′) is a process of orthogonal increments. To
summarize our findings:
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Theorem 4.1. Let y = (yn) be a w.s.st. process with autocovariance function such that

∞∑
τ=0

r2(τ) <∞.

Then

lim
N→∞

∫ ω′

0

N∑
n=−N

yne
−inω dω = ζ(ω′),

in Lc2(Ω,F , P ), where ζ(ω′) is a process with orthogonal increments. Moreover, denoting
the spectral distribution function of y = (yn) by F we have

E|ζ(ω′)|2 = 2πF (ω′).

4.2 Random orthogonal measures. Integration

The question is now raised: how we can represent a general wide sense stationary process
as an integral of weighted trigonometric functions einω in the form

yn =

∫ 2π

0

einωdζ(ω),

where dζ(ω) is a random weight defined as some kind of random measure. Thus dζ(ω) is a
substitute for the random coefficients ξk appearing in the definition of singular processes

of the form
∑
k

ξke
iωkn. Recalling the conditions imposed on ξk we define ”orthogonal

random measures dζ(ω)” via the stochastic processes of orthogonal increments. The
definition of the latter is obvious, it is almost a tautology:

Definition 4.1. A complex valued stochastic process ζ(ω) in [0, 2π] is called a process
with orthogonal increments, if it is left continuous, ζ(0) = 0, E|ζ(a)|2 =: F (a) < ∞ for
all 0 ≤ a < 2π, and for any two non-overlapping intervals [a, b) and [c, d) contained in
[0, 2π) we have

ζ(d)− ζ(c) ⊥ ζ(b)− ζ(a).

The ”measure dζ” assigning the value ζ(b)− ζ(a) to an interval [a, b) is called a random
orthogonal measure. The function F is called the structure function. It is assumed that F
is left continuous.

From the definition it follows that F (0) = 0.

Exercise 4.1. Prove, that for any 0 ≤ a < 2π we have

F (b)− F (a) = E |ζ(b)− ζ(a)|2 ,

thus F is monotone nondecreasing.
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(Hint: Write [0, b) as the union of [0, a) and [a, b) and apply Pythagoras theorem.)
Let now dζ(ω) be a random orthogonal measure on [0, 2π), and let f be a possibly

complex valued step function of the form

f(ω) =
∑
k∈K

λkχ[ak,bk),

where K is a finite set, and the intervals [ak, bk) are non-overlapping. Then define

I(f) =

∫ 2π

0

f(ω)dζ(ω) =
∑
k∈K

λk(ζ(bk)− ζ(ak)).

Thus I(f) is a random variable which is obviously in Lc2(Ω,F , P ), where c indicates that
we consider the L2 space of complex valued functions.

Exercise 4.2. Let f , g be two left continuous step functions on [0, 2π]. Then

EI(f)I(g) =

∫ 2π

0

f(ω)g(ω) dF (ω). (4.2)

(Hint : Take a common subdivision for f and g.)

Let Hc
s be the set of complex-valued left-continuous step-functions on [0, 2π). Obviously

Hc
s is a linear space and Hc

s ⊂ Lc2([0, 2π], dF ). Thus (4.2) can be restated saying that
stochastic integration as a linear operator

I : Hc
s → Lc2(Ω,F , P )

is an isometry.

Exercise 4.3. Prove that

yn =

∫ 2π

0

einωdζ(ω)

is w.s.st.

4.3 Representation of a wide sense stationary process

Perhaps the most powerful tool in the theory of w.s.st. processes is the following spectral
representation theorem, which will be used over and over again in this course.

Theorem 4.2. Let (yn) be a wide sense stationary process. Then there exists a unique
random orthogonal measure dζ(ω), such that

yn =

∫ 2π

0

einωdζ(ω).
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The process ζ is called the spectral representation process of (yn).

Proof. Assuming that (yn) can be represented as stated we have

E(yn+τyn) =

∫ 2π

0

ei(n+τ)ωe−inωdF (ω) =

∫ 2π

0

einτdF (ω).

Thus the structure function of dζ is necessarily determined by the spectral distribution
of y, denoted by F y(ω), as follows:

dF (ω) = dF y(ω) · 1

2π
.

Now, integration with respect to dζ defines an isometry I from Lc2(dF ) = Lc2([0, 2π), dF )
into Lc2(Ω,F , P ). Conversely, if such an isometry I is given, then it defines an orthogonal
random measure on [0, 2π) with structure function F simply by setting

ζ(a) = I(χ[0,a)).

Thus finding the spectral representation process ζ(ω) is equivalent to finding the isometry
I from Lc2(dF ) into Lc2(Ω,F , P ).

Now, the assumed representation for (yn) implies the following specifications for I:

I(einω) = yn. (4.3)

From here we could argue as follows: to get ζ(a) = I(χ[0,a)) write

χ[0,a) =
∑
n

cne
inω, (4.4)

where convergence on the right hand side is assumed to take place in Lc2(dF ). Then, by
the continuity of I, we would get

ζ(a) =
∑
n

cnyn.

The difficulty with this argument is to actually find the representation of χ[0,a) as given
under (4.4), when convergence of the right hand side is required in a possibly strange
norm defining Lc2(dF ). Therefore we follow another line of thought. Consider the set of
specifications (4.3) prescribed for I. Let us now extend the definition of the yet undefined
isometry I to the linear space

Hc
e = {g(ω) : g(ω) =

∑
n∈N

cne
inω, cn ∈ C, N ⊂ Z finite}
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Define for g ∈ Hc
e

I(g) =
∑
n∈N

cnyn.

Consider Hc
e as a linear subspace of Lc2(dF ). The linear extension of I is well-defined if

I(g) is independent of the representation of g. This is equivalent to saying that g = 0 in
Lc2(dF ) implies

I(g) = 0 in Lc2(Ω,F , P ).

Exercise 4.4. The above implication.

The last argument also shows that I is an isometry from Hc
e to Lc2(Ω,F , P ). Since

Hc
e is a dense linear subspace in Lc2(dF ), I can be extended to a linear isometry mapping

from Lc2(dF ) into Lc2(Ω,F , P ) in a unique manner. As said above, the orthogonal random
measure itself is obtained by setting

ζ(a) = I(χ[0,a)).

Exercise 4.5. Show that the structure function of the random orthogonal measure ζ is
F , predetermined by the spectral distribution function of y.

Let now I ′ denote the isometry from Lc2(dF ) to Lc2(Ω,F , P ) defined by integration
w.r.t. dζ:

I ′(g) =

∫ 2π

0

g(ω)dζ(ω).

Then I and I ′ agree on all characteristic functions χ[0,a), and therefore I and I ′ agree
on all step functions. Since the latter are dense in Lc2(dF ), we conclude that I = I ′. It
follows, that

yn = I(einω) = I ′(einω) =

∫ 2π

0

einωdζ(ω)

as stated.

4.4 Change of measure

Let dζ(ω) be a random orthogonal measure on [0, 2π) with the structure function F (ω).
Let g ∈ Lc2(dF ), and define

η(ω) =

∫ ω

0

g(ω′)dζ(ω′) 0 ≤ ω < 2π.

Exercise 4.6. Show that dη(ω) is a random orthogonal measure, with the structure func-
tion

dG(ω) = |g(ω|2dF (ω).
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The corresponding random orthogonal measure will be written as

dη(ω) = g(ω)dζ(ω).

Let now h(ω) be a function in Lc2(dG). Note that we have taken an element of a new
Hilbert-space, defined by dG. Then ∫ 2π

0

h(ω)dη(ω)

is well-defined. Now we have the following, intuitively obvious-looking result:

Proposition 4.2. We have∫ 2π

0

h(ω)dη(ω) =

∫ 2π

0

h(ω)g(ω)dζ(ω).

Proof. The proposition is obviously true if h is a characteristic function χ[0,a)(ω). Since
both sides of the stated equality are linear in h, it follows that the proposition is true
whenever h is a step function. Now let h be an arbitrary function in Lc2(dG) and let hn
be a sequence of step functions converging to h in the corresponding Hilbert-space norm.
Then ∫ 2π

0

hn(ω)dη(ω) →
∫ 2π

0

h(ω)dη(ω) in Lc2(Ω,F , P ).

On the other hand, the assumed convergence∫ 2π

0

|hn(ω)− h(ω)|2dG(ω) =

∫ 2π

0

|hn(ω)− h(ω)|2 |g(ω)|2 dF (ω) → 0

implies ∫ 2π

0

|hn(ω)g(ω)− h(ω)g(ω)|2dF (ω) → 0.

But then, the isometry property of stochastic integral w.r.t. dζ gives∫ 2π

0

hn(ω)g(ω)dζ(ω) →
∫ 2π

0

h(ω)g(ω)dζ(ω),

and the proposition follows.
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4.5 Linear filters

Let us now consider the effect of linear filters on the spectral representation process.
Let (un) be a wide sense stationary process with spectral representation process dζu(ω).
Define the process (yn) via a FIR filter as

yn =
m∑
k=0

hkun−k.

Then (yn) is a wide sense stationary process.

Exercise 4.7. Show that the spectral representation process of y is given by

dζy(ω) = H(e−iω)dζu(ω),

where

H(e−iω) =
m∑
k=0

hke
−ikω.

Let us now consider the infinite linear combination

yn =
∞∑
k=0

hkun−k.

We have seen that the r.h.s is well defined (converges in Lc2(Ω,F , P )), if the infinite series

H(e−iω) =
∞∑
k=0

hke
−ikω

is well defined in Lc2(dF ).

Proposition 4.3. The spectral representation process of (yn) is given by

dζy(ω) = H(e−iω)dζu(ω).

Proof. Truncate the infinite sum defining yn at m, i.e. define

ymn =
m∑
k=0

hkun−k.

Then the spectral representation of ym = (ymn ) is given as

ymn =

∫ 2π

0

einωHm(e−iω)dζu(ω), (4.5)

where

Hm(e−iω) =
m∑
k=0

hke
−ikω.

Now letting m tend to infinity, the l.h.s. of (4.5) converges to yn in Lc2(Ω,F , P ).
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Exercise 4.8. Show that the integrand on the right hand side converges to einωH(e−iω)
in Lc2(dF

u).

Thus the corresponding integral w.r.t. dζu will converge to∫ 2π

0

einωH(e−iω)dζu(ω)

in Lc2(Ω,F , P ). This proves the claim.

44



Chapter 5

AR, MA and ARMA processes

5.1 Autoregressive processes

Consider now a process that is implicitly defined via the equation

yn + a1yn−1 + . . .+ apyn−p = en, (5.1)

where (en) is a w.s.st. orthogonal process.
A shorthand notation is

A(q−1)y = e (5.2)

where q−1 is the backward shift operator, and

A(q−1) =

p∑
k=0

akq
−k, a0 = 1.

Proposition 5.1. Assuming that A(e−iω) 6= 0 for all ω, the equation (5.2) has a unique
wide sense stationary solution (yn). The process (yn) has a spectral density equal to

f(ω) =
σ2(e)

|A(e−iω)|2
.

Proof. Assume that a wide sense stationary solution (yn) exists. Let the spectral distri-
bution process of e and y be denoted by dζe(ω) and dζy(ω), respectively. Then

A(e−iω)dζy(ω) = dζe(ω),

from which we get formally

dζy(ω) =
1

A(e−iω)
dζe(ω). (5.3)
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Recall, that the spectral density function of (en) is

f e(ω) =
σ2(e)

2π
.

If A(e−iω) 6= 0 for all ω, then 1/A(e−iω) is in Lc2(dω), where dω is the spectral measure
of e, modulo a constant multiplier. Indeed, we have∫ 2π

0

1

|A(e−iω)|2
dω =

∮
S

h(z) dz, with h(z) =
1

|A(z)|2
,

where S is the complex unit circle and h(z) is continuous on S, thus the line integral is
well defined.

Hence the right hand side of (5.3), as a new random orthogonal measure, is well
defined. It follows, that the wide sense stationary process

yn =

∫ 2π

0

einω
1

A(e−iω)
dζe(ω).

is well defined. If there is a solution, then it must be equal to the process y just defined.
By this uniqueness is proved. On the other hand, it is easily seen that the process y is
indeed a solution of (5.1). Namely,

(Ay)n =

∫ 2π

0

A(e−iω)einω
1

A(e−iω)
dζe(ω) =

∫ 2π

0

einωdζe(ω) = en.

This proves the existence of a solution, and the proposition is proved.

The graphs of a two newly selected AR(2) processes are shown on the figures below
together with their autocovariance functions:

Figure 5.1: AR(2) process with two almost unstable complex poles whose real part is
positive, with very small delays. The actual values are: length 0.8 and argument ±0.1π.

More complex behaviors can be noticed on the graphs of AR(4) processes below:
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Figure 5.2: Autocovariance of AR(2) process with two almost unstable complex poles
whose real part is positive, with very small delays. The actual values: a pair of complex
poles with length 0.8 and argument ±0.1π.

Figure 5.3: AR(2) process with two almost unstable complex poles whose real part is
negative, with very large delays. The actual values: length 0.8, argument ±0.9π.

Figure 5.4: Autocovariance of AR(2) process with two almost unstable complex poles
whose real part is negative, with very large delays. The actual values: length 0.8, argu-
ment ±0.9π.

The above derivation demonstrates the supreme power of spectral representation: the
outline of the proof is easily obtained by formal arguments, which then are easily filled
with rigorous technical details. It is not clear at this point if there is any other more
direct method that would yield the proposition. An exception is the case p = 1, but even
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Figure 5.5: AR(4) process with two positive poles and two almost unstable complex pose
whose real part is positive. The actual values: two real poles at 0.5, a pair of complex
poles with length 0.8 and argument ±0.3π.

Figure 5.6: Autocovariance of AR(4) process with two positive poles and two almost
unstable complex pose whose real part is positive. The actual values: two real poles at
0.5, a pair of complex poles with length 0.8 and argument ±0.3π.

Figure 5.7: AR(4) process with two positive poles and two almost unstable complex pose
whose real part is negative. The actual values: two real poles at 0.5, a pair of complex
poles with length 0.8 and argument ±0.6π.

there we may run into unexpected challenges.
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Figure 5.8: Autocovariance of AR(4) process with two positive poles and two almost
unstable complex pose whose real part is negative. The actual values: two real poles at
0.5, a pair of complex poles with length 0.8 and argument ±0.6π.

5.2 A classic result: the Yule-Walker equations

AR processes are of particular interest due to the fact that a finite segment of its past
values is sufficient to compute the best linear one-step ahead predictor. Let y be a stable
AR(p) process, satisfying

yn +

p∑
k=1

akyn−k = en, (5.4)

where (en) is the innovation process of (yn). Recall that if ap 6= 0 then p is called the
order of the process. The question can be put: how the auto-covariances of (yn), say
r(k) := E(yn+kyn) are to be computed.

Let 0 ≤ k ≤ p and multiply equation (5.4) by yn−k. Taking expectation, and using
the that r(k) = r(−k) we get the following system of linear equations:

r(0) + a1r(1) · · ·+ apr(p) = σ2(e)

r(1) + a1r(0) · · ·+ apr(p− 1) = 0
...

r(k) + a1r(k − 1) · · ·+ apr(p− k) = 0
...

r(p) + a1r(p− 1) · · ·+ apr(0) = 0.

We have p+1 linear equation for the first p+1 auto-covariances. This set of equations is
called Yule - Walker equations. The coefficient matrix of this systems of linear equations
is 

1 a1...ap
a1 1...ap−1

. ....
ap ap−1...1


49



This is a so-called circulant matrix the eigenvalues of which are known to be of the form
A(γk), where γ = e2π/(p+1). Now if A(z) 6= 0 on |z| = 1 the no eigenvalues are 0, hence
the Yule-Walker equation has a unique solution. Recall, that in Proposition 5.1 this was
the condition for the unique wide sense stationary solution of the AR process. Thus the
first p+ 1 auto-covariances are uniquely determined.

For k > p the auto-covariance r(k) can be computed recursively in terms of previous
values of r(·) using the same arguments as above: multiplying equation (5.4) by yn−k
and taking expectation we get

r(k) = −a1r(k − 1)− · · · − apr(k − p).

Special case. For p = 1 the Yule-Walker equations consist of two equations:

r(0) + ar(1) = σ2

r(1) + ar(0) = 0.

The solution is well-known:

r(0) =
σ2

1− a2
, r(1) = −a σ2

1− a2
,

and further on r(k) = (−a)k σ2

1− a2
for k > 0.

5.3 The AR(1) process

Thus let us now consider an AR(1) process defined by

yn + ayn−1 = en. (5.5)

Let us first assume that |a| < 1. Recall the examples below from Chpater 1:
Then A(z−1) = 1 + az−1 6= 0 for |z| = 1, and by the above theorem a unique solution

exists. The existence and uniqueness of the solution can directly be seen as follows. First
assume that a w.s.st. solution exists. Then iterating (5.5) we get after m steps

yn =
m−1∑
k=0

(−a)ken−k + (−a)myn−m.

The residual term (−a)myn−m tends to 0 for m→∞ in L2(Ω,F , P ), thus we get

yn =
∞∑
k=0

(−a)ken−k. (5.6)

It is easy to see that the right hand side is indeed convergent in L2(Ω,F , P ) for |a| < 1.
This proves uniqueness. It is also easy to see that the process defined by (5.6) is indeed
a solution of (5.5), proving existence.
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Figure 5.9: AR(1) process with a stable positive pole

Exercise 5.1. Prove that (yn) defined by (5.6) does indeed satisfy (5.5).

Equations (5.5) and (5.6) also imply that He
n ⊂ Hy

n and Hy
n ⊂ He

n and thus

He
n = Hy

n.

It follows that (en) is the innovation process of (yn).

Figure 5.10: AR(1) process with almost unstable positive pole

Let us now consider an AR(1) process defined by (5.5) with |a| > 1. Then, again,
A(z−1) = 1 + az−1 6= 0 for |z| = 1, thus a unique solution of (5.5) exists. However,
iterating (5.5) as above does not yield a representation of the form (5.6). Nevertheless,
if we rewrite (5.5) in the form

yn−1 = −1

a
yn +

1

a
en,

and iterate this equation forward in time we get that yn must be of the form

yn =
∞∑
k=0

(−1

a
)k

1

a
en+k+1.
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Exercise 5.2. Show that the r.h.s. is well-defined, and (yn) does indeed satisfy (5.5).

Thus y is expressed via the future of the wide sense stationary orthogonal process e.
Therefore we conclude that

yn 6∈ He
n,

and thus (en) is not the innovation process of (yn).

Figure 5.11: AR(1) process with almost unstable negative pole

5.4 Stable AR systems

Let us now consider a higher order AR process defined by

A(q−1)y = e (5.7)

with degA = p > 1. We can ask ourselves: under what conditions e is the innovation
process of y.

Obviously, a backward iteration of (5.7), that worked nicely for p = 1, is not easily
manageable. Hence we will settle the issue within the framework of spectral representa-
tion. Obviously, we have He

n ⊂ Hy
n as before. To prove the opposite inclusion, Hy

n ⊂ He
n,

we need to express yn in terms of the past of en. This will be certainly possible, if the
rational function 1/A(e−iω) can be expanded into a power series of e−iω. The possibility
of such an expansion is clearly related to the position of the zeros of A(z−1).

Definition 5.2. A polynomial of z−1, A(z−1) =

p∑
k=0

akz
−1, with a0 = 1 is called stable

if
A(z−1) 6= 0 for |z| ≥ 1.
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Lemma 5.3. If A is a stable polynomial with a0 = 1 then

1/A(e−iω) =
∞∑
k=0

hke
−ikω, h0 = 1,

where convergence on the right hand side is uniform in ω.

It follows immediately that the r.h.s converges also in Lc2([0, 2π], dω).

Proof. Consider the function 1/A(z−1) with z taking its values in C. The equation
A(z−1) = 0 has, counted with multiplicity, exactly p roots. Hence, the stability of
A(z−1) implies that 1/A(z−1) is analytic in {z : |z| > 1 − ε} with some ε > 0, or
equivalently, analytic in z−1 for {z−1 : |z−1| < 1 + ε} with some ε > 0. Therefore it can
be expanded into a Taylor series of z−1 around 0

1/A(z−1) =
∞∑
k=0

hkz
−k (5.8)

which is convergent uniformly for |z−1| < 1 + ε with some ε > 0. It follows that (5.8)
converges uniformly for |z| = 1. Finally, h0 = 1 follows by evaluating the two sides of
(5.8) for z−1 = 0.

Let us now consider the AR(p) process (yn) defined by

A(q−1)y = e (5.9)

where (en) is a wide sense stationary orthogonal process, and A(q−1) is a polynomial of
q−1 with degA = p and a0 = 1.

Proposition 5.4. If the polynomial A(z−1) is stable then e is the innovation process of
y.

Proof. Obviously en ∈ Hy
n, thus we need only to prove that yn ∈ He

n. Now

dζy(ω) =
1

A(e−iω)
dζe(ω) = (

∞∑
k=0

hke
−ikω)dζe(ω).

Thus

yn =

∫ 2π

0

einω(
∞∑
k=0

hke
−ikω)dζe(ω).

Since the infinite series on the right hand side (multiplicated by einω) converges in
Lc2([0, 2π], dω), we can interchange the integration and the summation to get

yn =
∞∑
k=0

hk

∫ 2π

0

einωe−ikωdζe(ω) =
∞∑
k=0

hken−k.

Remark. The converse result also holds: if A(z−1) is a polynomial with A(z−1) 6= 0 for
|z| = 1 and the AR(p) process (yn) defined by (5.9) has (en) for its innovation process,
then A(z−1) is stable.
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5.5 MA processes

A simple class of wide sense stationary processes is obtained by taking a finite moving
average of an orthogonal process e = (en). Thus let e = (en) be a wide sense stationary
orthogonal process and define

yn =
m∑
k=0

cken−k (5.10)

Exercise 5.3. Show that (yn) is a wide sense stationary process.

Definition 5.5. A wide sense stationary process defined by (5.10) is called a moving
average (MA) process, or more precisely MA(m) process.

In addition to the examples given in Chapter 1 the graphs of a simulated MA(4) process
are displayed below:

Figure 5.12: MA(4) process with small positive zeros. The actual values are
0.1, 0.3, 0.5, 0.7.

Figure 5.13: MA(4) process with large negative zeros. The actual values are
−0.6,−0.7,−0.8,−0.9.

In engineering terminology we would say that yn is obtained by passing an orthogonal
process through a finite impulse response (FIR) filter.
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Figure 5.14: MA(4) process with large complex zeros.The actual values are: lengths
equal to 1, arguments ±0.3π and ±0.7π.

The autocovariance function of this process can be computed as follows:

r(k) =



m∑
j=0

c2j k = 0

m−k∑
j=0

cjcj+k 0 < k ≤ m

0 k > m

c−k k < 0.

Thus the coefficients (c0, . . . , cm) uniquely determine autocovariances (r(0), r(1), . . . , r(m)).
In the other direction uniqueness is not true. We show a simple example.
Example. Consider the w.s.st. processes:

yn = en + ben−1 (5.11)

zn = ben + en−1. (5.12)

Assume b 6= 1, then the two processes are different. Nevertheless, their autocovariances
are the same, we have

r(k) =


1 + b2 k = 0
b k = 1
0 k > 1

r(−k) k < 0

.

Rearrange (5.11) to get en and iterate this equation. We get the following formal series

en = yn − bet−1 = yn − b(yn−1 − ben−2) = · · · =
∞∑
k=0

(−1)kbkyn−k. (5.13)
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Similarly, from equation (5.12) we get

en =
1

b
(zn − en−1) =

1

b
zn −

1

b
(
1

b
zn−1 − en−2) = · · · = 1

b

∞∑
k=0

(−1)k
1

bk
zn−k. (5.14)

We get two formal infinite series reconstruction of (en). A process is called invertible if the
reconstruction of (en) is possible. In this example it is equivalent with the convergence
of the formal infinite series.

Exercise 5.4. Show that (5.13) is well-defined, if
∞∑
k=0

b2k < ∞, i.e. |b| < 1. Similarly,

(5.14) is well-defined if |b| > 1.

Hence, although the autocovariances of both processes are the same, only one of them
is invertible, depending on the value of b.

5.6 ARMA processes

Let us now consider the combination of AR and MA processes.

Definition 5.6. A wide sense stationary process is called an ARMA process if it sat-
isfies the difference equation

A(q−1)y = C(q−1)e, (5.15)

where (en) is a w.s.st. orthogonal process, and A, C are polynomials of the backward
shift operator q−1. The degrees p and r of A(q−1) and C(q−1), respectively, are called the
orders of the ARMA process.

Writing

A(q−1) =

p∑
k=0

akq
−k, C(q−1) =

r∑
k=0

ckq
−k

we assume that a0 = c0 = 1. If the degrees of A(q−1) and C(q−1) are p and q, respectively,
then also ap 6= 0 and cr 6= 0. If we want to stress the orders we say that (yn) is an
ARMA(p, r) process.

The graphs of simulated ARMA(2, 2) processes together with their auto-covariance
functions are displayed on the figures below:

Straightforward extensions of Propositions 5.1 and 5.4 are the following results:

Proposition 5.7. Assume that A(z−1) 6= 0 for |z| = 1. Then there is a unique w.s.st.
process satisfying (5.15).

Exercise 5.5. Prove the above proposition.
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Figure 5.15: ARMA(2, 2) process with similar AR poles and MA zeros. The actual poles:
length 0.8, arguments ±0.3π, the actual zeros: length 0.9 arguments ±0.4π.

Figure 5.16: Autocovariance of ARMA(2, 2) process with similar AR poles and MA zeros.
The actual poles: length 0.8, arguments ±0.3π, the actual zeros: length 0.9 arguments
±0.4π.

Figure 5.17: ARMA(2, 2) process with complex AR poles with small negative real part
combined with two negative MA zeros. The actual poles: length 0.8, arguments ±0.6π,
the actual zeros: −0.6,−0.9.

Proposition 5.8. Assume that A(z−1) and C(z−1) are stable polynomials. Then (en) is
the innovation process of (yn).

Exercise 5.6. Prove the above proposition.
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Figure 5.18: Autocovariance of ARMA(2, 2) process with complex AR poles with small
negative real part combined with two negative MA zeros. The actual poles: length 0.8,
arguments ±0.6π, the actual zeros: −0.6,−0.9.

Figure 5.19: ARMA(2, 2) process with complex AR poles with large negative real parts
combined with two real negative MA zeros. The actual poles: length 0.8, arguments
±0.9π, the actual zeros: −0.6,−0.9.

Figure 5.20: Autocovariance of ARMA(2, 2) process with complex AR poles with large
negative real part combined with two negative MA zeros. The actual poles: length 0.8,
arguments ±0.9π, the actual zeros: −0.6,−0.9.
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5.7 Prediction

Now we have all the machinery to revisit the prediction problem in general, and for
ARMA processes in particular. Let (yn) be a completely regular w.s.st. process with
innovation process (en). Then we can write

yn =
∞∑
k=0

hken−k (5.16)

with
∞∑
k=0

h2
k <∞. The one-step ahead predictor of yn is then given by

ŷn =
∞∑
k=1

hken−k. (5.17)

Here we have taken into account that Hy
n−1 = He

n−1, and hence

(yn|Hy
n−1) = (yn|He

n−1).

To complete the above argument we have to express e in term of y. This can be done
best in the spectral domain. Let us write (5.16) in the form

dζy(ω) = H(e−iω)dζe(ω).

Then
dζe(ω) = H−1(e−iω)dζy(ω). (5.18)

Note that the right hand side is well defined, since H−1(e−iω) ∈ Lc2(dF
y(ω)), we have

dF y(ω) = |H(e−iω)|2dω. The one-step ahead predictor given by (5.17) can be described
by

dζby(ω) = (H(e−iω)− 1)dζe(ω). (5.19)

Combining (5.18) and (5.19) we get the following result:

Proposition 5.9. Let y = (yn) be a completely regular wide sense stationary process
given by (5.16). Then its one step ahead predictor ŷ = (ŷn) is obtained via the spectral
representation measure

dζby(ω) = (1−H−1(e−iω))dζy(ω).

The above result provides a general solution to the prediction problem for regular processes.
A shortcoming of this result that it is formulated in the spectral domain.
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It is important to stress that H−1(e−iω) may not be written as an infinite series
∞∑
k=0

gke
−ikω which is convergent in Lc2(dF

y(ω)). In other words, a linear filter in frequency

domain (amounting to re-weighting the frequencies) does not necessarily have a time
domain representation. However, the situation is simplified considerably in the case of
ARMA processes.

Let (yn) be a wide sense stationary ARMA process defined by

A(q−1)y = C(q−1)e (5.20)

where A(z−1) and C(z−1) are stable polynomials. Then e is the innovation process of y,
and setting

H(e−iω) = C(e−iω)/A(e−iω)

we can write (5.20) as
dζy(ω) = H(e−iω)dζe(ω).

The stability of A(z−1) implies that

H(e−iω) =
∞∑
k=0

hke
−ikω

where the right hand side converges in L2(dω). Applying Proposition 5.9 we get

dζby(ω) = (1− A(e−iω)/C(e−iω))dζy(ω).

Multiplying both sides by C(e−iω) and converting the resulting equality to time domain
we get the following result:

Proposition 5.10. Let (yn) be a wide sense stationary ARMA process given by (5.20),
where A(z−1) and C(z−1) are stable. Then the one-step ahead prediction process ŷ is
defined by the equation

C(q−1)ŷ = (C(q−1)− A(q−1))y

Note that a0 = c0 = 1 implies that the constant term of (C(q−1)−A(q−1) is 0, and hence
the result of its action on y at any time n can be computed using only values of y up to
time n− 1. Thus we do get a genuine one-step ahead predictor.

The prediction of three ARMA processes, using AR(4) approximation, are displayed
below. The predicted processes are displayed in yellow.

In dealing with actual data prediction is based on models based on the data, therefore
the exact true dynamics is unknown. It is therefore an interesting experiment is to see
the effect of parametric uncertainty onto prediction. In the figures below we display
three AR(4)-processes together with their predictors based on artificially and randomly
perturbed models. It is interesting to note that these misspecified predictors perform
remarkably well:
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Figure 5.21: AR(4) Prediction of ARMA(2, 2) process with similar AR poles and MA
zeros. The actual poles: length 0.8, arguments ±0.3π, the actual zeros: length 0.9
arguments ±0.4π.

Figure 5.22: AR(4) Prediction of ARMA(2, 2) process with complex AR poles with small
negative real part combined with two negative MA zeros. The actual poles: length 0.8,
arguments ±0.6π, the actual zeros: −0.6,−0.9.

Figure 5.23: AR(4) Prediction of ARMA(2, 2) process with complex AR poles with large
negative real part combined with two negative MA zeros. The actual poles: length 0.8,
arguments ±0.9π, the actual zeros: −0.6,−0.9.
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Figure 5.24: Prediction of AR(4) process with two positive poles and two almost unstable
complex pose whose real part is positive with 10% perturbation of the coefficients. The
actual values: two real poles at 0.5, a pair of complex poles with length 0.8 and argument
±0.3π.

Figure 5.25: Prediction of AR(4) process with two positive poles and two almost unstable
complex pose whose real part is negative with 10% perturbation of the coefficients. The
actual values: two real poles at 0.5, a pair of complex poles with length 0.8 and argument
±0.6π.

5.8 ARMA processes with unstable zeros

Let us now consider the problem of predicting an ARMA process when C(z−1) not
necessarily stable.

An innocent looking example is

yn = e′n − c′e′n−1

with |c′| > 1. The obvious thing to do is to find an alternative representation of (yn) in
terms of its innovation process, which we denote by (en). To see how this can be done
we consider a general MA process (yn) given by

y = C ′(q−1)e′ (5.21)

where C ′ is a polynomial of q−1 and (e′n) is a w.s.st. orthogonal process. Assuming
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σ2(e′) = 1 the spectral density of (yn) is then given by

f(ω) = |C ′(e−iω)|2.

This can also be obtained by restricting the complex-function

g(z) = C ′(z−1)C ′(z)

to |z| = 1, since the coefficients of C ′ are assumed to be real. Let us now assume that
C ′(z−1) has an unstable root, say γ′. Then factorizing C ′(z−1) we will have a factor of
the form

c′(z−1) = 1− γ′z−1.

The effect of this factor in g(z) is

c′(z−1)c′(z) = (1− γ′z−1)(1− γ′z) = (z − γ′)(z−1 − γ′). (5.22)

Thus the zeros of the above rational function are γ′ and 1/γ′. It is now clear that we
can swap the role of γ′ and 1/γ′ without changing the function (5.22). Indeed, setting

c(z−1) = (1− (γ′)−1z−1) · γ′ = γ′ − z−1

we have
c′(z−1)c′(z) = (z − γ′)(z−1 − γ′) = c(z)c(z−1) = c(z−1)c(z).

The main benefit of this transformation is that the (first order) polynomial c(z−1) is
now stable. Replacing all factors of C ′(z−1) by stable ones we come to the following
conclusion.

Proposition 5.11. Let C ′(z−1) be a polynomial such that C ′(z−1) 6= 0 for |z| = 1. Then
∃ a stable polynomial C(z−1) with degC = degC ′ such that

C ′(z−1)C ′(z) = C(z−1)C(z). (5.23)

The decomposition of the spectral density of y in the form given by the r.h.s. of (5.23)
is called spectral factorization, and C(e−iω) is called a stable spectral factor. Setting
z = eiω we get a factorization of the spectral density of y, denoted by f(ω), as

f(ω) = C(e−iω)C(eiω) = |C(e−iω)|2.

Now, to find the innovation process of y, we will not invert (5.21), but rather define
a new process e by

dζe(ω) =
1

C(e−iω)
dζy(ω). (5.24)
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It is readily seen that the r.h.s. is well defined since 1/C(e−iω) is in Lc2(dF
y(ω)). Moreover

the spectral density of e is ∣∣∣∣C ′(e−iω)C(e−iω)

∣∣∣∣2 = 1.

Thus e is a w.s.st. orthogonal process. Since

y = C(q−1)e,

with C(z−1) stable, e is the innovation process of y. To summarize we obtained the
following result:

Proposition 5.12. Let y = (yn) be an MA process given in (5.21). Assume that
C ′(z−1) 6= 0 for |z| = 1. Let C(e−iω) be the stable spectral factor of f(ω), and define
e = (en) by (5.24). Then e is a w.s.st. orthogonal process,

y = C(q−1)e,

and e is the innovation process of y.

The above procedure can be extended to ARMA processes in a straightforward manner.
Let (yn) be a w.s.st. ARMA process given by

A′(q−1)y = C ′(q−1)e′,

where the polynomials A′(z−1) and C ′(z−1) are not necessarily stable, but A′(z−1) 6= 0
and C ′(z−1) 6= 0 for |z| = 1, and the process e′ is a w.s.st. orthogonal process with
σ2(e′) = 1. The spectral density of y is then given by

f(ω) =

∣∣∣∣C ′(e−iω)A′(e−iω)

∣∣∣∣2 .
Let A(e−iω) and C(e−iω) be the stable spectral factors of the denominator and the nume-
rator, respectively. Then

f(ω) =

∣∣∣∣C ′(e−iω)A′(e−iω)

∣∣∣∣2 =

∣∣∣∣C(e−iω)

A(e−iω)

∣∣∣∣2 .
The rational function C(e−iω)/A(e−iω) is called a stable spectral factor of f . Now define
the w.s.st. process e by

dζe(ω) =
A(e−iω)

C(e−iω)
dζy(ω) =

A(e−iω)

C(e−iω)
· C

′(e−iω)

A′(e−iω)
dζe

′
(ω).
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Note that the transfer function

G(e−iω) =
A(e−iω)

C(e−iω)
· C

′(e−iω)

A′(e−iω)

is such that
G(e−iω)G(eiω) = |G(e−iω)|2 = 1 (5.25)

for all ω. A transfer function satisfying (5.25) is called all-pass, indicating that all
frequencies are passed through the filter corresponding to G with unchanged energy.

It is readily seen that the new process e = (en) is a w.s.st. orthogonal process. This
is formally and generally stated in the next exercise.

Exercise 5.7. Let G be an all-pass transfer function, and let e′ be a w.s.st. orthogonal
process. Then the process e defined by

dζe(ω) = G(e−iω)dζe
′
(ω)

is also a w.s.st. orthogonal process.

The simplest example for an all-pass function was obtained above in factoring the
spectral density of a MA(1) process. This is obtained by taking a first order polynomial
C ′(z−1) = 1− γ′z−1, and swapping its zero γ′ for (γ′)−1, to get C(z−1) = γ′− z−1. Then

G(z−1) =
C ′(z−1)

C(z−1)
=

1− γ′z−1

γ′ − z−1

is all-pass.
Remark. Our result on the spectral factorization of C ′(z−1)C ′(z) does not cover the case
when C ′(z−1) = 0 for some |z| = 1. Consider e.g. the process

yn = en − en−1,

where now C ′(z−1) = 1− z−1, and thus C ′(1) = 0. To reconstruct e from y we consider
the corresponding spectral representation yielding

dζe(ω) =
1

1− e−iω
dζy(ω).

The r.h.s. is well defined in frequency domain. To get a time domain representation of
e in terms of y consider the approximating process en(c) defined by

dζe(c)(ω) =
1

1− ce−iω
dζy(ω),
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with |c| < 1. It is easy to see that

lim
c↗1

1

1− ce−iω
=

1

1− e−iω

in Lc2(|C(e−iω)|2(dω)), and also

1

1− ce−iω
=

∞∑
k=0

cke−ikω

in Lc2(|C(e−iω)|2(dω)). It follows that

en = lim
c↗1

∞∑
k=0

ckyn−k.

Thus en ∈ Hy
n, and it follows that e is the innovation process of y. In particular, the

one-step ahead predictor of y is given by

ŷn = en−1 = lim
c↗1

∞∑
k=0

ckyn−1−k.
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Chapter 6

Multivariate time series

6.1 Vector valued wide sense stationary processes

Let us now consider the situation when we consider the price movements of several
commodities simultaneously. Let the number of commodities be s, and let the Rs-valued
price-vector at time n be yn. If there is an interaction between individual prices, which is
often the case, then we expect to get better predictions for the individual price processes
when treating them simultaneously. Therefore we need a theory of vector-valued wide
sense stationary processes. The next definition is a straightforward extension of the
definition for the scalar case.

Definition 6.1. The Rs-valued stochastic process (yn), −∞ < n < +∞ is called wide
sense stationary if E|yn|2 <∞ for all n, Eyn = 0 for all n, and the covariance matrix

R(τ) = E(yn+τy
>
n )

is independent of n.

The matrix-valued function (R(τ)) is called the auto-covariance function of (yn). Obvi-
ously, we have

R(−τ) = R(τ)>.

As in the scalar case, the condition Eyn = 0 can be replaced by the condition that
Eyn = m with some fixed vector m ∈ Rs for all n.

The definition extends to Cs-valued (complex) processes in a natural manner by
requiring that

R(τ) = E(yn+τyn
>)

is independent of n. In this case we have

R(−τ) = R(τ)>.
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As in the scalar case, an eminent role is played by what are called wide sense stationary
orthogonal processes.

Definition 6.2. The Rs-valued stochastic process (en) is called a wide sense stationary
orthogonal process if it is wide sense stationary, and in particular

Een+τe
>
n = 0 for τ 6= 0 and Eene

>
n = Σ for all n,

where Σ is a fixed, s× s symmetric positive semi-definite matrix.

Note that Σ may be equal to any symmetric positive semi-definite matrix, i.e. (en) should
not be normalized so that its covariance matrix is I.

Now all the results that we had for R-valued or C-valued wide sense stationary
processes can be generalized to (real or complex) vector-valued, wide sense stationary
processes. Let (yn) be a Rs-valued w.s.st. process.

If the components of yn denote the prices of some commodities then the expectation
of the next day value of a commodity, the price of which is correlated to the components
of yn can be reasonably expressed by taking a set of vectors a1, . . . ap in Rs, and defining

zn =

p∑
k=1

a>k yn−k.

Exercise 6.1. Show that (zn) is an Rs-valued wide sense stationary process and we have

Ez2
n =

p∑
k=1

p∑
l=1

a>k R(k − l)al ≥ 0. (6.1)

Thus the block matrix R defined by the blocks

Rk,l = R(k − l), k, l = 1, . . . , p (6.2)

is positive semi-definite. The size of R is (ps)× (ps).

Definition 6.3. A ps×ps matrix R consisting of m×m blocks satisfying (6.2) is called
a block-Toeplitz matrix.

Note that a block-Toeplitz matrix is not necessarily Toeplitz in the usual sense, since
already the diagonal (1, 1) block, equal to R(0) = E(yny

>
n ), is not Toeplitz in the usual

sense.

Definition 6.4. Let R(τ), −∞ < τ < +∞ be a sequence of s × s matrices such that
R(−τ) = R(τ)>. Then (R(τ)) is called positive semi definite sequence, if the associated
block-Toeplitz matrix defined by (6.2) is positive semi-definite for all p.
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Thus we came to the following conclusion:

Proposition 6.5. The auto-covariance matrices R(τ), −∞ < τ < +∞ of a vector-
valued wide sense stationary process (yn) form a positive semi definite sequence.

Exercise 6.2. Prove the converse statement: let R(τ), −∞ < τ < +∞ be a positive
definite sequence of real-valued, s× s matrices. Then it is the auto-covariance sequence
of an Rs-valued, wide sense stationary Gaussian process.

6.2 Prediction and the innovation process

Let now (yn) be an Rs-valued wide sense stationary process. To define the history of
(yn) up to time n− 1 expressed via a Hilbert space we consider first the linear space of
R-valued (!) random variable -s

Lyn−1 =

{
p∑

k=1

a>k yn−k, for some p, and ak ∈ Rs

}
.

Thus Lyn−1 is a subspace of L2(Ω,F , P ). We define Hy
n−1 as the closure of Lyn−1 in

L2(Ω,F , P ). Note once again, that Hy
n−1 is thus a Hilbert space of real-valued random

variables. Defining the past of (yn) this way is natural when thinking of linear prediction.
Namely, it would be unnatural to define the past of y via the linear space consisting of
Rs-valued random variables w =

∑p
k=1 akyn−k for some p with scalar-valued ak-s, and

thus significantly restricting the range of available predictors.
Let Ls2(Ω,F , P ) denote the Hilbert-space of Rs-valued random variables x such that

E|x|2 = Ex>x <∞.

The projection of a random variables x in Ls2(Ω,F , P ) onto Hy
n−1 will be defined com-

ponentwise:

x̂ = (x|Hy
n−1) =

(
(x1|Hy

n−1), . . . , (xs|H
y
n−1)

)>
.

Then for the error vector x̃ we have

x̃ = x− x̂ ⊥ Hy
n−1

where orthogonality is meant componentwise, i.e. we have for all k = 1, ..., s

x̃k ⊥ Hy
n−1.

With this preparation we can now define innovation process (en) via

en = yn − (yn|Hy
n−1). (6.3)

A vector valued process (yn) is called singular, if its innovation process is an identically
0 process, or equivalently if

Hy
n = Hy

n−1 for all n. (6.4)
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Exercise 6.3. Show that en ≡ 0 is indeed equivalent to (6.4).

A novel phenomenon that we did not have in the scalar case is that the covariance-
matrix of en, say

Σ = Eene
>
n

may be non-zero, but singular. If α ∈ Rs is a non-zero vector such that Σα = 0, then

α>Σα = α>Eene
>
nα = E(α>en)

2 = 0

implies that
α>en = 0

w.p.1. It follows that the process
zα,n = α>yn

is singular. Assuming that, say, α1 6= 0, we can express y1,n with arbitrary accuracy
using its own strict past and the history of y2, ..., ys up to time n.

6.3 Spectral theory

In this section the spectral theory for multivariate wide sense stationary processes will
be discussed briefly, with the main steps of the proof. The first step is the appropriate
representation of the auto-covariances R(τ) extending Herglotz’s theorem.

Assume first that the auto-covariance function of (yn) satisfies

∞∑
τ=−∞

‖R(τ)‖2 <∞, (6.5)

where ‖R‖ denotes the operator norm of the matrix R, i.e.

‖R‖ = max
x 6=0

|Rx|/|x|.

Theorem 6.1. Let (yn) be an Rs-valued wide sense stationary process, and let R(τ) be
its auto-covariance function. Assume that R(τ) satisfies (6.5). Then we have

R(τ) =
1

2π

∫ 2π

0

eiτωf(ω)dω, (6.6)

where f(ω) is a symmetric, positive semi-definite matrix-valued function in Ls×s2 (dω).
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Proof. (Outline.) Let α ∈ Rs and consider the scalar process

zα,n = α>yn.

If the components of yn denote the prices of various stocks at time n, and the components
of α denote the amounts of stocks held by an investor, (allowing negative components,
i.e. allowing short positions), then α>yn is the value of the portfolio at time n. The
auto-covariance function of zα,n is

rα(τ) = α>R(τ)α.

It is obvious by (6.5) that
∞∑

τ=−∞

(rα(τ))2 < +∞, hence, by the special case of the

scalar version of Herglotz’s theorem, we have

rα(τ) =
1

2π

∫ 2π

0

eiωτfα(ω)dω,

where fα(ω) ≥ 0 is the spectral density corresponding to rα(τ). We also know how to
get fα(ω) from rα(ω) explicitly via

fα(ω) =
∞∑

τ=−∞

rα(τ) e−iτω.

Here convergence on the r.h.s. is meant in Lc2(dω) = Lc2([0, 2π], dω). Substituting rα(τ) =
α>R(τ)α we get

fα(ω) =
∞∑

τ=−∞

α>R(τ)α e−iτω . (6.7)

Taking finite truncations of the right hand side of (6.7) we get that

N∑
τ=−N

α>R(τ)αe−iτω = α>(
N∑

τ=−N

R(τ)e−iτω)α (6.8)

converges in L2(dω) for any α. From here we would like to conclude that

fN(ω) =
N∑

τ=−N

R(τ)e−iτω

itself converges in Ls×s2 (dω).
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Exercise 6.4. Prove that a quadratic form α>Fα, with F symmetric, determines the
bilinear form corresponding to F uniquely as

β>Fγ =
1

4

(
(β + γ)>F (β + γ)− (β − γ)>F (β − γ)

)
. (6.9)

Taking F = fN , and taking any pair of unit vectors in Rs, say, β = ek, γ = el we
conclude that

∞∑
τ=−∞

R(τ)e−iτω =: f(ω)

converges in L2(dω) componentwise, and thus also in Ls×s2 (dω). It follows that we have

fα(ω) = α>f(ω)α for any α ∈ Rs.

Obviously f(ω) is symmetric, and fα(ω) ≥ 0 for any α implies that f(ω) is positive
semi-definite, and this concludes the proof.

In the general case we expect to get a representation of the form

R(τ) =
1

2π

∫ 2π

0

eiτωdF (ω), (6.10)

where F (ω) is a matrix-valued function, which is monotone-nondecreasing in some sense.
This is indeed the case, as stated in the next theorem:

Theorem 6.2. Let (yn) be an Rs-valued wide sense stationary process, and let R(τ) be
its autocovariance function. Then we have

R(τ) =
1

2π

∫ 2π

0

eiτωdF (ω), (6.11)

where F (ω) is a matrix-valued function such that the increments of F (·) are symmetric
positive definite matrices. The elements of the matrix-valued function F (·) are functions
of finite variations, and thus the above integral is defined as a Riemann-Stieltjes integral.
We can also assume that F (·) is l.c. and that F (0) = 0.

Proof. The proof follows the logic of the proof for the scalar case. Consider the truncated
sequences

RN(τ) =

{
R(τ) for |τ | ≤ N
0 otherwise.

Then RN(τ) is a positive definite sequence of s× s real matrices, for which the condition
of Theorem 6.1, namely condition (6.5), is satisfied. Thus, by Theorem 6.1, we can write

RN(τ) =
1

2π

∫ 2π

0

eiωτfN(ω)dω
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with fN(ω) symmetric, positive semidefinite. Also we have

R(0) = RN(0) =
1

2π

∫ 2π

0

fN(ω)dω

for all N .
Now we would like to select a subsequence (Nk) such that the matrix-valued measures

fNk
(ω)dω converges weakly to some matrix-valued measure dF (ω). The simplest way to

do this is to refer to weak convergence theory of measures.

A more elementary argument, using Helly’s theorem, is given below. For the sake of
convenience we formulate the possibility of such a selection in the lemma below.

Lemma 6.6. There exists a single subsequence (Nk) such that for all j, l = 1, ..., s the
measures fNk,j,l(ω) dω converge weakly to some measure dFj,l(ω), formally written as

fNk,j,l(ω) dω ⇒ dFj,l(ω).

Here the matrix-valued function F (·) = (Fj,l(·)) is such that its increments are symmetric,
positive semi-definite.

Proof. First, take any fixed α ∈ Rs, and consider the scalar-valued positive functions
α>fN(ω)α. By the above equality we have for all N

α>R(0)α = α>RN(0)α =
1

2π

∫ 2π

0

α>fN(ω)αdω.

Since the measures α>fN(ω)αdω are concentrated on [0, 2π] there exists a subsequence
(Nk) such that the measures α>fNk

(·)α dω converge weakly to some measure dFα(·),
defined by a monotone non-decreasing function Fα(·), i.e.

α>fNk
(ω)α dω ⇒ dFα(ω).

Using the fact once again that a quadratic form uniquely determines the correspond-
ing bilinear form as given in (6.9), it follows that for any fixed pair β, γ ∈ Rs there exists
a subsequence (Nk) such that

β>fNk
(ω)γ dω ⇒ dFβ,γ(ω),

where Fβ,γ(ω) is now the difference of two monotone non-decreasing functions. Obviously,
Fβ,γ(·) is a function of finite variation.

Setting β = ej, γ = el, with ej, el denoting unit vectors, and letting j, l vary over
j, l = 1, . . . , s, we conclude that there exists a single subsequence (Nk) such that

fNk,j,l(ω) dω ⇒ dFj,l(ω).
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Let F (ω) denote the matrix with elements Fj,l(ω).
To prove that the increments of F are symmetric, positive semi-definite, note that

with the above single subsequence Nk we have that for any α ∈ Rs

α>fNk
(ω)αdω =

∑
j, l

αjαlfNk,j,l(ω) dω ⇒
∑
j,l

αjαldFj, l(ω).

Compactly written this reads as

α>fNk
(ω)αdω ⇒ α> dF (ω) α.

Since the matrix fNk
(ω) is symmetric, positive semi-definite for all ω, it follows that the

increments of α> F (ω) α are non-negative for any α ∈ Rs. Thus the increments of F (·)
are symmetric, positive semi-definite, and the proof of the lemma is complete.

Now, weak convergence implies that the integrals of any bounded, continuous function
converge, in particular for the function eiωτ we have

lim
k

∫ 2π

0

eiωτfNk,j,l(ω)dω =

∫ 2π

0

eiωτdFj,l(ω).

In compact form we can write this as

lim
k

∫ 2π

0

eiωτfNk
(ω) =

∫ 2π

0

eiωτdF (ω),

Now, since the l.h.s. equals R(τ) for Nk ≥ τ , the required representation of R(τ) follows.
Finally, as in the case of the definition of a probability measure via a probability

distribution, in defining the measure dFj,l(ω) via Fj,l(ω) we have the freedom to choose
Fj,l(·) l.c. (or r.c.). If we choose Fj,l(·) to be l.c. (corresponding to defining the probability
distribution function as P (ξ < x)), then we may assume Fj,l(0) = 0. This completes the
proof.
Remark. Note that if the dFj,l-measure of the single point {0} happens to be positive,
then Fj,l(·) will be discontinuous at ω = 0.

Exercise 6.5. ∗ Let F (·) be an s × s matrix-valued function on [0, 2π] such that the
increments F (·) are symmetric and positive semidefinite. Then for any k, l = 1, . . . , s
the elements Fk,l(ω) are of finite variations.

If the measure dF (ω) has a density, i.e. if

dF (ω) = f(ω)dω
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then we have

R(τ) =
1

2π

∫ 2π

0

eiτωf(ω)dω.

The function f is called the spectral density. A key property of f(ω) is that it is symmetric
and positive semidefinite a.s., i.e.

f(ω) ≥ 0 a.s.

Exercise 6.6. Show that for an Rs-valued orthogonal wide sense stationary process (en)
with covariance matrix Λ = Eene

>
n we have

f(ω) = Λ for ∀ω.

6.4 Filtering

Let us now consider the effect of filtering. Let (yn) be an Rs-valued wide sense stationary
process and define

vn =

p∑
k=0

hkyn−k,

where the hk-s are r× s matrices. Define the matrix-valued frequency response function

H(e−iω) =

p∑
k=0

hke
−iωk.

Then we have the following result:

Proposition 6.7. The spectral distribution of the process v is given by

dF v(ω) = H(e−iω)dF y(ω)H(eiω)>.

Exercise 6.7. Prove Proposition 6.7.

To extend the above result from FIR filters to the general case, i.e. to filters with
infinite number of impulse responses we should ask ourselves: how do we associate a
Hilbert-space with the matrix-valued measure dF? The natural choice is to take Rs-
valued or Cs-valued measurable functions. Consider the set of Cs-valued measurable
functions g(ω) such that their squared norm defined as∫ 2π

0

g(ω)
>
dF (ω)g(ω)dω =

∫ 2π

0

g>(ω)dF (ω)g(ω)

is finite. The space of these functions will be denoted by Lc,s2 (dF ).
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Extending the above definition, we may similarly define a Hilbert-space Lc,r×s2 (dF )
of r× s matrices. Let k(ω) be a measurable function with its values being r× s matrices
with complex entries, with 0 ≤ ω ≤ 2π. We say that k(ω) is in Lc,r×s2 (dF ) if each row of
k(ω) is in Lc,s2 (dF ), or equivalently, if∫ 2π

0

tr k(ω)dF (ω)k(ω)
>
< +∞.

Having defined Lc,r×s2 (dF ) we can now extend the previous result for filters with infinite
number of impulse responses. So let us consider the linear filter of the form

vn =
∞∑
k=0

hkyn−k, (6.12)

where the impulse responses hk are r× s real matrices. Consider the associated (matrix-
valued) frequency response function

H(e−iω) =
∞∑
k=0

hke
−iωk. (6.13)

Then we have the following result:

Proposition 6.8. Assume that the right hand side of (6.13) converges in Lc,r×s2 (dF ).
Then the process (vn) under (6.12) is well-defined, i.e. the right hand side converges in
Lc,r2 (Ω,F , P ), and the spectral distribution of (vn) is given by

dF v(ω) = H(e−iω)dF y(ω)H>(eiω).

Exercise 6.8. Prove the above proposition following the proof for the scalar case.

6.5 Multivariate random orthogonal measures

To describe the spectral representation of the process (yn) itself we need the concept
of Cs-valued random orthogonal measures. Let ζ(ω), 0 ≤ ω ≤ 2π be a Cs-valued,
measurable* stochastic process such that for all ω we have ζ(ω) ∈ Lc,s2 (Ω,F , P ), or
equivalently,

Eζ(ω)>ζ(ω) <∞.

Assume that ζ(0) = 0, and that ζ(ω) is a zero-mean process, i.e. Eζ(ω) = 0.

Definition 6.9. The stochastic process ζ(·) with the above properties is called a process
with orthogonal increments if for any two non-overlapping intervals, defined via 0 ≤ a <
b ≤ c < d ≤ 2π, the covariance matrix of the increments is 0, i.e.

E(ζ(b)− ζ(a))(ζ(d)− ζ(c))> = 0 ∈ Rs×s.
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The (matrix-valued) structure function corresponding to ζ(ω) is defined as

F (ω) = Eζ(ω)ζ(ω)
>
.

Integration with respect to a random orthogonal measure is defined by a straightfor-
ward extension of the scalar case. The most general problem of integration would be to
ask ourselves, how to define integrals of the form

I(k) =

∫ 2π

0

k(ω)dζ(ω)

where k(ω) is an r×s matrix. For a start we consider the simpler problem of integrating
a vector-valued function g with values, say in Cs. We find that

I(g) =

∫ 2π

0

g>(ω)dζ(ω)

is well-defined for any g ∈ Lc,s2 (dF ), defined as the set of measurable, Cs-valued functions
such that ∫ 2π

0

g>(ω)dF (ω)g(ω) <∞.

Then the following isometry property holds:

Theorem 6.3. We have for any g ∈ Lc,s2 (dF )

EI(g)I(g) = E|I(g)|2 =

∫ 2π

0

g>(ω)dF (ω)g(ω).

Thus I is an isometry from Lc,s2 (dF ) to Lc,s2 (Ω,F , P ).

Let now k(·) be an r × s matrix. We say that k(·) belongs to Lc,r×s2 (dF ), if all rows
of k(·) belong to Lc,s2 (dF ). Then the vector-valued stochastic integral

I(k) =

∫ 2π

0

k(ω)dζ(ω)

is well defined, simply taking integration row-wise. However, the isometry property of
stochastic integration now takes on a new interesting form.

Theorem 6.4. Let k(ω) be an r × s matrix such that k(·) ∈ Lc,r×s2 . Then we have the
matrix equality

E I(k) I(k)∗ =

∫ 2π

0

k(ω)dF (ω)k(ω)
>
,

with ∗ denoting transposition and conjugation.
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Proof. Let y = I(k), and let α ∈ Rr be an arbitrary vector. Consider the random
variable

α> y =

∫ 2π

0

α>k(ω)dζ(ω).

Since for the vector-valued function α>k(·) we have α>k(·) ∈ Lc,s2 (dF ), we have, by the
isometry property of scalar-valued stochastic integration, given as Theorem 6.4,

E|α>y|2 =

∫ 2π

0

α>k(ω)dF (ω)k(ω)
>
α.

The left hand side can be written as α>Eyy>α. Since α is arbitrary, the claim follows.

An interesting special case is the integration of a scalar-valued function, say g. The
integral

I(g) =

∫ 2π

0

g(ω)dζ(ω)

could be interpreted componentwise, if g(·) ∈ Lc2(dFl,l) for all l = 1, ..., s, or, equivalently,
if g(·) ∈ Lc2(tr dF ). Thus we get a vector-valued, more exactly Cs-valued, integral I(g).
However, the interaction between the components of dζ(ω) and I(g) is not reflected in
this componentwise procedure.

An alternative, better option is to write the integral above as

I(g) =

∫ 2π

0

g(ω) · I dζ(ω),

where I is an s × s identity matrix. Then, setting k(ω) = g(ω) · I, the integrability
condition would read as follows: for each l = 1, ..., s we should have g(·)el ∈ Lc,s2 (dF ),
(with el denoting the l-th unit vector). This is equivalent to saying that g(·) ∈ Lc2(dFl,l)
for each l, or briefly, g(·) ∈ Lc2( trdF ), just as above, which should not be a surprise.
Now, taking into account the isometry property given as Theorem 6.4 we get the following
result:

Theorem 6.5. . Let g(·) be a C-valued function such that g(·) ∈ Lc2(tr dF ). Then for
the stochastic integral

I(g) =

∫ 2π

0

g(ω) · I dζ(ω),

that can be interpreted as an integration componentwise, we have the matrix-equality

E I(g) I(g)∗ =

∫ 2π

0

|g(ω)|2dF (ω).
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All the above results stating various forms of isometry can be extended from quadratic
forms to bilinear forms. Thus, e.g., the last result would yield: if g(·) and h(·) are C-
valued functions such that g(·), h(·) ∈ Lc2(tr dF ), then we have the matrix-equality

E I(g) I(h)∗ =

∫ 2π

0

g(ω) h(ω)dF (ω). (6.14)

Especially when choosing g = einω and h = eimω, we get the following beautiful general-
ization of the corresponding scalar result:

Theorem 6.6. Let dζ(ω) be a Cs-valued random orthogonal measure, with structure
function dF (ω). Then the Cs-valued process

yn =

∫ 2π

0

einωdζ(ω)

is wide sense stationary, and its spectral distribution function is given by

dF y(ω) = 2π dF (ω).

Exercise 6.9. Prove Theorem 6.6.

6.6 The spectral representation theorem

The centerpiece of spectral theory is the following spectral representation theorem, ex-
tending the corresponding result from scalar to the multivariate case:

Theorem 6.7. Let (yn) be an Rs-valued (Cs-valued) wide sense stationary process. Then
there exists a unique random orthogonal measure dζ(ω) with values in Cs such that

yn =

∫ 2π

0

einωdζ(ω)

The idea of the proof is to reduce the problem to the scalar case by considering the
processes zαn = α>yn with various α-s. Details will be given at the end of the chapter.

To understand the effect of linear filter on the spectral representation process we
need to describe the multivariate change of measure formula. Let dζ(·) be a Cs-valued
random orthogonal measure with structure function dF (·). Let k(·) be an r×s, complex
matrix-valued function such that k(·) ∈ Lc,r×s2 (dF ).

Proposition 6.10. Under the conditions above the change of measure formula

dη(ω) = k(ω)dζ(ω)

defines a Cr-valued random orthogonal measure dη(ω) having the r×r structure function

dG(ω) = k(ω)dF (ω)k(ω)
>
.
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Integration with respect to the new measure dη is reduced to integration with respect
to dζ in a straightforward manner:

Proposition 6.11. Let h(·) be a q × r complex matrix-valued function in Lc,q×r2 (dG).
Then ∫ 2π

0

h(ω)dη(ω) =

∫ 2π

0

h(ω)k(ω)dζ(ω).

6.7 Linear filters

In this section we study the effect of linear filter on the spectral representation process.
Let (yn) be an Rs-valued (Cs-valued) wide sense stationary process with spectral repre-
sentation process dζy(ω) and define

vn =

p∑
k=0

hkyn−k

where the hk-s are r × s real matrices. Let

H(e−iω) =

p∑
k=0

hke
−iωk.

Exercise 6.10. Show that the spectral representation process of v is given by

dζv(ω) = H(e−iω)dζy(ω).

Let us now consider infinite linear combinations, i.e. let

vn =
∞∑
k=0

hkyn−k. (6.15)

where the hk-s are r × s matrices.

Exercise 6.11. Assume, that the infinite series

H(e−iω) =
∞∑
k=0

hke
−iωk.

converges in Lc,r×s2 (dF y). Then the spectral representation process of (vn) is

dζv(ω) = H(e−iω)dζy(ω).

(Hint : Take a finite truncation, and take the limit).

Exercise 6.12. Re-derive the formula for the spectral distribution measure of v:

dF v(ω) = H(e−iω)dF y(ω)H>(eiω)

using the exercise above.
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6.8 Proof of the spectral representation theorem

The basic idea of the proof is very simple: consider the processes

zαn = α>yn,

with α being an arbitrary vector in Rs, and let the spectral representation of zαn be ζα(ω).
I.e. let

zαn =

∫ 2π

0

einωdζα(ω).

We have seen that ζα(ω) can be obtained as the limit of linear transformations of zαn . It
will be easily seen that these linear transformations are independent of α, and if applied
to the process (yn) itself then, after taking the limit, we shall obtain the required spectral
representation measure of (yn).

Recall that stochastic integration with respect to the random orthogonal measure
dζα(ω) is an isometry mapping Lc2(dF

α), with Fα = α>Fα, onto Hzα
, the Hilbert-space

spanned by zαn ,−∞ < n <∞. Letting this isometry be denoted by Iα we have

Iα(e
inω) = zαn .

Moreover, for any characteristic function χ[0,a)(ω) with 0 ≤ a ≤ 2π we have

Iα(χ[0,a)(ω)) = ζα(a).

To express the spectral representation measure ζα(a) via the observed process zαn we
proceed to express χ[0,a)(ω) via einω, as the limit of trigonometric polynomials converging
in Lc2(dF

α).
Now observe that for |α| = 1 the measure dFα = α>dFα is majorized by the measure

tr dF = d trF . Note that (einω), −∞ < n < +∞ is dense in Lc2(tr dF ). Thus if we
represent χ[0,a)(ω) as the limit of trigonometric polynomials converging in Lc2(dtr F ), say

χ[0,a)(ω) = lim
N

+N∑
k=−N

cN,ke
ikω, (6.16)

then the right hand side will converge also in Lc2(dF
α) for any |α| = 1. The expression

of ζα(a) via zαn is obtained by the isometry Iα, or equivalently, by stochastic integration
w.r.t. zαn , giving

ζα(a) = lim
N

+N∑
k=−N

cN,kz
α
k .

Here the right hand side converges in Lc2(Ω,F , P ) for any α.
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Now the sum on the right hand side can be written as

α>
+N∑

k=−N

cN,kyk = α>ζN(a)

with

ζN(a) =
+N∑

k=−N

cN,kyk.

Thus we can write that
ζα(a) = lim

N
α>ζN(a).

Since α can be an arbitrary unit vectors in Rs, we conclude that

lim
N→∞

ζN(a) = ζ(a)

exists, with convergence meant in Lc,s2 (Ω,F , P ). It follows that we can write

ζα(a) = α>ζ(a).

Exercise 6.13. Let ζ(a), 0 ≤ a < 2π be an Cs-valued stochastic process such that for
any α ∈ Rs the scalar-valued process α>ζ(a), 0 ≤ a < 2π has orthogonal increments.
Then the process ζ(·) itself has orthogonal increments.

By the exercise above ζ(·) is a process with orthogonal increments, and obviously

α>yn = zαn =

∫ 2π

0

einωdζα(ω) = α>
∫ 2π

0

einωdζ(ω).

Since α is arbitrary, the spectral representation for (yn) follows.
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Chapter 7

State-space representation

7.1 From multivariate AR(1) to state-space equa-

tions

We have seen so far that a key technical tool in handling wide sense stationary processes
is their spectral representation. The purpose of this section is to extend our arsenal
with another powerful method that is called state space representation of wide sense
stationary processes.

To motivate our discussion recall that there was a simple - but not trivial - example in
our previous investigations, for which a direct analysis, avoiding spectral representation,
was possible. This was the example of a stable AR(1) process defined via the equation

yn + ayn−1 = en,

with |a| < 1, and (en) a wide sense stationary orthogonal process.
Let us now consider a multivariate AR(1) process given by the equation

xn+1 = Axn +Bvn (7.1)

with xn ∈ Rs and vn ∈ Rt, where (vn) is assumed to be a wide sense stationary orthogonal
process with Evnv

T
n = Σvv. The vector xn in (7.1) is called a state vector, and (7.1) is

called state-space system. More exactly we would call this a state-space system with
full observation. Note here that, in contrast to the scalar case, the noise term vn with
index n enters the definition of the state-vector xn+1 rather than xn. This discrepancy
in notations is due to historical reasons, and is preserved in current literature.

We can now ask ourselves: under what condition does a wide sense stationary causal
solution (xn) exists. Following the arguments for the scalar case we get by iterating
equation (7.1) τ ≥ 1 times
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xn+1 = Aτxn+1−τ +
τ−1∑
k=0

AkBvn−k. (7.2)

In order to be able to transfer our arguments for AR(1) processes from the scalar case
to the multivariate case we need to assume that limn ‖An‖ = 0. Since

lim
n
‖An‖1/n = ρ(A),

with ρ(A) denoting the spectral radius of A, i.e.

ρ(A) = max
i=1,...s

|λi(A)|,

where λi(A), i = 1, . . . s denote the eigenvalues of A, we will have limn ‖An‖ = 0 exactly
if ρ(A) < 1.

Definition 7.1. A square, s × s A matrix is stable (in discrete sense) if ρ(A) < 1.
Equivalently, an s× s matrix A is stable (in the discrete sense) if all its eigenvalues are
in the open unit disc D = {z : |z| < 1} of the complex plane, i.e. all the roots of the
polynomial equation

|zI − A| = 0

are in D.

Now repeating the arguments given for scalar valued AR(1) processes we come to the
following result:

Proposition 7.2. Let us consider the multivariate linear stochastic equation (7.1). Let
A be a stable s× s matrix. Then (7.1) has a unique wide sense stationary solution (xn),
given by

xn+1 =
∞∑
k=0

AkBvn−k. (7.3)

It follows that x is a causal linear function of v, more exactly, for all n

Hx
n+1 ⊂ Hv

n.

Remark. Note the shift in the time index, due to the way we write state-space equations.

Exercise 7.1. Prove the above proposition.

It may be of interest to see how a proof would go in the spectral domain. We can
now ask ourselves: under what condition does a wide sense stationary causal solution
exist? To answer this question we proceed as in the scalar case. Letting q−1 denote the
backward shift operator equation (7.1) can be written as

(qI − A)x = Bv.

We need the following lemma:
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Lemma 7.3. Let A be an s× s stable real matrix. Then

(eiωI − A)−1 =
∞∑
k=1

hke
−ikω, h1 = I

with some sequences of s× s real matrices hk, where convergence in the right hand side
is understood in the sense of Lc,s×s2 (dω). In fact, convergence is also uniform in ω.

Exercise 7.2. Prove the Lemma 7.3.

Exercise 7.3. Prove the Proposition 7.2 using Lemma 7.3.

We note in passing that by the very same spectral methods we can also easily get
an answer to the following question: under what condition does a wide sense stationary
(not necessarily causal) solution of (7.1) exist?

Proposition 7.4. Assume, that eiωI −A is not singular for all ω ∈ [0, 2π]. Then (7.1)
has a unique solution.

Exercise 7.4. Prove the above Proposition 7.4.

As we have seen, state space equations provide a very convenient tool to model
multivariate w.s.st. processes. To conclude this section we complete this discussion by
noting that the above class of processes can be extended by allowing what is called
partial observation. Mathematically speaking we consider the dynamics given by the
set of equations

xn+1 = Axn +Bvn (7.4)

yn = Cxn +Dwn, (7.5)

where the dimension of the observed process y (simply called observation) is typically
much smaller than the dimension of the state process x. The observation noise Dwn is
assumed to be such that the matrix D is square, and dimw = dimy.

Condition 7.5. The joint noise process (vn, wn),−∞ < n < ∞ is a w.s.st. orthogonal
process with covariance matrix (

Σvv Σvw

Σwv Σww

)
. (7.6)

The above set of equation for modelling a multivariate time series is called a state-
space model or linear stochastic system. The foundations of the theory of linear stochastic
systems has been laid down by the Kyoto prize laureate Hungarian scientist R. Kalman.
This theory revolutionized the research in the theory of wide sense stationary processes,
especially by allowing a very effective solution of the so-called filtering problem, to be
discussed below.
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7.2 Auto-covariances and the Lyapunov-equation

A remarkable property of stable state-space systems is that the covariance-matrix of the
state-vector and the auto-covariance function of (xn) or (yn) are very easily computed.
To get the covariance function of (xn) take the dyadic product of (7.1) with itself:

xn+1x
T
n+1 = Axnx

T
nA

T +Bvnv
T
nB

T + Axnv
T
nB

T +Bvnx
T
nA

T . (7.7)

Now the representation (7.3) implies that xn ∈ Hv
n−1 and hence

xn ⊥ vn.

Then taking expectation on both sides of (7.7) we get the following result:

Proposition 7.6. Let (xn) be a w.s.st. process defined by the state-space equation (7.1)
where A is stable. Then P = Exnx

T
n satisfies the equation

P = APAT +BΣvvB
T . (7.8)

The latter equation is called a (discrete-time) Lyapunov equation.

Exercise 7.5. Show that P can be written as

P =
∞∑
k=0

AkBΣvvB
T (AT )k. (7.9)

Exercise 7.6. Show directly, with purely algebraic arguments, that, if A is stable, the
Lyapunov-equation (7.8) has a unique solution P , and show that it can be written in the
form (7.9). Prove that the solution P , given by (7.9), is positive semi-definite.

To compute the auto-covariance function of xn note that iterating (7.1) forward in
time τ times, with τ ≥ 1, we get

xn+τ = Aτxn +
τ−1∑
k=0

AkBvn+τ−1−k.

Now note that vn+τ−1−k ⊥ xn for 0 ≤ k ≤ τ − 1. Thus taking the dyadic product of the
above equation with itself and taking expectation we come to the following conclusion:

Proposition 7.7. Let (xn) be the wide sense stationary process defined by the state-space
equation (7.1), with A stable. Then for the covariance function of (xn) we have

R(τ) = Exn+τx
T
n = AτP for τ ≥ 0.
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For τ ≤ 0 we have

R(τ) = Exn+τx
T
n = (Exnx

T
n+τ )

T = R(−τ)T ,

and thus
R(τ) = P (AT )τ for τ ≤ 0.

Exercise 7.7. Consider two Lyapunov equations (7.8) with a common stable A and
such that

B1Σ1,vvB
T
1 ≤ B2Σ2,vvB

T
2 .

Let the solutions be denoted by P1 and P2. Show that P1 ≤ P2.

Let us now consider a general linear stochastic system given by

xn+1 = Axn +Bvn

yn = Cxn +Dwn, (7.10)

see (7.4)-(7.5). Then the autocovariance function of (yn) can be directly obtained from
the autocovariance function of (xn) as follows:

Proposition 7.8. Let (yn) be the wide sense stationary process defined by the state-
space equation (7.4)-(7.5), with A stable. Then the auto-covariance function of (yn) is
obtained by

Ry(0) = E(yny
T
n ) = CPCT +DΣwwD

T and (7.11)

Ry(τ) = E(yn+τy
T
n ) = CAτPCT for τ ≥ 1. (7.12)

Exercise 7.8. Prove that for τ < 0 we have R(τ) = R(−τ)T .

Note that the state-space description of a w.s.st. process is far from being unique.
First of all, the map from (v, w) can be realized in an infinite number of ways by al-
lowing coordinate transformations of the state-space. Letting T be a non-singular linear
transformation of the state space define a new state-vector by

x′ = Tx.

Then we have

x′n+1 = TAT−1x′n + TBvn

yn = CT−1x′n +Dwn. (7.13)

It follows that the two systems below are equivalent in the sense that they generate the
same input-output mapping: (

A B
C D

)
. (7.14)
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is equivalent to (
TAT−1 TB
CT−1 D

)
. (7.15)

This transformation of the state-space systems is standard in the theory of linear systems.
Now, if we look for a representation of the process (yn) only without specifying

the driving noise process (v, w), then an additional degree of freedom is in the choice
of the latter. This problem can be reformulated as the problem of realizing a given
auto-covariance sequence Ry(.) in the form given by Proposition 7.8. This is called the
stochastic realization problem.

Initialization at time 0. Let us consider the situation when the state-space equation
is initialized at n = 0, rather than assuming that −∞ < n < +∞. This is the case when
we process observed data using a time-invariant linear filter with the observations starting
at 0. Let us assume that Ex0 = 0 and it has a finite covariance, say

Ex0x
T
0 = P0.

Then, as it is easily seen, the covariance matrix of xn, say Pn = Exnx
T
n , satisfies

Pn+1 = APnA
T +BBT (7.16)

with initial condition P0.

Exercise 7.9. Prove the validity of the recursion (7.16) for Pn.

Exercise 7.10. Show that if A is stable, then Pn converges to the unique solution of
(7.8).

Controllability. Let us now consider the problem: under what condition is the state-
covariance matrix non-singular, or equivalently, positive definite? This question is of
practical interest. Namely, if the state-covariance matrix is singular, then the state-
process lives on a proper linear subspace. In this case we may try to find an alternative
description of our system using a state-vector of smaller dimension.

If the noise in the state equation is non-degenerated, i.e. if Σvv is non-singular, then
we may assume Evnv

T
n = I by simply redefining vn as Σ

−1/2
vv vn and B as BΣ

1/2
vv . Let us

introduce the ”matrix”
C∞ = (B, AB, A2B, . . . )

having s rows and an infinite number of columns. Then we can write P as

P = C∞CT∞.

Now rank(P ) = s exactly if rank(C∞) = s. Let us now focus on the column rank of C∞.
Since, by the Cayley-Hamilton theorem

n∑
k=0

αkA
k = 0, αn = 1,
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where
∑n

k=0 αkλ
k is the characteristic polynomial of A, we have that all the columns of

An can be expressed via the columns of the so-called controllability matrix

C = (B, AB, A2B, . . . An−1B). (7.17)

But then, by induction, the same is true for all powers of A, say Am with m ≥ 0. Thus
it follows that

rankC∞ = rankC.

Thus we come to the following conclusion:

Proposition 7.9. Let (xn) be a w.s.st. process defined by the state-space equation (7.1)
where A is stable, and Σvv is nonsingular. Then P = Exnx

T
n is non-singular exactly

when the controllability matrix C has full rank.

7.3 State space representation of ARMA processes

Linear stochastic systems given by a state-space system are not only simple and elegant
construction. They also serve as powerful tools for analyzing processes of more complex
structures, such as ARMA processes. Let us first consider a w.s.st. AR(p) process (yn)
defined by

A(q−1)y = e, (7.18)

where A(z−1) 6= 0 for |z| ≥ 1, a0 = 1 and ap 6= 0. In other words, the polynomial A is
stable, and the order of the AR-process is exactly p. Define the state vector

xn = (yn−1, . . . , yn−p). (7.19)

Note, that the shift in the time index (xn vs yn−1) is not accidental. This is the way
tradition has established itself. Then the dynamics of xn can be described by first noting
that

xn+1,1 = yn = −a1yn−1 · · · − apyn−p + en.

The remaining coordinates of xn+1 are obtained by shifting the coordinates of xn one
position down, e.g.

xn+1,2 = xn,1.

To describe the state-space dynamics in matrix-vector notation define the matrix Ã by

Ã =


−a1 . . . −ap
1 0

. . . . . .

1 0

 . (7.20)
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Definition 7.10. The matrix Ã is the companion matrix associated with the polynomial
A(z−1).

Define the p dimensional vector

b = (1, 0, . . . 0)T .

Then the above arguments lead to the following proposition:

Proposition 7.11. The process (yn) can be realized by the state-space system

xn+1 = Ãxn + ben (7.21)

yn = bTxn+1, (7.22)

where the state-vector process (xn) is defined by (7.19), Ã is the p× p companion matrix
defined under (7.20) and b = (1, 0, . . . 0)T .

Note that the observation equation is not quite in the standard form, we have xn+1 rather
than xn on the right hand side.

We assumed that A(z−1) is a stable polynomial, hence e is the innovation process of
y, thus Hy

n = He
n. It follows that Hx

n+1 = He
n. Thus we may guess that the stability of

A(z−1) implies the stability of Ã. To see this we need the following general simple result:

Proposition 7.12. We have

|zI − Ã| = zpA(z−1).

Proof. The r.h.s. equal

zpA(z−1) = zp + a1z
p−1 + · · ·+ ap.

Let the left hand side be denoted by αp(z), i.e. let

αp(z) =


z + a1 a2 . . . ap
−1 z . . . 0

. . . . . .

−1 z

 .

Obviously the proposition is true for p = 1. We use induction. Expanding the above
determinant by the last column we get

αp(z) = zαp−1(z) + αp(−1)p+1(−1)p−1 = zαp−1(z) + αp.

This is exactly the same recursion that zpA(z−1) satisfies, thus the proposition is true
for all p.
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Corollary 7.13. Let degA(z−1) = p and let ap 6= 0. Then the eigenvalues of Ã are
identical with the roots of A(z−1).

In particular, if A(z−1) is stable, then Ã is also stable, and the above machinery developed
for computing the auto-covariance function for state-space systems is applicable.

Exercise 7.11. Prove that RN is non-singular by taking a state-space representation of
y.
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Chapter 8

Kalman filtering

8.1 The filtering problem

A major advance in the theory of w.s.st. processes is the explicit solution of the so-called
filtering problem using state-space theory. The solution is the celebrated Kalman-filter.
To formulate the problem let us consider a w.s.st. process (yn) given by the state space
equation, with −∞ < n <∞,

xn+1 = Axn +Bvn (8.1)

yn = Cxn +Dwn, (8.2)

where A is a stable matrix and (vn, wn) is a w.s.st orthogonal process with covariance
matrix

E

(
vn
wn

)
(vTn , w

T
n ) =

(
Rvv Rvw

Rwv Rww

)
.

Problem statement. We formulate three closely related problems. The first is the
problem of prediction. To predict (yn) we need to find a representation of y in terms of
its innovation process

νn = yn − (yn|Hy
n−1)

of the form
y = H(q−1)ν (8.3)

where H(q−1) is a causal linear filter. This is called the innovation representation of
y. Conditions under which the above filter is well-defined has been given in the chapter
”Multivariate time series”. The possibility of such a representation for multivariate w.s.st.
processes given by a state-space systems will be proven below.

A closely related problem of practical relevance is to predict the hidden state xn in
terms of the past of the observation process y, i.e. to determine

x̂n = (xn|Hy
n−1).
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This problem is called one-step ahead or predictive filtering. Finally, we may wish to
estimate xn in terms of values of y up to time n, i.e. to determine

xn = (xn|Hy
n).

This last problem is called simply filtering. A key ingredient of Kalman-filtering is the
discovery of an explicit, computable dynamics of the processes x̂n and xn.
From x̂n to xn: The first step in finding the dynamics of x̂n and xn is the observation
that

νn = yn − (yn|Hy
n−1)

implies that
Hy
n = Hy

n−1 ⊕ L(νn) (8.4)

where ⊕ indicates an orthogonal direct sum.

Exercise 8.1. Provide an argument for the validity of (8.4).

Now it follows that

xn = (xn|Hy
n) = (xn|Hy

n−1) + (xn|νn) = x̂n + (xn|νn), (8.5)

where (xn|νn) is the shorthand notation for (xn|L(νn)). Note that ν is a finite dimensional
r.v., hence we can write

(xn|νn) = Kνn (8.6)

with some matrix K of size s×m, which – if not unique,– may be chosen so that it does

not depend on n (due to the stationarity of

(
xn
yn

)
). If the covariance matrix EννT is

nonsingular, then K is unique. (See below.) We conclude that

xn = x̂n +Kνn. (8.7)

From xn to x̂n+1: The second observation is that by projecting both sides of the state
space equation (8.1) to Hy

n, and taking into account that vn ⊥ Hy
n, due to stability of A,

gives
x̂n+1 = (xn+1|Hy

n) = Axn. (8.8)

The innovation. The third observation is that

(yn|Hy
n−1) = (Cxn + wn|Hy

n−1) = Cx̂n.

This follows from the fact that
wn ⊥ Hy

n−1.
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Indeed, Hy
n−1 ⊂ Hx

n−1 + Hw
n−1, and Hx

n−1 ⊂ Hv
n−2, due to the stability of A. Thus the

orthogonality of the joint process (v, w) implies the claim. Thus

νn = yn − (yn|Hy
n−1) = yn − Cx̂n. (8.9)

Now combining (8.7), (8.8) and (8.9) we have arrived, with minimal effort, at the following
beautiful and important result:

Proposition 8.1. Assume that A is stable. Then the filtered process x̂n = (xn|Hy
n−1)

follows the state-space dynamics:

x̂n+1 = Ax̂n +Kνn (8.10)

νn = yn − Cx̂n. (8.11)

with some fixed K. If EννT is nonsingular, then K is unique.

Note that with this result we have completed a major step in the program set forth
by Kalman-filtering: namely, we have obtained a recursion for the predicted value of x.
Before adding further details, we also note that rearranging (8.10) we get:

x̂n+1 = Ax̂n +Kνn (8.12)

yn = Cx̂n + νn. (8.13)

Thus we have reproduced y in terms of its own innovation process ν. The causal linear
operator mapping ν to y is given by

H(q−1) = C(qI − A)−1K + I. (8.14)

A rigorous interpretation of H(q−1) can be given, as in the scalar case, using frequency
domain representation of the relevant processes ν, x̂ and y.

8.2 The Kalman-gain matrix

.
The next step is to determine the matrix K which is called the Kalman gain matrix.

Set x = xn. If dim x = dim ν = 1 then we can restrict ourselves to a 2-dimensional
subspace spanned by x and ν. Then the projection of x on ν is obtained by elementary
geometry as

x̂ =
E(xν)

E(νν)
· ν.

Indeed, the projection of x on ν is x̂ = λν with some λ ∈ R, such that x − x̂ ⊥ ν. It
means:

E((x− x̂)ν) = E((x− λν)ν) = E(xν)− λE(νν) = 0.
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From here we get λ =
E(xν)

E(νν)
.

This formula extends for the case when x and ν are vector-valued as

x̂ = E(xνT )(E(ννT ))−1ν (8.15)

assuming that EννT is nonsingular.

Exercise 8.2. Prove that the projection of the random vector x ∈ Ls2(Ω,F , P ) onto the
finite dimensional subspace of L2(Ω,F , P ) spanned by the components of ν is given by
(8.15).

Specializing this result to our case we get that

K = E(xνT ) (E(ννT ))−1. (8.16)

The covariance matrix of ν. To compute E(ννT ) note that

νn = yn − Cx̂n = (Cxn +Dwn)− Cx̂n = Cx̃n +Dwn, (8.17)

where
x̃n = xn − x̂n

is the state error process. Since xn ∈ Hv
n−1 and x̂n ∈ Hy

n−1 ⊂ Hv
n−2 +Hw

n−1, we have

x̃n ⊥ wn.

Thus – with the notation EvvT = Rvv etc. – we get from (8.17):

Rνν = CR
exexC

T +DRwwD
T . (8.18)

The covariance matrix of x̃. The covariance matrix R
exex can be obtained by noting

that xn = x̂n + x̃n and x̂n ⊥ x̃n imply

Rxx = R
bxbx +R

exex.

Now Rxx and R
bxbx can be obtained from the Lyapunov equations:

Rxx = ARxxA
T +BRvvB

T

R
bxbx = AR

bxbxA
T +KRννK

T .

Subtracting the second equation from the first one we get

R
exex = AR

exexA
T +BRvvB

T −KRννK
T . (8.19)
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The covariance matrix ExνT . To compute ExνT = E(xnν
T
n ) write xn = x̂n + x̃n and

note that x̂n ∈ Hy
n−1 implies

νn ⊥ x̂n.

Thus
Exnν

T
n = Ex̃nν

T
n = Ex̃n(Cx̃n +Dwn)

T .

Since wn ⊥ x̃n we get
Exnν

T
n = R

exexC
T . (8.20)

Thus we get, after substitution in (8.16):

K = R
exexC

TR−1
νν . (8.21)

Now we have a set of circular expressions for Rνν , Rexex and K given by (8.18), (8.19)
and (8.21). Expressing Rνν and K via R

exex we get a single equation for the latter, which
reads:

R
exex = AR

exexA
T +BRvvB

T −R
exexC

T (CR
exexC

T +DRwwD
T )−1CR

exex. (8.22)

The above matrix-equation is called an algebraic Riccati equation. Thus we arrived at
the following conclusion:

Proposition 8.2. Assume that the innovation process (νn) is non-degenerate, i.e. Rνν =
EννT is non-singular. Then the Kalman-gain matrix K is uniquely determined and is
given by

K = R
exexC

TR−1
νν ,

where R
exex is a symmetric positive definite solution of the algebraic Riccati equation

(8.22), and Rνν is readily expressed via R
exex as given in (8.18).

A simple condition that ensures that Rνν is nonsingular is that D and Rww are nonsin-
gular.
Reconstruction of ν. The reconstruction of ν from y is formally straightforward. Set-
ting νn = yn − Cx̂n in (8.13) we get

x̂n+1 = Ax̂n +K(yn − Cx̂n),

from which we get the inverse system:

x̂n+1 = (A−KC)x̂n +Kyn

νn = yn − Cx̂n.

The corresponding operator, mapping y to ν is:

H−1(q−1) = I − C(qI − A+KC)−1K. (8.23)
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Exercise 8.3. Derive the above expression from (8.14) using the matrix inversion lemma.

We would expect that A − KC is stable, or at least does not have any eigenvalue
outside the unit disc {z : |z| > 1}. However, the rigorous interpretation of the inverse
H−1(q−1), when A−KC has an eigenvalue of the unit circle, is beyond the scope of this
course.
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Chapter 9

Identification of AR processes

In the following two chapters we consider the problem of statistical analysis of a w.s.st.
time series (yn). Thus from now on we assume that we are given a sequence of observa-
tions y1, . . . , yN , and we ask ourselves, how to infer structural properties of the complete
process y = (yn). The first and obvious objective may be to estimate the auto-covariance
function r(τ). A natural candidate for this is the sample covariance:

r̂(τ) =
1

N − τ

N−τ∑
n=1

yn+τyn

for τ ≥ 0. Note that the values yn+τyn form a dependent sequence, therefore standard
laws of large numbers (LLN) formulated for independent sequences are not applicable.
Conditions under which r̂(τ) will converge to r(τ) will not be discussed in this course,
rather we will simply assume that this convergence does take place. Note, however,
that no matter how large N is, we will be able to estimate only a finite segment of the
auto-covariance function. Certainly, no estimates will be available for τ ≥ N .

In order to get meaningful results we have to restrict ourselves to time series the
structure of which can be perfectly described by a finite set of parameters. We will
consider three classes of processes: AR, MA and ARMA processes.

9.1 Least Squares estimate of an AR process

Let (yn) be w.s.st. stable AR(p) process defined by

yn + a∗1yn−1 + · · ·+ a∗pyn−p = en. (9.1)

The superscript ∗ indicates that the corresponding parameters are ”true parameters”, as
opposed to tentative values to be used later. Here (en) is, as usual, a w.s.st. orthogonal
process. Due to the assumed stability of A∗(z−1) =

∑p
k=1 akz

−k, the driving noise (en)
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is the innovation process of (yn). Our goal is to estimate θ∗ using observations from time
1 to N . Introducing the notations

ϕn = (−yn−1 · · · − yn−p)
T

and
θ∗ = (a∗1 · · · a∗p)T

equation (9.1) can be rewritten as

yn = ϕTn θ
∗ + en. (9.2)

The advantage of this reformulation is that the original model is now rewritten as a
linear regression model. More precisely, we get a (linear) stochastic regression, since the
sequence of regressor vectors (ϕn) is not independent of the noise sequence (en).

To estimate θ∗ using the observations y1, . . . yN a natural candidate is the least squares
(LSQ) method. Let us fix a tentative value of θ ∈ Rp, and define the error process

εn(θ) = yn − ϕTnθ.

Here we should restrict n to be at least p+1, to ensure that ϕTnθ is defined in terms of the
observations for all n. Alternatively, we may assume that y0, y−1, ..., y−p+1 are known.
Following the tradition of the system identification literature, we shall use the latter
option. Then, the LSQ estimation method amounts to minimizing the cost function
defined as the sum of the squared errors:

VN(θ) =
1

2

N∑
n=1

ε2
n(θ) =

1

2

N∑
n=1

(
yn − ϕTnθ

)2
.

Since εn(θ) = yn − ϕTnθ is the best mean-squared prediction error when θ = θ∗, the LSQ
estimate falls in the larger class of prediction error estimators, see the next chapter.

The above cost function is quadratic and convex in θ, therefore its minimum is at-
tained. Moreover for any minimizing value of θ we have

∂

∂θ
VN(θ) = 0.

Differentiating VN(θ) w.r.t. θ we get

∂

∂θ
VN(θ) =

N∑
n=1

εTθn(θ)εn(θ),

where the subscript θ denotes differentiation w.r.t. θ. Note that, following the convention
of matrix analysis, the gradient of a scalar-valued function is represented as a row vector.
Taking into account that

εθn(θ) = −ϕTn (9.3)
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we get the equation
N∑
n=1

−ϕTnεn(θ) = 0.

From here we get, after substituting εn(θ),

N∑
n=1

−ϕTn (yn − ϕTnθ) = 0.

This is a linear equation for θ, which certainly has a solution by the arguments above.
After rearrangement we get the following result:

Proposition 9.1. Let θ̂N be a least squares estimator of the AR-parameter θ∗ based on
N samples. Then θ̂N satisfies the following so-called normal equation:[

N∑
n=1

ϕnϕ
T
n

]
θ =

N∑
n=1

ϕnyn. (9.4)

The estimator θ̂N is unique if the coefficient-matrix of the normal equation, i.e.

SN =
N∑
n=1

ϕnϕ
T
n

is non-singular. Equivalently, the estimator θ̂N is unique if the normalized coefficient-
matrix of the normal equation,

RN =
1

N

N∑
n=1

ϕnϕ
T
n

is non-singular. Note that the elements of RN are just empirical auto-covariances of
(yn) : say, the (k, l)-th element reads as:

1

N

N∑
n=1

yn−kyn−l. (9.5)

To make use of this observation we impose the following assumption:

Condition 9.2. Assume that the empirical auto-covariances of y converge to the theo-
retical auto-covariances almost surely, i.e. for any fixed k, l we have

lim
N

1

N

N∑
n=1

yn−kyn−l = E yn−kyn−l = ry(l − k) a.s. (9.6)
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The above condition simply states the validity of a strong law of large numbers for the
dependent sequence zn = yn−kyn−l. A standard way to ensure this is to prove some kind
of mixing property of zn. However, we do not have the space to discuss further details.

Proposition 9.3. Let (yn) be a w.s.st. stable AR(p) process defined by (9.1). Assume
that Condition 9.2 is satisfied. Then the LSQ estimate θ̂N converges to the true system
parameter vector θ∗ almost surely.

Proof. Under the above condition we have

lim
N

1

N
SN = lim

N
RN = R∗ a.s., (9.7)

where R∗ is the p-th order auto-covariance matrix. (Recall that R∗ is a p×p, symmetric,
positive semi-definite Toeplitz matrix.)

Exercise 9.1. Prove that R∗ is non-singular.

Exercise 9.2. Prove that R∗ is non-singular by taking a state-space representation of y.

The r.h.s. of the normal equation, normalized by N, will be written as

−rN =
1

N

N∑
n=1

ϕnyn.

Under Condition 9.2, we have

lim
N

(−rN) = lim
N

1

N

N∑
n=1

ϕnyn = Eϕnyn = −r∗ a.s.,

where r∗ = (ry(1), ..., ry(p))T . Note that Eϕnyn can also be written as

Eϕnyn = Eϕn(ϕ
T
nθ

∗ + en) = R∗θ∗.

Thus we conclude that
lim
N

(−rN) = −r∗ = R∗θ∗.

Now, rewrite the normal equation (9.4) as follows:

RN θ̂N + rN = 0. (9.8)

Note that for any fixed θ the l.h.s. of the equation converges:

lim
N

(RNθ + rN) = (R∗θ −R∗θ∗) = R∗(θ − θ∗).

Since R∗ is non-singular, the claim follows by standard arguments.
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Exercise 9.3. * Show that Condition 9.2 implies that

lim
N

1

N

N∑
n=1

ϕnen = Eϕnen = 0 a.s. (9.9)

Remark. To conclude this subsection we note, that the normal equation can be simply
obtained (and memorized) as follows: multiply (9.2) from the left by ϕn, sum it form 1
to N and omit the terms containing (en), in view of the fact that

Eϕn en = 0

for all n. The beauty of this approach is that ϕn could be replaced by some other random
vector ψn such that

Eψn en = 0.

The vectors ψn are called instrumental variables. The the estimator of θ∗ is obtained
form the equation [

N∑
n=1

ψnϕ
T
n

]
θ =

N∑
n=1

ψnyn. (9.10)

This method is called the instrumental variable (IV) method, that has been widely used
in the early systems identification literature. The choice of an appropriate, convenient
instrumental variable ensuring the non-singularity of the modified normal equation de-
pends very much on the nature of the specific problem.

9.2 The asymptotic covariance matrix of the LSQ

estimate

Next, we may ask ourselves about the quality of the estimator θ̂N , such as its bias
and covariance matrix. Surprisingly (or not so surprisingly), the standard methods of
regression analysis are not applicable in the present case. It is readily seen that the error
θ̃N = θ̂N − θ∗ satisfies the equation

(
N∑
n=1

ϕnϕ
T
n )θ̃N =

N∑
n=1

ϕnen, (9.11)

and thus

θ̃N = (
N∑
n=1

ϕnϕ
T
n )−1

N∑
n=1

ϕnen.
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As opposed to standard regression analysis, we can not conclude from here that θ̂N is
unbiased, or equivalently that Eθ̃N = 0, due to the dependence of the regressor sequence
(φn) and the noise sequence (en).

By the same reasoning, we can not compute the covariance matrix of θ̂N in a straight-
forward manner. In fact, it is not even guaranteed, that θ̂N has a finite covariance matrix
(or finite second moments). As an example, consider an AR(1)-process

yn + a∗yn−1 = en,

with |a∗| < 1. Then the error of the LSQ estimate of the single pole a∗ is obtained as

ãN = (
N∑
n=1

yn−1en)/(
N∑
n=1

yn−1yn−1). (9.12)

Exercise 9.4. Assume that (en) is Gaussian. Show that (
∑N

n=1 yn−1yn−1)
−1 has no finite

expectation.

A simple remedy to the above difficulty is to consider an approximation of the error
process θ̃N by using the approximation

(
N∑
n=1

ϕnϕ
T
n )−1 ∼=

1

N
(R∗)−1,

and defining a new, approximating error process

˜̃θN =
1

N
(R∗)−1

N∑
n=1

ϕnen. (9.13)

The (asymptotic) covariance matrix of ˜̃θN is then completely determined by the (asymp-
totic) covariance matrix of

ρn =
1

N

N∑
n=1

ϕnen.

To have a nice expression for this we need an additional, standard assumption:

Condition 9.4. . Let {Fn},−∞ < n <∞, be an increasing family of σ-algebras, such
that en is Fn-measurable for all n. It is assumed that

E(en|Fn−1) = 0 and E(e2n|Fn−1) = σ2 = const. for all n.

In other words, (en) is a martingale-difference sequence with constant conditional vari-
ance w.r.t. Fn. Under the condition above, we have the following non-asymptotic result:
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Lemma 9.5. Under Condition 9.4 we have

Eρnρ
T
n =

1

N
R∗ σ2.

Proof. We have

Eρnρ
T
n = E

N∑
n,m=1

ϕnen · emϕTm.

For a fixed pair n < m we have

Eϕnen · emϕTm = E [E [ϕnen · emϕTm|Fm−1]] = E (ϕnen · ϕTm)[E [em|Fm−1]] = 0.

Here we used the fact that ϕn, en and ϕTm are Fm−1-measurable, and that (en) is a
martingale-difference sequence w.r.t. (Fn). On the other hand, for any fixed n = m we
have

E[ϕnen · enϕTn ] = E [E [ϕnen · enϕTn |Fn−1]] = E (ϕn · ϕTn ) [E [enen|Fn−1]].

By Condition 9.4 the last expression can be written as

E (ϕn · ϕTn )σ2 = R∗ σ2,

which proves the claim.

A direct consequence is the following proposition:

Proposition 9.6. Under Condition 9.4 the approximating error process ˜̃θN defined un-
der (9.13) has the following covariance matrix:

E˜̃θN
˜̃θ
T

N =
1

N
(R∗)−1σ2.

Note that this result is a mirror image of the corresponding result in the theory of linear
regression.

The asymptotic covariance matrices of the LSQ estimators, assuming unit variance
for the noise, are displayed for our three benchmark AR(4)-processes below:

The above result provides a guideline for the proof of an exact result. The first step
in that direction may be the modification of the estimator itself by truncation to ensure
finite second moments. One possible truncation is obtained as follows. Let K be a
sufficiently large positive number such that |θ∗| < K. Then define the truncated LSQ
estimator as

θN = K
θ̂N

|θ̂N |
for |θ̂N | > K and θN = θ̂N otherwise.
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P−1 =


0.974 −1.80 1.54 −0.565
−1.80 3.97 −3.75 1.54
1.54 −3.75 3.97 −1.80
−0.565 1.54 −1.80 0.974


Figure 9.1: The asymptotic covariance matrix for an AR(4) process with two positive
poles and two almost unstable complex pose whose real part is positive. The actual
values: two real poles at 0.5, a pair of complex poles with length 0.8 and argument
±0.3π.

P−1 =


0.974 −0.423 0.332 −0.436
−0.423 0.963 −0.419 0.332
0.332 −0.419 0.963 −0.423
−0.436 0.332 −0.423 0.974


Figure 9.2: The asymptotic covariance matrix for an AR(4) process with two positive
poles and two almost unstable complex pose whose real part is negative. The actual
values: two real poles at 0.5, a pair of complex poles with length 0.8 and argument
±0.6π.

P−1 =


1.00 1.00 0.349 0.0476
1.00 2.00 1.33 0.349
0.349 1.33 2.00 1.00
0.0476 0.349 1.00 1.00


Figure 9.3: The asymptotic covariance matrix for an AR(4) process with four small
negative poles. The actual values of the poles are −0.1,−0.2,−0.3,−0.4.

In trying to compute the asymptotic covariance matrix of this truncated estimator, we
would need to estimate the probability of actual truncations. This indicates that addi-
tional technical analysis is needed, which is beyond the scope of the course. We simply
note that under certain additional technical assumption, implying Condition 9.2, and
also assuming Condition 9.4 we have the following result: the truncated LSQ estimate
θN is asymptotically unbiased and its asymptotic covariance matrix is exactly what we

have obtained for the approximating error ˜̃θN :

lim
N
NE(θN − θ∗)(θN − θ∗)T = σ(e)2(R∗)−1.
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It is worth noting that the expression σ(e)2(R∗)−1 scales with e: multiplying e by a
constant c the variance σ(e)2 gets multiplied by c2. On the other hand, the process y
also gets multiplied by c, and hence R∗ gets multiplied by c2. Consequently, σ(e)2(R∗)−1

is unchanged. This is intuitively obvious from the fact that scaling e leaves the signal to
noise ratio (SNR) unchanged.

As we see the (asymptotic) quality of the LSQ estimator is completely determined by
the covariance matrix R∗. Recall that R∗ is exactly the covariance matrix of the state-
vector of the proposed state-space representation of (yn), and thus it is easily found, at
least in theory, as the solution of a Lyapunov-equation. Alternatively, we can use the
Yule-Walker equations to find the auto-covariances of y. Consider the example of an
AR(1) process:

yn + a∗yn−1 = en.

It is easily seen that R∗ = σ2(e)(1 − (a∗)2)−1, and thus the asymptotic variance of the
LSQ estimator of a∗ equals

1− (a∗)2.

It follows, that if as a∗ is close to ±1, then the asymptotic variance of the LSQ estimator
is close to 0. This is again intuitively plausible: if a∗ is close to ±1 then the AR-system
is nearly unstable, and hence the process (yn) will take on very large values, leading to a
very large SNR. We note in passing that AR processes with poles close to 1 are common
in modeling economic time series.

9.3 The recursive LSQ method

Assume that

SN =
N∑
n=1

ϕnϕ
T
n

is nonsingular, and thus positive definite for some N . Then SN ′ will be nonsingular for
any N ′ > N , and thus the LSQ estimator θ̂N ′ is uniquely defined. Assume that θ̂N is
available. Suppose we get one more observation yN+1. The question is then raised: do we
need to recompute S−1

N+1 and θ̂N+1 from scratch or is there a way to compute S−1
N+1 and

θ̂N+1 using S−1
N and θ̂N? This question is partially answered in the following celebrated

result:

Proposition 9.7. (The matrix inversion lemma.) Let

F =

(
A B
C D

)
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be a 2 × 2 block-matrix with A and D being square matrices. Assume that A, D are
non-singular and so is A−BD−1C. Then(

A−BD−1C
)−1

= A−1 + A−1B
(
D − CA−1B

)−1
CA−1.

In particular, D − CA−1B is nonsingular.

Proof. Consider the equation for the inverse of F :(
A B
C D

) (
X Y
U V

)
=

(
I 0
0 I

)
.

We will compute X via Gauss elimination in two different ways. We have

AX +BU = I (9.14)

CX +DU = 0. (9.15)

From the second equation
U = −D−1CX,

and thus we get from the first equation(
A−BD−1C

)
X = I.

Thus
X =

(
A−BD−1C

)−1
.

It follows that (9.14)–(9.15) has a unique solution (X,U).
An alternative way of applying Gauss elimination is to start with the first equation.

Then we get
X = A−1(I −BU). (9.16)

Substituting into the second equation we get

CA−1(I −BU) +DU = 0,

from which we get
(D − CA−1B)U = −CA−1.

Since U is uniquely determined, D − CA−1B must be nonsingular. Substituting the
resulting U in (9.16) we get

X = A−1 + A−1B(D − CA−1B)−1CA−1,

and the lemma follows. Q.e.d.
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Remark. To memorize the matrix inversion lemma the following exercise may be useful:

Exercise 9.5. Assume that A and D are non-singular. Then

d

dε

(
A− εBD−1C

)−1

∣∣∣∣
ε=0

= A−1BD−1CA−1.

A special case of the matrix inversion lemma is the following result:

Proposition 9.8. (The Sherman-Morrison lemma.) Let A be a square matrix, and let
b, c be vectors of the same dimension. Assume that A is non-singular and so is A+ bcT .
Then (

A+ bcT
)−1

= A−1 − 1

(1 + cTA−1b)
A−1bcTA−1.

In particular, 1 + cTA−1b 6= 0.

Exercise 9.6. Prove the Sherman-Morrison lemma.

A direct corollary of the above lemma is a recursion for the inverse of the coefficient
matrix SN of the normal equation. Noting that we have

SN+1 = SN + ϕN+1ϕ
T
N+1,

and setting A = SN , b = c = ϕN+1, we get the following recursion:

Proposition 9.9. Let SN denote the coefficient matrix of the normal equation. Assume
that SN is non-singular for some N. Then we have the following recursion:

S−1
N+1 = S−1

N − 1

1 + ϕTN+1S
−1
N ϕN+1

S−1
N ϕN+1ϕ

T
N+1S

−1
N .

To get a recursion for θ̂N let us consider the normal equation at time N + 1:

SN+1θ̂N+1 =
N+1∑
n=1

ϕnyn. (9.17)

Write the right hand side as

N∑
n=1

ϕnyn + ϕN+1yN+1 = SN θ̂N + ϕN+1yN+1.

The trick is to express SN via SN+1 as follows: SN = SN+1 − ϕN+1ϕ
T
N+1. Substituting

this expression into the equality above the normal equation at time N + 1 becomes:

SN+1θ̂N+1 = (SN+1 − ϕN+1ϕ
T
N+1)θ̂N + ϕN+1yN+1. (9.18)

Multiplying by S−1
N+1, taking out ϕN+1, and using the notation RN = SN/N, we get the

following fundamental result, called the recursive least squares (RLSQ) method:
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Proposition 9.10. (The RLSQ method). Assume that SN , and thus RN , is non-singular,

and let θ̂N be the LSQ estimate of θ∗. Then θ̂N+1 and RN+1 can be computed via the re-
cursion

θ̂N+1 = θ̂N +
1

N + 1
R −1
N+1 ϕN+1(yN+1 − ϕTN+1θ̂N) (9.19)

RN+1 = RN +
1

N + 1
(ϕN+1ϕ

T
N+1 −RN) (9.20)

Note that the term (yN+1−ϕTN+1θ̂N) is an approximation to (yN+1−ϕTN+1θ
∗), which is just

the innovation eN+1. Also note that the expectation of the correction term (yN+1−ϕTN+1θ)
is zero exactly when θ = θ∗.
Remark. Setting

RN =
1

N
RN

we can write

θ̂N+1 = θ̂N +
1

N + 1
R

−1

N+1 ϕN+1(yN+1 − ϕTN+1θ̂N)

RN+1 = RN +
1

N + 1
(ϕN+1ϕ

T
N+1 −RN)

The LSQ method and its recursive version is applicable for any wide sense stationary
process to find the best p-th order one step ahead predictor, i.e. find the solution of the
minimization problem

E(yn − ϕTnα) → min
α
.

The solution of it was found to be the solution of the linear equation in this form, see
(9.4):

Rα = r.

Remark. Note that the recursive LSQ estimator above is just a recursive form for the
off-line LSQ estimator. It follows that, under the conditions of Proposition 9.3 θ̂N and
RN converge to θ∗ and R∗, respectively. On the other hand, the RLSQ method stands
on its own: taking any initial values θ̂0 and R0, such that R0 is positive definite, we can
compute a sequence of estimators θ̂N and RN . If we take this point of view a standard
choice for θ̂0 would be any a priori (experimental) estimate of θ∗, while R0 would be
R0 = δI, with some δ > 0. Surprisingly, the analysis of this modified RLSQ method is
orders of magnitude harder, and requires a completely new arsenal of techniques. We
are not much better off with the truncated version of the off-line LSQ method either,
because it does not have a simple recursive form.
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Chapter 10

Identification of MA and ARMA
models

10.1 Identification of MA models

Let us now consider the problem of identifying an MA and ARMA model. Surprisingly,
this is a much more demanding task than identifying an AR model. Thus, first consider
an MA process (yn) defined by

y = C∗(q−1)e,

with

degC∗ = r, C∗ =
r∑
l=0

c∗l q
−l, c0 = 1,

where (en) is a w.s.st. orthogonal process. We use the superscript ∗ to indicate that the
corresponding parameters are the true, but unknown parameters generating the data.
We will use the notation

θ∗ = (c∗1, . . . , c
∗
r)
T .

Condition 10.1. We assume that the polynomial C∗(z−1) is stable, i.e. all the roots of
the equation C∗(z−1) = 0 lie in the open unit disc of the complex plane.

Note that under this condition e is the innovation process of y.
The key idea in identifying an MA process, widely used in other context as well in

system identification, is the (attempted) reconstruction of the driving noise sequence
e1, ..., eN by inverting the system generating our observed data y1, ..., yN . Thus, let us
take a polynomial C(q−1) with

degC = r, C =
r∑
l=0

clq
−l, c0 = 1,
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and define an estimated driving noise process ε = (εn) by

ε = C−1(q−1)y. (10.1)

According to our convention, this equality is to be understood on −∞ < n < +∞. It
is easily seen from previous results that if C(z−1) 6= 0 for |z| = 1, then the process ε is
well-defined. The latter equation can also be written as

C(q−1)ε = y. (10.2)

Now, if data are available only for n ≥ 1, then (10.2) can solved recursively for ε,
assuming that the initial values of ε are given.

As an example, take the inverse of an MA(1) process:

εn + c1εn−1 = yn, n ≥ 1.

To generate ε1 we would need to know ε0 which is not available. In general, for the
inversion of an MA(r) system we would need to know the values of εn for −r+1 ≤ n ≤ 0.
The best we can do to circumvent this difficulty is to take arbitrary initial values for εn
for −r + 1 ≤ n ≤ 0. A standard choice is εn = 0 for −r + 1 ≤ n ≤ 0. Then, we need to
study the effect of the initial value on our estimation procedure.

Altogether, we need to introduce a dual definition of the estimated noise process (εn),
depending on the time horizon in which we work. We will make this distinction explicit
in what follows. Let us now introduce the notation

θ = (c1, . . . , cr)
T .

The w.s.st. process εn defined by (10.2) defined over −∞ < n < +∞ will be denoted
from now on as ε∗n(θ). I.e. ε∗n(θ) is defined by

C(q−1)ε∗(θ) = y, −∞ < n < +∞. (10.3)

On the other hand, when (10.2) is solved for n ≥ 0, with zero initial conditions, then the
resulting process will be denoted by (εn(θ)). I.e. εn(θ) is defined by

C(q−1)ε(θ) = y, n ≥ 0, ε0(θ) = · · · = ε−r+1(θ) = 0. (10.4)

To ensure that the the choice of initial values does not affect the asymptotic behavior of
the estimator we need the following condition:

Condition 10.2. We assume that the polynomial C(z−1) is stable, i.e. all the roots of
the equation C(z−1) = 0 lie in the open unit disc of the complex plane.
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To see why this condition is useful, note that a state-space realization of the system
(10.4) with y as input and ε(θ) as output, is obtained by defining the state vector

xn = (εn−1(θ), . . . , εn−r(θ))
T .

Then we have for n ≥ 1

xn+1(θ) = C̃xn(θ) + byn x1(θ) = 0 (10.5)

εn(θ) = bT xn+1(θ), (10.6)

where C̃ is the companion matrix associated with C(z−1), and b = (1, 0, ..., 0)T is a unit
vector in Rr. The parallel state-space system, defined over −∞ < n <∞, is written as

x∗n+1(θ) = C̃x∗n(θ) + byn (10.7)

ε∗n(θ) = bT x∗n+1(θ). (10.8)

Note that we have exactly the same dynamics, the two systems differ only in the initial-
ization of the state-vectors. However, the effect of these initial values will asymptotically
vanish as the next exercise states.

Exercise 10.1. Prove that the stability of C(z−1), implying the stability of C̃, yields
that

E |x∗n(θ)− xn(θ)|2 = O(γn) (10.9)

with any γ such that γ > %(C̃), with %(C̃) denoting the spectral radius of C̃ (known to
be less then 1).

It then follows that
E |ε∗n(θ)− εn(θ)|2 = O(γn). (10.10)

Now we are ready to estimate θ∗ by considering, in the spirit of the LSQ estimator,
the cost function

VN(θ) =
1

2

N−1∑
n=0

ε2
n(θ).

Then, define the estimator of θ∗ as the solution of the minimization problem

min
θ
VN(θ). (10.11)

The range of θ over which minimization is performed is the set

D = {θ ∈ Rr : C(z−1) = 1 +
r∑
l=1

crz
−l is stable}.
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The resulting estimator θ̂N is called a prediction error (PE) estimator.
When talking about ”the” solution of the minimization problem (10.11) we may have

been too ambitious, namely the function VN(θ) is not known to be convex in θ, hence
finding the global minimum of VN(θ) over D may be too hard. Therefore we relax our
definition as follows:

Definition 10.3. The prediction error estimator θ̂N of the MA parameter θ∗ is a D-
valued r.v. variable such that

∂

∂θ
VN(θ̂N) = 0 (10.12)

if a solution of ∂
∂θ
VN(θ) = 0 exists at all, allowing multiple solutions.

Remark. This definition of θ̂N is still not completely satisfactory, since it implicitly
assumes that if there exists a solution, then we can actually find it. Also note that the
existence of θ̂N as a random variable in face of multiple solutions is not obvious. In fact,
we need to use the so-called measurable selection theorem of Filippov.

Exercise 10.2. Provide an expression of the coefficients cr in terms of the roots, say

γr, and express
∂

∂γ
via

∂

∂θ
.

After all, let us settle with (10.12) and let us see, how we can compute the left hand
side. Obviously, we have

∂

∂θ
VN(θ) = VθN(θ) =

N∑
n=1

εθn(θ)εn(θ), (10.13)

where the subscript θ denotes differentiation w.r.t. θ. To get εθn(θ) note that the process
εn(θ), as defined by (10.4), is obtained by a finite recursion starting at time n = 1.
Therefore, we can differentiate this set of equations without any additional consideration
to get

∂

∂θ
C(q−1)ε(θ) + C(q−1)

∂

∂θ
ε(θ) = 0. (10.14)

Obviously, the initial values for ∂
∂θ
εn(θ) = εθn(θ) will be 0 for n ≤ 0. Now

∂

∂θl
C(q−1) = q−l,

and thus
∂

∂θ
C(q−1) = (q−1, . . . , q−r)T .

The action of the r.h.s on the sequence εn(θ) results in (εn−1(θ), ..., εn−r(θ))
T . Introducing

the notation
φn(θ) = (εn−1(θ), ..., εn−r(θ))

T ,

substituting this into (10.14), and rearranging it we come to the following conclusion:
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Lemma 10.4. The gradient process εθ(θ) satisfies, with zero initial conditions,

C(q−1)εθ(θ) = −φ(θ). (10.15)

From the above arguments it readily follows that the equation defining the PE esti-
mator, i.e. equation (10.12) is non-linear in θ. Therefore, the asymptotic analysis of the
estimator requires a lot of technicalities even on a heuristic level.

10.2 The asymptotic covariance matrix of θ̂N

In this section we shall give an outline for the computation of the asymptotic covariance
matrix of θ̂N only. Consider the equation (10.12)

∂

∂θ
VN(θ̂N) = 0,

and make a Taylor-series expansion around θ̂N , and evaluate VθN(θ̂) for θ = θ∗ :

VθN(θ∗) = VθN(θ̂N) +

∫ 1

0

VθθN(θ)(λ) dλ · (θ∗ − θ̂), (10.16)

where θ(λ) = λθ∗ + (1− λ)θ̂N . Now the Hessian under the integral will be approximated
so that we replace θ(λ) by θ∗, and then using (10.13) we write

VθθN(θ∗) =
N∑
n=1

(
εθθn(θ

∗)εn(θ
∗) + εθn(θ

∗)εTθn(θ
∗)

)
.

In the next step of the approximation, we replace the computable values of εn(θ) and their
derivatives by their stationary variants initiated at −∞. To be more specific, consider
(10.14) defining εθ(θ). On its r.h.s. replace εn(θ) by its stationary variant ε∗n(θ), define
φ∗n(θ) accordingly, and consider (10.15) defined for −∞ < n <∞. Then we get a w.s.st.
process ε∗θ(θ) defined by

C(q−1)ε∗θ(θ) = −φ∗(θ) −∞ < n <∞ (10.17)

such that, in analogy with (10.9), we have

E |ε∗θn(θ)− εθn(θ)|2 = O(γn).

We can proceed with the second derivatives similarly. (Note that have not claimed that
ε∗θn(θ) is the derivative of ε∗n(θ) in any sense, although the latter is indeed the case in an
appropriate sense). Setting θ = θ∗ we get ε∗n(θ

∗) = en. Finally, assuming that a strong
law of large number holds, we get that

lim
N

1

N
VθθN(θ∗) = E

(
ε∗θθn(θ

∗)en + ε∗θn(θ
∗)ε∗Tθn (θ∗)

)
.
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Exercise 10.3. Show that the first term on the r.h.s. of the above equality is zero.

Introducing the notation
R∗ = Eε∗θn(θ

∗)ε∗Tθn (θ∗),

and approximating the l.h.s of (10.16) using stationary variants of εn(θ) and their deriv-

atives, and taking into account that VθN(θ̂N) = 0, we get an approximation for the error

(θ̂N − θ∗) called ˜̃θN defined by the equation

1

N

N∑
n=1

ε∗θn(θ
∗)en = −R∗ ˜̃θN .

From here we get

˜̃θN = −(R∗)−1 1

N

N∑
n=1

ε∗θn(θ
∗)en. (10.18)

Now for the covariance matrix of ˜̃θN we get a mirror image of the corresponding result
for AR-processes, given as Proposition 9.6 in Chapter 9:

Proposition 10.5. Assume that C∗(z−1) is stable, and that the driving noise sequence

(en) satisfies Condition 9.4. Then the approximating error process ˜̃θN defined under
(10.18) has the following covariance matrix:

E˜̃θN
˜̃θ
T

N =
1

N
(R∗)−1σ2(e).

Just like in the AR case, the above result provides a guideline for the proof of an
exact result. Thus we get, that using an appropriate truncation procedure we can define
a new prediction error estimator θN for which we have, under additional technical con-
ditions,the following result: the truncated prediction error estimate θN is asymptotically
unbiased and its asymptotic covariance matrix is exactly what we have obtained for the

approximating error ˜̃θN :

lim
N
NE(θN − θ∗)(θN − θ∗)T = σ(e)2(R∗)−1.

To interpret R∗ note that for θ = θ∗ we have φ∗n(θ
∗) = (en−1, ..., en−r), and so we get

C∗(q−1)ε∗θ(θ
∗) = −(en−1, ..., en−r).

It follows that the gradient process ε∗θ(θ
∗) is identical with the state process of an AR(r)-

process defined by
C∗(q−1)v = −e.
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A remarkable feature of the above result is that it implies that the asymptotic covariance
matrix of the PE estimator of the parameters of the MA system

y = C∗(q−1)e

is the same as the asymptotic covariance matrix of the LSQ estimator of the parameters
of the AR system

C∗(q−1)y = e

Consider the example of an MA(1) process:

yn = en + c∗en−1.

We have seen that R∗ = σ2(e)(1− (c∗)2)−1, and thus the asymptotic variance of the PE
estimator of c∗ equals

1− (c∗)2.

It follows, that if as c∗ is close to ±1, then the asymptotic variance of the PE estimator
is close to 0. In contrast to the AR case, there is no direct evidence for this phenomenon,
in fact it is quite a surprise.
Remark. The above observation can be generalized to saying that a transfer function
H(e−iω, θ∗), depending on a parameter θ∗, and its inverse H−1(e−iω, θ∗) can be equally
accurately estimated, at least asymptotically.

To outline the proof assume that θ∗ is a scalar. Then, it is easily seen that

y = H(q−1, θ∗)e

implies
ε∗θ(θ

∗) = H−1(q−1, θ∗)Hθ(q
−1, θ∗)e.

The latter can be written, at least formally, as

ε∗θ(θ
∗) =

∂

∂θ

(
log H(q−1, θ)

)
|θ=θ∗

e.

Switching H(q−1, θ) for its inverse will change only the sign of ε∗θ(θ
∗), thus R∗ will be

unaffected.
The question arises, how to proceed when C(z−1) is not stable. Here we need the

following observation. If (yn) is a w.s.st. process that is observed for 1 ≤ n < +∞ then
we may be able to reconstruct its auto-covariance function r(τ), and hence its spectral
density given by

f(ω) = |C(e−iω)|2σ2(e).

But there seems no way to reconstruct the spectral factor C(e−iω) itself, unless we
specify that we are looking for a spectral factor with additional specification such as
stability. Therefore, may redefine our identification problem by saying that we are looking
for an MA representation of (yn) such that C(z−1) is stable. Such a reformulation of the
problem is feasible whenever the original polynomial C(z−1) does not have a zero on the
unit circle, or equivalently, whenever f(ω) 6= 0 for 0 ≤ ω ≤ 2π.
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10.3 Identification of ARMA models

Let us now consider the problem of identifying an ARMA model. Thus, consider an
ARMA process (yn) defined by

A∗(q−1)y = C∗(q−1)e,

with degA∗ = p and degC∗ = r,

A∗ =

p∑
k=0

a∗kq
−k, C∗ =

r∑
l=0

c∗l q
−l, a∗0 = c∗0 = 1,

where (en) is a w.s.st. orthogonal process. As always, we use the superscript ∗ to indicate
that the corresponding parameters are the true, but unknown parameters generating the
data. We will use the notation

θ∗ = (a∗1, . . . , a
∗
p, c

∗
1, . . . , c

∗
r)
T .

We need the following condition:

Condition 10.6. We assume that the polynomials A∗(z−1) and C∗(z−1) are stable.

Note that under this condition e is the innovation process of y.
A new feature of the problem of identifying an ARMA model is that the observed data

determine only the spectral density, which is |C∗(e−iω)/A∗(e−iω)|2, and thus if A∗(z−1)
and C∗(z−1) have a common factor then this will not be identifiable. Therefore we impose
the following condition:

Condition 10.7. We assume that the polynomials A∗(z−1) and C∗(z−1) are relative
prime, i.e. they do not have any non-trivial common factor.

We could try to use the Least Squares method that was appropriate for the AR case.
Rearrange the ARMA equation as

yn = −a∗1yn−1−...−a∗pyn−p+en+c∗1en−1+· · ·+c∗ren−r = −a∗1yn−1−...−a∗pyn−p+fn. (10.19)

Let us try to identify the parameters a∗k. Define

ϕn = (−yn−1, . . . ,−yn−p)T .

Multiplying the above equation by ϕTn from the left, and taking expectation, unfortu-
nately in general

Eϕnfn 6= 0,

hence the instrumental variable interpretation of the LSQ method does not work.
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Following the method for identifying an MA process, we attempt to reconstruct the
driving noise sequence e1, ..., eN by inverting the system generating our observed data
y1, ..., yN . Thus, let us take a polynomials A(q−1) and C(q−1) with with degA = p and
degC = r,

A =

p∑
k=0

akq
−k, C =

r∑
l=0

clq
−l, a0 = c0 = 1,

and define an estimated driving noise process ε = (εn) by

C(q−1) ε = A(q−1) y. (10.20)

According to our convention, this equality is to be understood on −∞ < n < +∞. It
is easily seen from previous results that if C(z−1) 6= 0 for |z| = 1, then the process ε
is well-defined. Now, if data are available only for n ≥ 1, then (10.2) can be solved
recursively for ε, assuming that the initial values of y and ε are given. In this case, we
set yn = εn = 0 for n ≤ 0. Altogether, we need to introduce a dual definition of the
estimated noise process (εn), depending on the time horizon in which we work. We will
make this distinction explicit in what follows.

Let us now introduce the notation

θ = (a1, . . . , ap, c1, . . . , cr)
T .

The w.s.st. process (εn) defined by (10.20) defined over −∞ < n < +∞ will be denoted
from now on as (ε∗n(θ)), i.e. (ε∗n(θ)) is defined by

C(q−1) ε∗(θ) = A(q−1) y, (10.21)

−∞ < n < +∞. On the other hand, when (10.2) is solved for n ≥ 0, with zero initial
conditions, then the resulting process will be denoted by (εn(θ)) i.e. (εn(θ)) is defined
by

C(q−1) ε(θ) = A(q−1) y, n ≥ 0, (10.22)

with yn = εn(θ) = 0 for n ≤ 0. To ensure that the choice of initial values does not
affect the asymptotic behavior of the estimator we need the following condition:

Condition 10.8. We assume that the polynomial C(z−1) is stable, i.e. all the roots of
the equation C(z−1) = 0 lie in the open unit disc of the complex plane.

It then follows, just like in the MA case, that

E |ε∗n(θ)− εn(θ)|2 = O(γn),

with some 0 < γ < 1, and similar approximations hold for the derivatives of εn(θ). Now
we are ready to estimate θ∗ by considering the cost function

VN(θ) =
1

2

N−1∑
n=0

ε2
n(θ).
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Then, define the estimator of θ∗ as the solution of the minimization problem

min
θ
VN(θ).

The range of θ over which minimization is performed is the set

D = {θ ∈ Rr : A(z−1), C(z−1) are stable and relative prime.}.

Remark. . A more transparent parametrization can be given in terms of poles and zeros,
however, due to the non-linear dependence of the coefficients of A(z−1) and C(z−1) on
the respective roots, the computations that follow become more complicated.

The resulting estimator θ̂N is called a prediction error (PE) estimator. Repeating the
arguments given in the MA case, we redefine the notion of ”the” solution as follows:

Definition 10.9. The prediction error estimator θ̂N of the ARMA parameter θ∗ is a
D-valued r.v. variable such that

∂

∂θ
VN(θ̂N) = 0 (10.23)

if a solution of ∂
∂θ
VN(θ) = 0 exists at all, allowing multiple solutions.

After all, let us settle with (10.23) and let us now see, how can we compute the left
hand side of (10.23). Obviously, we have

∂

∂θ
VN(θ) = VθN(θ) =

N∑
n=1

εθn(θ)εn(θ), (10.24)

where the subscript θ denotes differentiation w.r.t. θ. To get εθn(θ) note that the process
εn(θ), as defined by (10.22), is obtained by a finite recursion starting at time n = 1.
Therefore, we can differentiate this set of equations without any additional consideration
w.r.t. any coordinates , say η of θ = (a, c) as follows:

∂

∂η
C(q−1) ε(θ) + C(q−1)

∂

∂η
ε(θ) =

∂

∂η
A(q−1) y.

Setting η = ak and η = cl, respectively, we get

C(q−1)
∂

∂a
ε(θ) =

∂

∂a
A(q−1) y = (q−1, ..., q−p)y, (10.25)

C(q−1)
∂

∂c
ε(θ) = −(q−1, ..., q−r) ε(θ). (10.26)

The initial values for ∂
∂θ
εn(θ) = εθn(θ) will be 0 for n ≤ 0. Introducing the notation

φn(θ) = (−yn−1, ...,−yn−p, εn−1(θ), ..., εn−r(θ))
T ,

substituting this into (10.26), and rearranging it we come to the following conclusion:
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Lemma 10.10. The gradient process εθ(θ) satisfies, with zero initial conditions,

C(q−1) εθ(θ) = −φ(θ).

Using this result we will derive a neat formula for the asymptotic covariance matrix
of the estimator θ̂N . Following the arguments given for MA processes replace the com-
putable values of εn(θ) and their derivatives by their stationary variants initiated at −∞.
Thus we get the processes ε∗(θ), φ∗(θ) and ε∗θ(θ), the latter defined by

C(q−1)ε∗θ(θ) = −φ∗(θ), −∞ < n <∞.

Setting θ = θ∗ we get ε∗n(θ
∗) = en. Introducing the notation

R∗ = Eε∗θn(θ
∗)ε∗Tθn (θ∗),

we get an approximation for the error (θ̂N − θ∗) given by

˜̃θN = −(R∗)−1 1

N

N∑
n=1

ε∗θn(θ
∗)en. (10.27)

Now for the covariance matrix of ˜̃θN we get a mirror image of the corresponding result
for AR and MA processes, see Proposition 9.6 and 10.27:

Proposition 10.11. Assume that A∗(z−1) and C∗(z−1) are stable, and that the driving

noise sequence (en) satisfies Condition 9.4. Then the approximating error process ˜̃θN
defined under (10.18) has the covariance matrix:

E˜̃θN
˜̃θ
T

N =
1

N
(R∗)−1σ2(e).

Exercise 10.4. Show that if A∗(z−1) and C∗(z−1) have a common factor then R∗ is
singular.

The asymptotic covariance matrices of the PE estimators, assuming unit variance for
the noise, are displayed for our three benchmark ARMA(2, 2)-processes below:

Just like in the AR and MA case, the above result provides a guideline for the proof
of an exact result. Thus we get, that using an appropriate truncation procedure we
can define a new prediction error estimator θN for which we have, under additional
technical conditions,the following result: the truncated prediction error estimate θN is
asymptotically unbiased and its asymptotic covariance matrix is exactly what we have

obtained for the approximating error ˜̃θN :

lim
N
NE(θN − θ∗)(θN − θ∗)T = σ(e)2(R∗)−1.
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(R∗)−1 =


1.35 −0.880 −0.703 −0.109
−0.880 1.20 0.674 −0.263
−0.703 0.674 0.784 −0.164
−0.109 −0.263 −0.164 0.530


Figure 10.1: The asymptotic covariance matrix of the PE estimator for an ARMA(2, 2)
process with similar AR poles and MA zeros. The actual poles: length 0.8, arguments
±0.3π, the actual zeros: length 0.9, arguments ±0.4π.

(R∗)−1 =


1.02 0.0684 −0.768 −0.767

0.0684 0.631 0.212 0.190
−0.768 0.212 1.40 1.37
−0.767 0.190 1.37 1.38


Figure 10.2: The asymptotic covariance matrix of the PE estimator for an ARMA(2, 2)
process with complex AR poles with small negative real part combined with two negative
MA zeros. The actual poles: length 0.8, arguments ±0.6π, the actual zeros: −0.6,−0.9.

(R∗)−1 =


10.3 8.68 −11.3 −10.9
8.68 7.50 −9.36 −9.14
−11.3 −9.36 13.2 12.7
−10.9 −9.14 12.7 12.2


Figure 10.3: The asymptotic covariance matrix of the PE estimator for an ARMA(2, 2)
process with complex AR poles with large negative real part combined with two negative
MA zeros. The actual poles: length 0.8, arguments ±0.9π, the actual zeros: −0.6,−0.9.

Exercise 10.5. Compute the gradient process for the following models: MA(1), AR(1),
ARMA(1, 1).

Exercise 10.6. Show that for θ = θ∗ we have

εθ(θ)|θ=θ∗ = (− 1

A∗
[
q−1 . . . q−p

]
e,

1

C∗
[
q−1 . . . q−r

]
e)T .
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Chapter 11

Non-stationary models

Many economic time series exhibit non-stationary behavior due to such factors as trends
or seasonality. The purpose of this chapter is to give a brief summary of some of the
basic ideas in the theory of non-stationary processes. Our main reference is [21].

A classical approach in analyzing a non-stationary time series would be to remove
non-stationarity by some appropriate procedure, such as taking the difference process
in the case of the presence of trend. Then we could use the theory of stationary time
series for the residual process. As we have seen, the theory of stationary time series
is well developed. We mention here only one additional source, the book of Box and
Jenkins [12]. For the more mathematically skilled reader a very useful, although not
easily readable book, is the book of Hannan and Deistler [28],

The structure of the chapter is the following. In the first section we discuss the notion
of integrated processes. In its simplest form it is just a random walk. We show that
the LSQ estimation of the pole α = 1, responsible for the integrating effect, converges
with a rate faster than the usual N−1/2. In the next section we consider a special class
of integrated vector processes, the individual components of which have an integrator
effect, but there exists a nontrivial linear combinations of these components, or simply
said a projection of the vector process which is is stationary. Then we give the maximum
likelihood (ML) estimation of the projection subspace, as computed first in [32]. Finally,
in the last section we consider fractionally integrated processes exhibiting a certain long-
memory behavior, originally introduced in the physical sciences.

11.1 Integrated models

Definition 11.1. A stochastic process y = (yn), −∞ < n < +∞, is called integrated of
order 1 if y is non-stationary, but the difference process [1− q−1]y, defined by(

(1− q−1)y
)
n

= yn − yn−1 (11.1)

is wide sense stationary, not necessarily of zero mean.
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Here we shall consider the case when (1− q−1)y is a w.s.st. ARMA process. Thus we
consider processes defined by the dynamics

(1− q−1)A(q−1)y = C(q−1)e. (11.2)

Example. Consider the special case with A = C = 1, and define a process y by the
dynamics

yn = yn−1 + c+ εn,

where ε is a white nose process, i.e a w.s.st. orthogonal process. Then (yn) has a linear
trend both in the mean and the variance, while yn − yn−1 = c+ εn is stationary.

In estimating the parameters of an integrated process we may formally proceed by
applying a prediction error method. In the case of an integrated AR process this boils
down to a LSQ method. Taking C = 1, and writing (11.2) in the form

A1(q
−1)A2(q

−1)y = e

and pretending that the processes y1 and y2 defined by

A1(q
−1)y1 = e and A2(q

−1)y2 = e,

are known, we can study the estimation problem of A1(q
−1) and A2(q

−1) separately.

Exercise 11.1. Express the asymptotic covariance matrix of the LSQ estimator of the
parameters of A1(q

−1) in terms of A2 and the auto-covariance matrix of y.

Omitting further details let us see how the LSQ method work for the simplest inte-
grated process. A remarkable fact is that the rate of convergence of the LSQ estimates
will be of the order faster than N−1/2.

Thus we consider a scalar AR(1) process

yn = ρyn−1 + εn, y0 given,

where (εn) is white noise with variance σ2. Then the LSQ estimator of ρ is given by

ρ̂N =

N∑
n=1

ynyn−1

N∑
n=1

y2
n

. (11.3)

It is well-known, that if |ρ| < 1, then ρ̂N is a consistent estimator of ρ and

√
N(ρ̂N − ρ)

L−→ N (0, 1− ρ2).
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Let us now consider the limiting, non-stationary case when ρ = 1. Assume that y0 = 0,
then

yn = ε1 + · · ·+ εn.

Define the piecewise linear process XN by

XN(r) =



ry1 0 ≤ r ≤ 1

N
...
yk
N

+ (r − k

N
)
yk+1 − yk

N

k

N
≤ r ≤ (k + 1)

N
...
yN
N

r = 1

Then we have by Donsker’s functional central limit theorem that the process XN(.)
converges weakly to the standard Brownian motion W (·):

√
NXN(·)
σ

L−→ W (·).

For the LSQ estimator we have

ρ̂N − 1 =

N∑
n=1

ynyn−1

N∑
n=1

y2
n

−

N∑
n=1

y2
n−1

N∑
n=1

y2
n−1

,

thus, replacing
∑N

n=1 y
2
n by

∑N
n=1 y

2
n−1 in the first term on the r.h.s. we get

N(ρ̂N − 1) ∼=

1

N

N∑
n=1

yn−1εn

1

N2

N∑
n=1

y2
n−1

. (11.4)

For the numerator of this fraction we have

1

N

N∑
n=1

yn−1εn =
1

N

N∑
n=1

εn(
n−1∑
s=1

εs) =
1

N

N∑
n=1

n−1∑
s=1

εnεs =

=
1

2

(
(
∑N

n=1 εn)
2

n
−
∑N

n=1 ε
2
n

N

)
=

1

2

(
NX2

N(1)−
∑N

n=1 ε
2
n

N

)
.
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As NX2
N(1) → σ2W 2(1) in law, and

∑N
n=1 ε

2
n/N → σ2 w.p.1, we have

1

N

N∑
n=1

yn−1εn
L−→ 1

2
(W 2(1)− 1)σ2.

To compute the denumerator of (11.4), first note that we have∫ 1

0

X2
N(r)dr =

∑N
n=1 y

2
n−1

N3
.

Thus due to the continuous mapping theorem we get

1

N2

N∑
n=1

y2
n−1 =

∫ 1

0

NX2
N(r)dr

L−→
∫ 1

0

σ2W 2(r)dr,

since NX2
N(·) L−→ σ2W 2(·).

Finally we get the following result

Proposition 11.2. We have

N(ρ̂N − 1)
L−→

1

2
(W 2(1)− 1)∫ 1

0

W 2(r)dr

.

Thus in the case ρ = 1 the convergence of LSQ estimator is faster than in the stationary
case. It is N -consistent rather then

√
N -consistent.

A number of results for approximately integrated processes has been obtained by Hun-
garian mathematicians, in particular by Gy. Pap, and his co-workers, see: http://www.math.u-
szeged.hu/ papgy/. For an early work of his we refer to [47].

11.2 Co-integrated models

Definition 11.3. An integrated Rm-valued vector-process (yn) is called co-integrated, if
∃α ∈ Rm, α 6= 0 such that (αyn) is stationary. The number of linearly independent α-s
such that (αyn) is stationary is called the co-integrity rank.

A possible structure of a co-integrated vector process can be described as follows.
First, let (yn) be simply an Rm-valued integrated vector-process, i.e. let

(1− q−1)y = u,
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where u is a w.s.st. Rm-valued vector-process. Assume that u is completely regular, i.e.

u = k(q−1)ε,

where ε is a w.s.st. Rm-valued, orthogonal vector-process, being the innovation process
of u, and k(q−1) is a Rm×m dimensional matrix-valued operator such that

k(z−1) =
∞∑
0

kjz
−j

converges in Lm×m2 [0, 2π] for z = e2πω. It follows that k(z−1) is analytic for |z| > 1. Write

k(z−1) = k(1) + k̃(z−1),

where k̃(1) = 0, and thus

k̃(z−1) = (1− z−1)l(z−1),

where l(z−1) is analytic for |z| > 1. Then we can write

yn = (1− q−1)k(1)εn + l(q−1)εn. (11.5)

In the above equation the second term on the right hand side, l(q−1)εn is w.s.st. Thus
(yn) is co-integrated, if k(1) is singular, but not zero.

11.3 Long memory models

Considering the auto-correlation function (ρk) of an ARMA process it is easily seen that
it decays exponentially fast to 0. On the other hand, the auto-correlation function of
the simplest integrated process (random walk) is a constant, namely (ρk) = 1 for all k.
In analyzing financial data the need for models with slowly decaying auto-correlation
functions arises. Thus we come to the concept of with long range dependence. A special
class of such processes will be now discussed.

Definition 11.4. The process (yn) is called fractionally integrated (of order d) or ARFIMA,
if

(1− q−1)dy = u, (11.6)

where 0 < d < 1, and u is a stationary ARMA process.

In the analysis of an ARFIMA model we estimate both the parameter d, and the
ARMA parameters of (un). We can represent (yn) formally by multiplying (11.6) by the
inverse of

(1− q−1)d = 1− dq−1 + d(d− 1)
q−2

2!
− ...
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In this way we get an infinite MA representation of the process y in terms of u, which in
turm can be expressed via its innovation process, say e. It turns out, that for d ∈ (0, 0.5)
the process y is well-defined as a w.s.st. process. An explanation for this can be given
using spectral theory. Let us write the spectral density of (un) in the form

fu(λ) =
σ2

2π

∣∣∣∣ b(e−iλ)a(e−iλ)

∣∣∣∣2,
Then, assuming that y is stationary, its spectral density equals:

fy(λ) =
σ2

2π

∣∣∣∣ b(e−iλ)a(e−iλ)

∣∣∣∣2 |1− e−iλ|−2d.

It is clearly seen that fy(λ) is indeed integrable when d ∈ (0, 0.5) and thus (yn) is
well-defined. Note that

fy(0) = ∞,

indicating that low-frequencies have a dominant role in the construction of y, which is a
nice explanation for long memory.

To estimate d we first estimate the spectral density itself. Computing the logarithm
of fy(λ), and using the fact, that

|1− e−iλ|2 = |1− cosλ+ i sinλ|2 = 4 sin2 λ

2
,

we get

log fy(λ) = log
fu(λ)

fu(0)
+ log fu(0)− d

(
log 4 sin2 λ

2

)
.

Based on this formula we can estimate parameter d using a linear regression (cf. [27]).

127



Chapter 12

Stochastic volatility: ARCH and
GARCH models

An important class of technical models are the so-called ARCH and GARCH models.
Their simplicity and capability to reproduce some important features of financial time
series lead to their unprecedented popularity. In addition, mathematically tractable
technical models, such as GARCH models, are getting more attention recently with
increasing interest in automated trading.

At this point we briefly collect a few important features of time series of financial
data. These features, called ”stylized facts”, are crucial in building a model for financial
time series.

12.1 Some stylized facts of asset returns

Consider a time series of ”raw financial data” given as the time series of prices Pn,
n = 1, . . . , N , of a certain asset, such as the stock of a company, a stock index or
the price of a foreign currency. The observations are assumed to have been taken at
equidistant moments. Normally prices tend to increase. A number of empirical studies,
including those of the father modern financial mathematics, Louis Bachelier, lead to
the (slightly arguable) assumption that the price process is a stochastic process with
stationary, independent, Gaussian increments.

This would imply that prices can take on negative values. This anomaly has been
rectified by the economist Paul Samuelson by formulating the alternative hypothesis that
the infinitesimal returns rather than the price process itself, or equivalently, the loga-
rithm of the price process is a stochastic process with stationary, independent, Gaussian
increments. Therefore we rather focus on log-returns defined as

yn = logPn − logPn−1 = log

(
1 +

Pn − Pn−1

Pn−1

)
.
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For small values log-returns are close to the relative returns defined as

y′n =
Pn − Pn−1

Pn−1

,

which describes the relative change of the price process over time.
Figure 12.1 displays the daily closing prices and log-returns of the Standard and

Poor’s 500 Composite Stock Price Index (S&P 500) over the period January 1, 1950
through January 28, 2011.1

Figure 12.1: S&P 500 daily closing prices and log-returns from January 1, 1950 to January
28, 2011

The study of statistical properties of financial time series revealed a wealth of stylized
facts which seem to be common in a wide range of financial time series (see e.g. Cont
[18] and Pagan [46]). We mention a few of them. First, in many cases the unconditional
distribution of the log-returns has a heavy tail, meaning that the tail probabilities are
sub-exponential: for any λ > 0 we have

lim
x→∞

eλxP (|X| > x) = ∞.

Second, the distribution of the log-returns has a positive excess kurtosis.
Then, it is found that the autocorrelations of returns are often insignificant. We

should mention though that insignificant autocorrelation is a world apart from zero
autocorrelation, or even more from the assumption of independent log-returns, which has
been a prevailing hypothesis since the works of Paul Samuelson, improving the earlier,
even more unrealistic assumption of Louis Bachelier on independent increments of prices.
In fact, the assumption of independent log-returns would bring us to the conclusion that
the variance of price processes, even if discounted to take care of the effect of inflation,
tend to infinity, which is a conclusion certainly against our common sense and experience.

1Information about the composition of this index and historical data can be found at the address
http://www.standardandpoors.com/indices.
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Finally, there is the phenomenon of volatility clustering phenomena, meaning that
long periods of low volatility are followed by short periods of high volatility. To under-
stand the mechanism behind this phenomenon we can argue that price volatility is due
to the arrival of new information. Thus volatility clustering is the same as clustering of
information arrivals, which corresponds to the simple statement that news are clustered
in time. Another economic explanation may be that the behavior of major market agents
may switch from fundamentalist to chartists, or the other way round. For further details
see in Cont [19].

Volatility clustering can be captured mathematically as strong autocorrelations of the
time series of absolute log-returns, see the next figure.

Figure 12.2: Autocorrelations of S&P 500 log-returns and absolute log-returns

For further details on many other stylized facts related to financial time series we
refer the reader to Bollerslev et al. [9].

12.2 Stochastic volatility models

In modelling of financial time series one of the indicator of the quality of a model is its
capability to reproduce some of the stylized facts detailed above. In classical time series
analysis attention was focused on modelling the internal dependence structure of time
series using second order properties. This has lead to the development of the theory
of linear processes, such as AR or ARMA processes. They are attractive partially due
to the fact that a beautiful mathematical theory has been developed to understand the
properties of ARMA processes and to perform statistical analysis of data using ARMA
models. A widely used reference on ARMA models is Box and Jenkins [12].

However ARMA models have one serious shortcoming when used for modelling return
data: the conditional variance, a potential measure of volatility, is constant over time,
a fact that is not supported by real financial data. In an ARCH process volatility is
modeled as the output of a linear finite impulse response (FIR) system, combined with
static non-linearities, driven by observed log-returns. In turn, log-returns are assumed
to be defined as an i.i.d. process multiplied by the current volatility. Thus we get a
stochastic non-linear feedback system, driven by an i.i.d. process.
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One of the key problems in the application of GARCH models is fitting the model to
real data, i.e. the estimation of the parameters. We will describe the so-called off-line
quasi-maximum likelihood method, and outline the proofs of some of its fundamental
properties. Potential alternatives to ARCH models, requiring a number of similar math-
ematical techniques, are the so-called bilinear models, see Terdik [52].

The material of this chapter is partially based on the PhD thesis of Zs. Orlovits, [45].
The simplest alternative to the classic random walk model is obtained by considering

the model
yn = σnεn, −∞ < n < +∞ (12.1)

where (εn) is an exogenous noise source, modelled as a sequence of i.i.d. r.v.-s. This
noise source may be due a variety of factors such as variations in the agents’ behavior or
fluctuations of interest rate. The variable σn is called the volatility of yn. It is to assumed
that the current volatility (or current level of market activity) is uniquely determined by
past returns, reflecting a certain feedback mechanism in the market. This is expressed
by the condition that

Fσ
n ⊂ Fy

n−1 for all n,

where Fy
n = σ{yk : k ≤ n}, and similarly for σ. In this case we say that (σn) is Fy-

predictable. More precisely, we require that

σn = F (yn−1, yn−2, ...), (12.2)

where F may depend on the complete past of y up to time n− 1, as in the case of linear
systems with poles, but it is independent of n. The two most common specific forms of
this feedback mechanism will be given below.

It is also assumed that (yn) itself is a casual function of the exogenous noise source
(εn), i.e.

Fy
n ⊂ F ε

n for all n. (12.3)

Now εn = yn/σn implies the converse inclusion F ε
n ⊂ Fy

n , leading to

Fy
n = F ε

n for all n. (12.4)

To summarize and further specify the above speculations, we introduce the following
definition:

Definition 12.1. The return process (yn) is defined by a stochastic volatility model if
there exists an i.i.d. sequence (εn), and a stochastic volatility process (σn) such that
(yn) is strictly stationary, moreover (12.1), (12.2) and (12.3) are satisfied with a fixed,
time-invariant F.

Exercise 12.1. Show that that the triplet (εn, yn, σn) itself is jointly strictly stationary.
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Note that at this point it is not clear that a return process (yn) defined by a stochastic
volatility model exists at all. A technical difficulty with the above definition is that yn
is defined in terms of σn (and of εn) while σn is defined in terms of the past of (yn). This
circular definition is typical for feedback systems.

To simplify the discussion let us now assume that that en has zero mean and finite
second moments:

Een = 0 and Ee2n = 1. (12.5)

Furthermore assume that
Ey2

n <∞ and Eσ2
n <∞. (12.6)

Exercise 12.2. Show that under the conditions above

E[yn|Fy
n−1] = 0 a.s.

In other words (yn) is a martingale difference process.

Exercise 12.3. Show that under the conditions above

E[y2
n|F

y
n−1] = σ2

n a.s.

Taking expectation on both sides of the above equality we get that under the condi-
tions above we have

Eσ2
n = Ey2

n.

The fact that the conditional variance of yn is random is referred to by the terminology
that the process exhibits conditional heteroscedasticity. (For the origin of the terminology
we note that ”dispersion” in Greek is ”skedasis”).

Exercise 12.4. Show that under the conditions above (yn) is a w.s.st. orthogonal process.

This is in line with our intuition or expectations about returns. Note however that
the returns yn are far from being independent, in fact the absolute value process |yn| has
a very slowly decaying autocorrelation function, see Figure

Remark. We should note here that (εn) is not the innovation process of (yn) as
defined in the theory of linear processes. This may seem counter-intuitive in light of the
identity Fy

n = F ε
n, see (12.4). However, note that this identity postulates the existence

of a non-linear function mapping the past of y up to time n onto the past of ε up to time
n, and vice versa.
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12.3 ARCH and GARCH models

The next step in building our model is to specify a suitable feedback mechanism defining
σn that would ensure that extreme values of the returns generate more activity in the
market, expressed in higher volatility, which in turn would explain the phenomenon of
volatility clustering. The first widely accepted feedback mechanism was developed by
Engle [22], leading to the celebrated ARCH model. A return process (yn) defined by a
stochastic volatility model is called an ARCH process of order r, or briefly an ARCH(r)-
process if its volatility is defined via a feedback mechanism

(σ2
n − γ∗) =

r∑
i=1

α∗i (y
2
n−i − γ∗), n ∈ Z (12.7)

with α∗i ≥ 0, i = 1, . . . , r, and γ∗ = Ey2
n = Eσ2

n > 0. The upper indices ∗ indicate that we
are talking about the true, but unknown parameters of the model, as opposed to tentative
values that are chosen in fitting a model to data, see below. The feedback path given by
(12.7) does indeed reflect the fact that that extreme values of the (squared) returns that
are far apart from their expectations would generate volatilities (the squares of) which
are far from their respective expectation. It is still not clear under what conditions is
the overall feedback system well-defined in the sense that there exists a unique strictly
stationary solution (en, yn, σn).

Remark 12.2. Although the overall mapping from (εn) into (yn) is non-linear, it has a
simple structure: namely the current volatility is obtained as the output of a linear finite
impulse response (FIR) system, cascaded with static, non-linear functions of observed
returns. In short, the feedback path from returns to volatilities is defined in terms of
a so-called Hammerstein-system. On the forward path returns are simply obtained by
static nonlinearity as the product of the current volatility and of an exogenous i.i.d.
source.

The parametrization that we use for ARCH models is mathematically appealing in
understanding the role of the parameters. A disadvantage of this parametrization is that
parameters show up in a non-linear fashion. Historically, the original parametrization
of Engle [22] was different. It is obtained by merging all nonlinear terms into a single
constant

α∗0 = γ∗

(
1−

r∑
i=1

α∗i

)
.

Thus our model becomes linear in its parameters:

σ2
n = α∗0 +

r∑
i=1

α∗i y
2
n−i, n ∈ Z. (12.8)
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Now, assuming that the returns in the feedback path, yn−i, i = 1, ..., r can take on any
small values, the conditional variance σ2

n is positive only if α∗0 > 0. Using the definition
of α∗0 and the fact that γ∗ > 0 we must have

α∗0 > 0 and
r∑
i=1

α∗i < 1. (12.9)

This is in fact a necessary and sufficient condition for the existence of a unique strictly
stationary solution (en, yn, σn) with finite second moments. We will prove sufficiency
below.

A major feature of this model class is that it captures certain stylized facts such as
volatility clustering. On the other hand it is mathematically simple enough for further
theoretical investigations and statistical analysis of real data. In particular the estimation
of the coefficients or weights α∗i from historical data can be carried out relatively easily, in
spite of the fact that the actual volatilities σn are not observed. This important advance
in modelling financial data was recognized by a shared Nobel Prize in Economics in 2003.

A weak point in using ARCH models is that ARCH(r) processes may not fit log-
returns very well unless one chooses the order of r very large. A natural extension is
obtained by adding a moving average of σ2

n− γ∗ of order, say, s on the right hand side of
the feedback path in defining an ARCH process, see (12.7). Thus we arrive at a so-called
generalized ARCH model of order (r, s), briefly referred to as GARCH(r, s), which was
independently introduced by Bollerslev [7] and Taylor [51] in 1986.

A GARCH(r, s) model is thus defined via the multiplicative model (12.1) for the
returns, together with the specification of the feedback path defining the squared condi-
tional variance process σ2

n as

(σ2
n − γ∗) =

r∑
i=1

α∗i (y
2
n−i − γ∗) +

s∑
j=1

β∗j (σ
2
n−j − γ∗), n ∈ Z, (12.10)

where γ∗ = Ey2
n−i = Eσ2

n−j > 0 and α∗i , β
∗
j ≥ 0, i = 1, . . . , r, j = 1, . . . , s.

Remark 12.3. In the original definition of Bollerslev [7] used an alternative standard
parametrization of equation (12.10) which can be obtained by collecting the constant
terms into a single term

α∗0 = γ∗

(
1−

r∑
i=1

α∗i −
s∑
j=1

β∗j

)
.

Thus we get the defining equation

σ2
n = α∗0 +

r∑
i=1

α∗i y
2
n−i +

s∑
j=1

β∗jσ
2
n−j. n ∈ Z, (12.11)
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We can argue as in the case of ARCH processes that a likely necessary condition for the
existence of a strictly stationary solution with finite second order moments is that

α∗0 > 0 and
r∑
i=1

α∗i +
s∑
j=1

β∗j < 1. (12.12)

The sufficiency of this condition will be proven below. The positive number

1−
r∑
i=1

α∗i −
s∑
j=1

β∗j < 1

is called the stability margin of the process. When fitting a GARCH model to real data
the stability margin is typically below the threshold 0.2.

The scaling properties of a GARCH process are very simple. If (yn) is a GARCH(r, s)
process with parameters α∗i , β

∗
j and variance γ∗, then for any λ > 0 the process (

√
λ yn)

is a GARCH(r, s) process with identical parameters α∗i , β
∗
j and variance λγ∗. The con-

ditional variance process becomes λσ2
n, while the driving noise process (en) remains the

same.
The graph of an almost unstable simulated GARCH(1, 1) process is displayed on

Figure 12.3:

Figure 12.3: Simulated GARCH(1, 1) process for 10000 observations with parameters
α0 = 0.0002, α1 = 0.955, β1 = 0.0023.

Three further examples of generated GARCH(2, 2) processes are displayed on the
figures below. The first two figures display the graphs of two almost unstable processes
with stability margins 0.05. The first model is in fact an ARCH(2) model, while the
second model is in a sense its opposite. The stability margin for the fourth model is 0.2.

It is interesting to note that the model exhibiting the phenomenon of volatility clus-
tering in the most convincing manner is the ARCH(2) model.

A weak point of the GARCH model is that the volatility is insensitive to the sign
of the return. Now if we look we look at the prices and the corresponding volatilities
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Figure 12.4: Simulated almost unstable ARCH(2) process with α∗1 = 0.3, α∗2 = 0.65. and
γ∗ = 0.5.

Figure 12.5: Simulated almost unstable GARCH(2, 2) process with α∗1 = α∗2 = 0, and
β∗1 = 0.3, β∗2 = 0.65 and γ∗ = 0.5.

Figure 12.6: Simulated GARCH(2, 2) process far from the stability margin with α∗1 =
α∗2 = β∗1 = β∗2 = 0.2 and γ∗ = 0.5.

on Figure 12.1 it can be observed that the volatility is higher when prices are falling.
This implies that bad news on the market, i.e. negative shocks, tends to have a larger
impact on volatility than good news, i.e. positive shocks. This asymmetry on volatility
is called the leverage effect, first noted by Black [5]. For further details see Engle [23].
This leverage effect can be incorporated into the GARCH model by choosing different
static non-linearities in the feedback path.
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12.4 State space representation

In this chapter we summarize some of the basic mathematical tools found to be useful
in studying the GARCH processes. Above all, we present a state space representation of
GARCH processes, and show that this representation leads to very simple computational
procedures. A novel, non-standard feature of this state space system is that its system
matrices are not constant, but rather they form an i.i.d. sequence. Conditions for the
existence of a strictly stationary, causal solution are therefore very different from what
we discussed in the context of time-invariant linear stochastic systems.

Let (yn), n ∈ Z be a GARCH(r, s) process having finite second moments, defined via
the non-linear stochastic feedback system

yn = σnεn, (12.13)

(σ2
n − γ∗) =

r∑
i=1

α∗i (y
2
n−i − γ∗) +

s∑
j=1

β∗j (σ
2
n−j − γ∗). (12.14)

Here the exogenous i.i.d. noise process (εn), n ∈ Z has zero mean and unit variance, and
γ∗ = Ey2

n−i = Eσ2
n−j > 0 and α∗i , β

∗
j ≥ 0, i = 1, . . . , r, j = 1, . . . , s denote the true, but

possibly unknown parameters of the model. Defining the polynomials

A∗(q−1) =
r∑
i=1

α∗i q
−i, B∗(q−1) = 1−

s∑
j=1

β∗j q
−j, (12.15)

equation (12.14) can be written in a compact form as

B∗(q−1)(σ2 − γ∗) = A∗(q−1)(y2 − γ∗), (12.16)

where q−1 is the backward shift operator.

Let us define the random, (r + s)-dimensional state vector X∗
n as

X∗
n = (y2

n, . . . y
2
n−r+1, σ

2
n, . . . , σ

2
n−s+1)

T . (12.17)

Note that, in contrast to state-vectors defined in the context of linear stochastic systems,
X∗
n is defined in terms of past values of y2 and σ2 starting at present time n, rather than

n− 1.
Then it is easy to verify that X∗

n satisfies a first order, random coefficient linear
stochastic difference equation

X∗
n+1 = A∗n+1X

∗
n + u∗n+1, n ∈ Z, (12.18)

with the fairly sizeable random state-matrices A∗n ∈ R(r+s)×(r+s) defined as
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

α∗1ε
2
n α∗2ε

2
n . . . α∗r−1ε

2
n α∗rε

2
n β∗1ε

2
n β∗2ε

2
n . . . β∗s−1ε

2
n β∗sε

2
n

1 0 . . . 0 0 0 0 . . . 0 0
0 1 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 1 0 0 0 . . . 0 0
α∗1 α∗2 . . . α∗r−1 α∗r β∗1 β∗2 . . . β∗s−1 β∗s
0 0 . . . 0 0 1 0 . . . 0 0
0 0 . . . 0 0 0 1 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 0 0 0 0 . . . 1 0


(12.19)

and u∗n ∈ Rr+s defined as

u∗n = (α∗0ε
2
n, 0, . . . , 0, α

∗
0, 0, . . . , 0)T .

Note that the random state-matrices A∗n ∈ R(r+s)×(r+s) are highly structured, in
particular EAn has two identical rows, (namely the block row 1 and 3). In addition, the
sequence (A∗n) is i.i.d.

The next natural question to ask is this: under what conditions does a unique, strictly
stationary solution of (12.13) and (12.14) exist satisfying the causality conditions σn ∈
Fy
n−1 and yn ∈ F ε

n, such that Ey2
n = Eσ2

n = γ∗ <∞. The answer to this question is given
in the following theorem, see Bollerslev [7].

Theorem 12.1. The non-linear closed loop system given by (12.13) and (12.14), defin-
ing a GARCH(r, s) process, has a unique, causal, strictly stationary solution solution
satisfying Ey2

n = Eσ2
n = γ∗ <∞ if and only if

r∑
i=1

α∗i +
s∑
j=1

β∗j < 1. (12.20)

Proof. To prove sufficiency note that iterating equation (12.18) infinitely many times,
and replacing n+1 by n we get the formal expansion of the assumed solution as follows:

X∗
n = un +

∞∑
k=1

AnAn−1 . . . An−k+1un−k. (12.21)

We show that the infinite sum on the right hand side of equation (12.21) converges
in L1. Indeed, the assumed independence of the sequence (εn) implies that

E[AnAn−1 . . . An−k+1un−k] = EAn · EAn−1 . . .EAn−k+1 · Eun−k.
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Now, the stability condition (12.20) implies that EA∗0 is sub row-stochastic, i.e. EA∗0 is a
matrix with non-negative elements such that its row-sums are less than or equal to one.
In addition, there is at least 1 row (in fact two rows) with row-sum strictly less than 1.
Hence, by a well-known theorem of linear algebra of non-negative matrices, the Perron-
Frobenius theorem it follows, that the all eigenvalues have modulus (absolute value)
strictly less than 1. This is equivalent to saying that the spectral radius of A = EA∗0,
denoted by ρ(EA∗0) = ρ(A) satisfies ρ(A) < 1.

Now, we have EAl = A for any l, and thus

||EAn · EAn−1 . . .EAn−k+1 · Eun−k|| = ||A(k−1) · Eun−k||

with some C > 0 and ρ < 1. It follows that the partial sums of the infinite series on right
hand side of (12.21) form a Cauchy-sequence in L1, hence this infinite series converges
in L1, and thus Xn is well-defined.

Exercise 12.5. Show that Xn defined by the right hand side of (12.21) satisfies the state
equation (12.18) corresponding to the GARCH process.

Obviously, (Xn) is F ε
n-measurable, i.e. it is a causal function of the process ε. It is

also obvious that (Xn) is strictly stationary. Finally, E|Xn| < ∞ implies that Ey2
n =

Eσ2
n = γ∗ <∞. To complete the proof solve the following exercise:

Exercise 12.6. Prove uniqueness as stated in the theorem.

The identification of GARCH models can be carried out along the lines of the identifi-
cation of ARMA processes: we invert the system to reconstruct the noise, and pretending
that the noise is Gaussian, we apply a maximum likelihood method. The resulting es-
timator is called a quasi-maximum likelihood estimator, or QMLE for short. Here we
present the Fisher information matrices of the estimators, and their eigenvalues, assum-
ing unit variance for the noise, for two of our benchmark models:

12.5 Existence of a strictly stationary solution

The condition Ee2n < ∞ or Ey2
n = Eσ2

n = γ∗ < ∞ may be not quite appropriate in
all circumstances, and it is a challenging problem to see what can we achieve without
using second order techniques. Thus let us consider the non-linear closed loop dynamics
described by (12.13) and (12.14), and let us ask ourselves: under what conditions does
a unique, causal, strictly stationary solution exist, without additional constraints or
expectations on moments of yn or σ2

n.
The main tool for tackling this problem is to consider the state space equation (12.18)

and analyze the resulting stability properties of the resulting random coefficient linear
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stochastic system. Recall first that a process (Xn), n ∈ Z is strictly stationary if for all
n,m ∈ Z, the law of (Xn, Xn+1, . . . , Xn+m) is independent of n. Using the state-space
representation of GARCH processes it can be readily seen that the GARCH equations
(12.13) and (12.14) have a unique, strictly stationary, causal solution if and only if the
linear stochastic system (12.18) has a unique, strictly stationary, causal solution with
non-negative coordinates. Let us now consider a generalization of (12.18) as follows:

Xn+1 = An+1Xn + un+1, n ∈ Z, (12.22)

where Xn ∈ Rd, An is a random matrix in Rd×d and un is a random vector in Rd. Assume
that the following condition holds:

Condition 12.4. (An, un) is a jointly strictly stationary, ergodic sequence of d× (d+1)
random matrices over some probability space (Ω,F , P ).

A strictly stationary solution (Xn) is called casual if Xn+1 is measurable with respect
to the σ-field Fn = σ{Ai, ui, i ≤ n}. Both necessary and sufficient conditions for the
existence of a strictly stationary casual solution of (12.22) have been given by Bougerol
and Picard in [11]. To formulate these results we need the concept of a Lyapunov-
exponent. Let | · | be any vector norm in Rd and define an operator norm on the set of
d× d real matrices by

‖M‖ := sup
x∈Rd,x 6=0

|Mx|
|x|

for M ∈ Rd×d. Let A = (An) be as above such that

E log+ ‖An‖ < +∞, (12.23)

where log+ x denotes the positive part of log x. Then we have the following result:

Theorem 12.2. Under the conditions above the limit

λ = lim
n→∞

1

n
E log ‖An . . . A1‖ (12.24)

exists, where −∞ ≤ λ < +∞. Moreover

λ = inf
n>0

1

n
E log ‖An . . . A1‖. (12.25)

The number λ is called the top-Lyapunov exponent of A, and is denoted by λ(A). If
An = A for all n then λ(A) is simply the spectral radius of A.

Proof. Consider the sequence un = E log ‖An . . . A1‖.
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Exercise 12.7. Show that (un) is sub-additive, i.e. we have for any n,m > 0 the in-
equality un+m ≤ un + um.

Now for subadditive sequences the following general result holds:

Lemma 12.5. Let (un) be a sub-additive sequence. Then the limit

λ = lim
n→∞

1

n
E log un (12.26)

exists, where −∞ ≤ λ < +∞, moreover

λ = inf
n→∞

1

n
E log un. (12.27)

Exercise 12.8. Prove the above lemma.

(Hint : take ε > 0 and choose a k such that uk/k < λ+ ε. Show that then for any integer
n we have unk/(nk) < λ+ ε.

Now a major result of the theory of random matrices is the theorem of Fürstenberg
and Kesten as follows, see [25]:

Theorem 12.3. Assume that (An) is ergodic, and that (12.23) holds. Then we the
top-Lyapunov exponent can be represented as the almost sure limit

λ(A) = lim
n→∞

1

n
log ‖An . . . A1‖ a.s. (12.28)

Then we have the following simple consequence of the previous theorem, a result due
to Bougerol and Picard [11]:

Theorem 12.4. Assume that (An, un) satisfies Condition 12.4, (12.23) holds, and

E log+ |un| < +∞. (12.29)

Then λ(A) < 0 implies that (12.22) has a unique strictly stationary and causal solution
given by

X∗
n = un +

∞∑
k=1

AnAn−1 . . . An−k+1un−k. (12.30)

Outline of proof: The first step in the proof is to solve the following exercise.

Exercise 12.9. Prove that for any ε > 0 there exist finite r.v.-s Cn(ω, ε) such that for
any n we have

||AnAn−1 . . . An−k+1|| ≤ Cn(ω, ε)e
(λ(A)+ε)(n−k).

Show that Cn(ω, ε) can be assumed to be a stationary sequence.
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The second step in the proof is formulated in the next exercise:

Exercise 12.10. Prove that for any sequence of r.v.-s (un) the condition

sup
n

E log+ |un| < +∞

implies that for any ε > 0 there exists a r.v. C(ω, ε) such that

|un| ≤ C(ω, ε)eεn.

Combining the results of the two exercises yield that the r.h.s. of (12.30) converges
a.s. It is trivially seen that the resulting r.v.-s do indeed satisfy the state-equation
(12.22).

Remark 12.6. A remarkable deep result due to Bougerol and Picard [11] is that the
condition λ(A) < 0 is also a necessary condition for the existence of a strictly stationary
causal solution of (12.22) when (An, un) is an i.i.d. sequence, assuming that (An, un) is
controllable in the sense that there is no proper subspace V ⊂ Rd, such that

A0V + u0 ⊂ V w.p.1.

Remark 12.7. An simple way to verify that λ(A) < 0 we may use the following obser-
vation: if for some m ≥ 1 we have

E‖Am . . . A1‖ < 1, (12.31)

then λ(A) < 0. This follows from the definition of the Lyapunov-exponent given in
(12.25), and Jensen’s inequality.
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Σ =


−3102 −2885 −1928 −1809
−2885 −3124 −2029 −1853
−1928 −2029 −1694 −1561
−1809 −1853 −1561 −1973

 λ =


−8723
−756.2
−256.9
−158.3


Figure 12.7: The asymptotic covariance matrix the QMLE, and its eigenvalues for an
ARCH(2) process with parameters, α∗1 = 0.3 and α∗2 = 0.5, and γ∗ = 0.5

Σ =


−3.681e+ 4 −3.685e+ 4 −3.316e+ 4 −3.272e+ 4
−3.685e+ 4 −3.740e+ 4 −3.351e+ 4 −3.309e+ 4
−3.316e+ 4 −3.351e+ 4 −3.083e+ 4 −3.000e+ 4
−3.272e+ 4 −3.309e+ 4 −3.000e+ 4 −2.736e+ 4

 λ =


−1.332e+ 5

1609
−249.0
−562.4


Figure 12.8: The asymptotic covariance matrix the QMLE, and its eigenvalues for an
ARCH(2) process with parameters, α∗1 = 0.3 and α∗2 = 0.65, and γ∗ = 0.5

Σ =


−7483 −6344 −1131 −1200
−6344 −6925 −1183 −1238
−1131 −1183 0.000 0.000
−1200 −1238 0.000 0.000

 λ =


−1.396e+ 4
−861.6
411.5

0.07622


Figure 12.9: The asymptotic covariance matrix the QMLE, and its eigenvalues for a
GARCH(2,2) process with α∗i = 0 and high β∗i , (γ∗ = 0.5)

Σ =


−1784 −1444 −828.5 −793.6
−1444 −1658 −877.1 −808.1
−828.5 −877.1 −561.7 −582.7
−793.6 −808.1 −582.7 −638.8

 λ =


−4102
−323.6
−217.2
0.4950


Figure 12.10: The asymptotic covariance matrix the QMLE, and its eigenvalues for a
GARCH(2,2) process with medium parameters, α∗i = β∗i = 0.2 and γ∗ = 0.5
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Chapter 13

High-frequency data. Poisson
processes

13.1 Motivation

When dealing with high-frequency data it is natural to build models in continuous time.
A classical model for modelling market dynamics in continuous time is geometric Brown-
ian motion, proposed by Paul Samuelson, modifying an earlier model of Louis Bacehelier.
This model is still the accepted core model despite the fact that empirical studies re-
vealed that its assumptions are not realistic. For example, since price movements are
induced by transactions which can be unevenly distributed in real time, it would be more
natural to use a time changed geometric Brownian motion to model price dynamics.

If the time change is defined by a so-called gamma process, which is a non-negative
strictly increasing process with independent and stationary increments, (see below), we
obtain the so-called VG (shorthand for Variance Gamma) process. VG processes re-
produce a number of stylized facts of real price processes, such as fat tails and large
kurtosis.

Another shortcoming of the geometric Brownian motion is that it is unsuitable to
model shocks or jumps in the price process, which are indeed observed. Therefore
in modelling high-frequency data an alternative approach is to use a general class of
continuous-time processes with independent and stationary increments, allowing jumps.
Thus we come to the notion of Lévy processes, which are obtained as the sum of a Wiener
process and another independent process modelling jumps.

Lévy processes are widely used to model phenomena arising in natural sciences, eco-
nomics, financial mathematics, queueing theory and telecommunication [3],[44],[20]. It
can be shown that the above time changed Brownian process itself is a Lévy process.
Extending the above construction novel price dynamics have been proposed by a vari-
ety of authors, called the geometric Lévy processes obtained by exponentiating a Lévy
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process. Lévy processes have become a widely used tool in modelling price processes of
financial instruments, such as stock prices or indices [44].

In this section we provide the basic mathematical technology, the elements of the
theory of Poisson point processes, through which the construction of Lévy process can
be conveniently described, see the next chapter.

13.2 Basic properties of the Poisson distribution

A stochastic process modelling jumps could be described by defining a point process, i.e.
an increasing sequence of random times 0 < T1 < T2 < . . . indicating the time points
when a jump occurs. Then for each Ti we should take a r.v. Xi giving the size of jumps.
A more convenient and more powerful approach is to work in the (t, x) domain (i.e. in the
product space R+ × R), and considering random point (Tα, Xα) with index α belonging
to a denumerable set. A novel feature of this approach that the time instants Tα-s are
not ordered in an increasing sequence. In fact it may happen that in any finite interval
[t0, t1] an infinite number of Tα-s occur, indicating an infinite number of transactions, as
an idealization. We start by extending the idea of stochastic processes with independent
increments for random sets of points in R+×R, or more generally in a measurable space
(S,G). Our presentation is based on [36].

Let (S,G) be a measurable space such that |S| ≥ ∞. For example, for S = R+ × R
we take G = B(R+ × R), the set of Borel-sets of R+ × R. Let Π be a random, finite set
in S. For any G-measurable test set A ⊂ S define

N(A) = |Π ∩ A|,

i.e. N(A) denotes the number of random points lying in A. An awkward looking technical
condition we need is the following:

Condition 13.1. We assume that the diagonal

D = {(x, x) : x ∈ S}

is measurable in (S × S,G × G).

Obviously, this condition is satisfied when G is the set of Borel-subsets of S, which is a
Borel set of Rn.

To fix the notations recall that a r.v. X has Poisson distribution P (µ) with 0 < µ <∞
if X takes its values in the set of non-negative integers, i.e. X is Z+-valued, and

P (X = n) = πn(µ) = µne−µ/n!

for n ≥ 0, with the usual convention that 0! = 1.
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The above, standard definition of a Poisson-distribution can be extended to cover the
extreme case when µ = 0 or µ = ∞. For µ = 0 we define P (µ) by

P (X = 0) = 1.

For µ = ∞ we set:
P (X = ∞) = 1.

Proposition 13.2. Let X have a Poisson distribution P (µ). Then for |z| ≤ 1 we have

E(zX) = e−µ(1−z).

Proof.

E(zX) = e−µ
∞∑
n=0

µn

n!
zn = e−µeµz = e−µ(1−z).

Using this result one can obtain formulas, which are easy to remember, for the mo-
ments of X. Differentiating w.r.t. z and setting z = 1 we get

E [X] = µ

E [X(X − 1)] = µ2

E [X(X − 1)(X − 2)] = µ3,

and so on.

Let us now consider the problem of adding two a more independent Poisson r.v.-s.
For a start we recall the following elementary result:

Proposition 13.3. If X and Y are independent r.v.-s with

X
L
= P (λ) Y

L
= P (µ)

then
X + Y

L
= P (λ+ µ).

The proof can be easily obtained by direct calculation.

To extend the above result for countably many r.v.-s let Xj, j = 1, 2, ... be indepen-
dent r.v.-s with

Xj
L
= P (µj).
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Proposition 13.4. If

σ =
∞∑
j=1

µj (13.1)

converges, then

S =
∞∑
j=1

Xj

converges with probability 1, and

S
L
= P (σ).

If, on the other hand, if (13.1) diverges, then S diverges w.p.1.

Proof. (Outline) By induction on n we have:

Sn =
n∑
j=1

Xj
L
= P (σn),

where

σn =
n∑
j=1

µj.

But
P (S ≤ r) = lim

n→∞
P (Sn ≤ r).

Using the continuity of πµ(k) in µ gives the claim.

The next natural problem we consider is this: what is the conditional distribution of
the individual Xi-s under the condition that their sum is given ? The answer is that this
conditional distribution is multinomial, as given in the following proposition:

Proposition 13.5. Let X1, X2, ...Xn be independent, Xj
L
= P (µj), and set

S = X1 + ...+Xn.

Then the conditional distribution of (X1, X2, ...Xn) given S = s is:

P (X1 = r1, ..., Xn = rn|S = s) =
s!

r1!...rn!
(
µ1

σ
)r1 ...(

µn
σ

)rn.

with σ = µ1 + ...+ µn.

For n = 2 the previous result gives that the above conditional distribution is binomial:
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Corollary 13.6. Let X and Y be independent Poisson r.v.-s. Then

P (X|X + Y = n)
L
= B(n, p)

with
p = E(X)/(E(X) + E(Y )).

Recall that B(n, p) is the binomial distribution for n trials with success probability p.
Thus

P (X = r|X + Y = n) = b(n, p; r) =

(
n

r

)
pr(1− p)r.

13.3 Poisson point processes on a general state space

Now we define and study Poisson point processes in a general setting. It turns out that
the proposed general point of view is exceptionally fruitful in understanding a number
of features of Poisson point processes. Let (S,G) be a measurable space s.t. |S| ≥ ∞.

Definition 13.7. . A random, countable subset Π of S is a Poisson process if
(i) for any A1, ..., An ⊂ S measurable, disjoint sets the counts

N(Ai) = |Π ∩ Ai|

are independent.
(ii) for any A ∈ G we have

N(A)
L
= P (µ(A)),

where µ is a measure on (S,G). It is called the mean measure.

Exercise 13.1. Show that µ is non-atomic, i.e. for all x ∈ S we have µ({x}) = 0.

(Hint : Otherwise we would have P (N({x}) ≥ 2) > 0 !)

Exercise 13.2. Show that for any A1, A2 ∈ G with µ(Ai) <∞ we have

cov(N(A1), N(A2)) = µ(A1 ∩ A2).

Definition 13.8. Let S = Rd. If µ is given in terms of a measurable function λ on S
by

µ(A) =

∫
A

λ(x)dx,

then λ(x) is called the intensity.
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Note that is not assumed that µ(A) < +∞. If λ(x) = λ constant, then Π is called a
homogeneous Poisson point process.

The next theorem is the so-called superposition theorem. In the language of finance
superposition amounts to considering the union of two (a more) independent markets as
a single market.

Theorem 13.1. Let Π1,Π2, ... be independent Poisson processes on S, and let Πn have
mean measure µn. Then their superposition

Π =
∞
∪
n=1

Πn

is a Poisson process with mean measure

µ =
∞
Σ
n=1

µn.

Proof. Let
Nn(A) = #{Πn ∩ A} and N(A) = #{Π ∩ A}.

If

N(A) =
∞∑
n=1

Nn(A), w.p.1 (13.2)

then we are ready (by the countable additivity theorem).

To prove (13.2) we use the following disjointness lemma, which is applicable if µn(A) <
+∞ for all n:

Lemma 13.9. Let Π1 and Π2 be independent Poisson processes on S and let A ⊂ S be
measurable with

µ1(A), µ2(A) < +∞.

Then
P{Π1 ∩ Π2 ∩ A = ∅} = 1. (13.3)

A very simple proof of this lemma can be obtained by using the construction of the
Poisson process via so-called Bernoulli processes, see below.

The next three theorem fall into the category of mapping theorems. We begin with
the simplest possible mapping: restriction.

Theorem 13.2. Let Π be a Poisson process with mean measure µ on S and let S1 ⊂ S
be measurable.Then

Π1 = Π ∩ S1

is a Poisson process on S with mean measure

µ1(A) = µ(A ∩ S1).
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Exercise 13.3. Prove the above theorem.

A much more exiting and challenging problem is the following. Let Π be a Poisson
process on S, having mean measure µ, and let

f : S → T

be a mapping into a measurable space T satisfying Condition D. Assume that f is
measurable and let the induced measure be µ∗:

µ∗(B) = µ(f−1(B))

for B ⊂ T measurable. What can we say about the induced measure ? The following
theorem gives the answer:

Theorem 13.3. Assume that µ is σ-finite, and the induced measure µ∗ has no atoms.
Then

f(Π)

is a Poisson process on T with mean measure µ∗.

Outline of the proof: We show that for B ⊂ T measurable we have for the counts

N∗(B) = {X ∈ Π, f(X) ∈ B} = N(f−1(B)) w.p.1.

A non-trivial technical tool: we have w.p.1

x, y ∈ Π, x 6= y ⇒ f(x) 6= f(y).

Proving this will be an exercise later on.
A simple application of the mapping theorem is the following projection theorem:

Theorem 13.4. Let Π be a Poisson process in RD with rate function λ(x1, ..., xD). Let
d < D and let

Πd

be the projection of Π on the first d coordinates. Then Πd is a Poisson-process with rate
function

λ∗(x1, ..., xd) =

∫
...

∫
λ(x1, ..., xD)dxd+1...dxD.

Exercise 13.4. Prove the above projection theorem.

150



13.4 Construction of Poisson processes

So far it has not been discussed how to generate a Poisson point process. In the case
of S = R1, i.e. in time domain a standard procedure is to generate the times of events
occurring Tk simply adding i.i.d, exponentially distributed random variables. In our
general setup this approach is not applicable.

Let us work backward. Let Π be a Poisson process on S with µ(S) < +∞. We ask
the question: what is the distribution of Π under the condition that N(S) is given ? Let

A0, A1, ..., Ak ⊂ S be a partition of S, and let
k∑
i=0

ni = n. Then

P (N(A0) = n0, ...N(Ak) = nk |N(S) = n)

=
n!

n0!...nk!

(
µ(A0)

µ(S)

)n0

...

(
µ(Ak)

µ(S)

)nk

.

The idea is then to construct first a conditional Poisson point process under the condition
that N(S) = n. This is a countable random set of interest of its own:

Definition 13.10. The random finite set Π ⊂ S with |Π| = n and

P (N(A0) = n0, ..., N(Ak) = nk) =
n!

n0!...nk!
η(A0)

n0 ...η(Ak)
nk (13.4)

where η is a probability measure on S, is called a Bernoulli process. The measure n η(.)
is called the mean measure.

Proposition 13.11. Let X1, ..., Xn be i.i.d. on S according to the probability measure
η. Assume that η has no atom. Then

Π = {X1, .., Xn}

is a Bernoulli process.

Exercise 13.5. Prove the above proposition.

Theorem 13.5. Let µ be a non-atomic measure on S such that

µ =
∞∑
n=1

µn, µn(S) <∞. (13.5)

Then there exists a Poisson process having µ as its mean measure.
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Note that (13.5) is slightly weaker than σ-finiteness.
Outline of the proof: Assume µn(S) > 0 for all n. Let for n = 1, 2, ...

Nn
L
= P (µn(S))

be a sequence of independent r.v.-s. For all n let

Xn = (Xnr) r = 1, ..., Nn

be an i.i.d. sequence of S-valued r.v.-s with distributions

Pn(·) = µn(·)�µ(S).

Assume that
(Xnr) and N = (Nn), n, r = 1, 2, ...

are mutually independent. Write

Πn = {Xn1, ..., XnNn}

and set
Π =

∞
∪
n=1

Πn.

This Π will do.

Exercise 13.6. Work out the details of the proof.

13.5 Sums and integrals over Poisson processes

Let f be a real-valued function over the state space S. The object to be discussed in this
section is the sum:

Σ = Σf =
∑
x∈Π

f(x).

This problem will lead us to the definition of integrals with respect to random point
processes, in close analogy to stochastic integrals w.r.t. random orthogonal measures.
Example. The shot effect. Let 0 < T1 < T2 < ... be a Poisson process on (0,∞). Let an
impulse response be φ. Then the total response is∑

j

φ(t− Tj).

First we define the integral of simple, i.e. piecewise constant functions. Let f take
on a finite number of values:

f(x) = fi on Ai
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i = 1, ..., k, where the sets Ai are disjoint, and µ(Ai) < +∞. Then

Σ = Σf =
∑
x∈Π

f(x) =
k∑
j=1

fjNj

where Nj = N(Aj).
Compute the moment generating function of Σ. For any real or complex θ we have

E(eθΣ) =
k∏
j=1

E(eθfjNj).

The j-th term is exp{(eθfj − 1)mj} with mj = µ(Aj). Thus we get

E(eθΣ) = exp{
k∑
j=1

(eθfj − 1)µ(Aj)} = exp{
∫
S

(eθf(x) − 1)µ(dx)}.

Thus we arrive at the following master equation:

Theorem 13.6. Let f be a real valued function taking on a finite number of values.
Then we have for any real or complex θ

E(eθΣ) = exp{
∫
S

(eθf(x) − 1)µ(dx)}. (13.6)

For the means and covariances of Σ-s we get:

E(Σ) =

∫
S

f(x)µ(dx).

and, if

Σ1 =
∑
x∈Π

f1(x), Σ2 =
∑
x∈Π

f2(x),

then

Cov(Σ1,Σ2) =

∫
S

f1(x)f2(x)µ(dx).

Exercise 13.7. Prove the above two identities.

Clearly, the extension of the concept of integrals may not be possible for any function
f . First of all we introduce some technical conditions to ensure the integrability of the
right hand side of (13.6). Assuming that θ is purely imaginary, say θ = iω, with ω
real, we can estimate the absolute value of the r.h.s. of (13.6) by splitting the region
of integration into two, according to whether |f(x)| > d or |f(x)| ≤ d, and taking a
Taylor-series approximation of the integrand on the latter region. Thus we come to the
following conditions:
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Condition 13.12. For all d > 0 we have with Bd = {x : |f(x)| > d}

µ(Bd) <∞.

Condition 13.13. ∫
|f(x)|≤d

|f(x)|µ(dx) <∞. (13.7)

The next condition merges the previous two conditions with d = 1:

Condition 13.14. ∫
S

min(|f(x)|, 1)µ(dx) <∞. (13.8)

This is a familiar condition that frequently shows up in the theory of Lévy processes.
Under the integrability condition (13.8) it follows that the r.h.s. of (13.6) is well-defined
and is finite. Note that we can write∑

x∈Π

f(x) =

∫
S

f(x)N(dx),

where N(dx) is a random counting measure. The following result, known as (Campbell’s
theorem gives a necessary and sufficient condition for the existence of an integral over a
Poisson point process, and in addition it gives a novel version of the master equation.

Theorem 13.7. Let f be a real-valued measurable function. Then

Σ =
∑
x∈Π

f(x)

is absolutely convergent w.p.1 if and only if (13.8) holds. Under (13.8):

E(eθΣ) = exp{
∫
S

(eθf(x) − 1)µ(dx)}. (13.9)

for θ = it, t real. If f ≥ 0 then (13.9) holds for any complex θ with

< θ ≤ 0.

Outline of the proof: Let f ≥ 0. Let (fj) be a sequence of simple functions such that

fj ↗ f µ a.s.

Then for any real θ, we have by the monotone convergence theorem
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E(eθΣ) = lim
j

E(eθΣj).

Note that both sides can be +∞! Using the master equation (13.6) and monotone
convergence we get (13.9) for any real θ.

Now let θ < 0. If the integrability condition (13.8) holds, then

E(eθΣ) =

∫
S

(eθf(x) − 1)µ(dx) = I(θ).

Moreover the r.h.s. is finite and tends to 0 as θ → 0. Hence Σ is finite w.p.1.

If (13.8) does not hold, then I(θ) = +∞ for any θ > 0. Thus

E(eθΣ) = ∞

for any θ > 0, and hence Σ = ∞ w.p.1.
If the integrability condition (13.8) holds, then

E(eθΣ) and I(θ) = exp{
∫
S

(eθf(x) − 1)µ(dx)}

are well-defined for <θ ≤ 0, and are analytic for <θ < 0. Since they agree for θ real,
θ < 0, we have

E(eθΣ) = I(θ)

for all <θ ≤ 0, in particular for θ = it. In the general case we write

f = f+ − f−

with
f+ = max(f, 0) , f− = max(−f, 0),

and proceed using straightforward arguments.
The next result gives the mean and variance of Σ.

Theorem 13.8. Under the integrability condition (13.8) we have

E(Σ) =

∫
S

f(x)µ(dx) (13.10)

in the sense that the l.h.s. exists if the r.h.s. converges. Furthermore, if (13.10) con-
verges, then

var(Σ) =

∫
S

f 2(x)µ(dx)

finite or infinite.
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Theorem 13.9. Let f1,f2 satisfy (13.8), and let∫
S

fj(x)µ(dx)

converge, and let ∫
S

f 2
j (x)µ(dx) < +∞.

Then

cov(Σ1,Σ2) =

∫
S

f1(x)f2(x)µ(dx).

Exercise 13.8. Provide a formal proof for the above expression of var(Σ) by differenti-
ating the master equation

E(eitΣ) = exp{
∫
S

(eitf(x) − 1)µ(dx)}

w.r.t. t once and twice, and setting t = 0.

Exercise 13.9. Provide a formal proof for the above expression of cov(Σ1,Σ2) by con-
sidering the master equation

E(eit1Σ1+it2Σ2) = exp{
∫
S

(eit1f1(x)+it2f2(x) − 1)µ(dx)}.

and taking mixed second order partial derivatives

∂2

∂t1∂t2
,

and setting t1 = t2 = 0.
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Chapter 14

High-frequency data. Lévy
Processes

14.1 Motivation and basic properties

To model shocks or jumps in the price process the simplest starting point is the compound
Poisson process. Classically it is defined as a Poisson process with random i.i.d. jumps.
An alternative representation can be obtained as follows. Let N(dt, dx) be a time-
homogeneous, space-time Poisson point process, counting the number of jumps of size x
at time dt. The intensity of N(dt, dx) is defined by

EN(dt, dx) = dt · ν(dx),

where ν(dx) is called the Lévy-measure. Intuitively, ν(x) can be interpreted as the rate
of jumps with size of x. Consider now the process defined by

Lt =

∫ t

0

∫
R1

xN(ds, dx), (14.1)

assuming that for any finite interval [t0, t1] the number of random points (t, x) with t
falling in the selected interval is finite. Then we get a piecewise constant process with a
finite number of jumps in any finite interval. This is called a compound Poisson process.

Now let us allow an infinite number of random points (t, x) in any finite interval. If t
denotes the time of transaction then we have a model with infinite activity. The integral
representation (14.1) still makes sense under the technical conditions given in Campbell’s
theorem. In particular, if ∫

R1

min(|x|, 1)ν(dx) <∞,

then the above representation is mathematically certainly rigorous. Under this condi-
tion the sample paths of (Lt) are of finite variation, a property supported by empirical
evidence for most indices.
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We note in passing that using an appropriate limiting procedure in L2 the integral
given on the r.h.s. of (14.1) can be interpreted under the more general condition:∫

R1\0
min(|x|2, 1)ν(dx) <∞.

Lévy processes have become a widely used tool in modeling price processes of financial
instruments, such as stock prices or indices [44]. A Lévy process (Lt) is much like a
Wiener process: a process with stationary an independent increments, but discontinuities
or jumps are allowed, hence, they can be used to model shocks in financial markets. For
an excellent introduction to see [31]. The relevance of Lévy processes can be justified by
visual inspection of historical data, obviously exhibiting shocks and jumps. We present
three time series in the figures below: stock prices for IBM, Coke and Microsoft.

Figure 14.1: Historic daily closing prices of IBM stocks, 1991-2011

Figure 14.2: Historic daily closing prices of Coke stocks, 1991-2011

Let us now give a brief summary of basic definitions related to Lévy processes. The
material of this chapter is partially based on the PhD thesis of M. Mánfay, [40].

Let (Ω,F , P ) be a probability space.
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Figure 14.3: Historic daily closing prices of Microsoft stocks, 1991-2011

Definition 14.1. We say that (Lt), t ≥ 0 is a Lévy process if L0 = 0, and

1. for any given 0 ≤ t1 < . . . < tn, the random variables Lt2 − Lt1 , Lt3 − Lt2 , . . . ,
Ltn − Ltn−1 are independent.

2. for any 0 ≤ s < t, and τ ≥ 0 the distribution of Lt+τ − Ls+τ is independent of τ.

Exercise 14.1. Show that the characteristic function of Lt can be written in the form

EeiuLt = etψ(u).

Here ψ(u) is called the characteristic exponent.
Note that the logarithm of the characteristic function is linear in t, which is implied

by the fact that (Lt) has independent and stationary increments. The characteristic
function plays a key role in the study of Lévy processes, because unlike the density
function of Lt it typically has a closed form. The c.f. of a Lévy process is given by the
following celebrated Lévy-Khintchine formula:

Theorem 14.1. Let (Lt) be a Lévy process. Then there exist a triplet (b, c, ν), with b, c ∈
R, c ≥ 0, and ν being a Lévy measure satisfying ν(0) = 0 and

∫
R1 min(|x|2, 1)ν(dx) <∞,

such that

E
[
eiuLt

]
= exp

[
t

(
ibu− u2c

2
+

∫
R1

(
eiux − 1− iux1|x|<1

)
ν(dx)

)]
.

For pure-jump Lévy processes with finite variation trajectories defined by 14.1 we have
the following simplified form of the Lévy-Khintchine formula:

Theorem 14.2. Let (Lt) be a pure-jump Lévy process (having no Brownian motion
component), with finite variation trajectories, defined by (14.1). Then

E
[
eiuLt

]
= exp

[
t

(
ibu+

∫
R1

(
eiux − 1

)
ν(dx)

)]
.
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Exercise 14.2. Provide a derivation of the above simplifies version of the Lévy-Khintchine
formula using Campbell’s theorem.

14.2 Lévy processes in finance

A wide range of geometric Lévy processes has been proposed by a variety of authors.
One of the early models is the so-called Variance Gamma (VG)-process, which is a time
changed Brownian motion with drift. The time change is realized by a so-called gamma
process, which is essentially the continuous time extension of the inverse of a Poisson
process. In particular, a gamma-process has independent increments having gamma
distributions. A γ process is characterized by two parameters µ and ν, the mean-rate
and the variance rate, respectively. For details see the Appendix of this chapter. The
Lévy measure of a γ-process γ(t;µ, ν) is given by:

ν(dx) = µx−1e−νxdx

To define the VG process let B(t; θ, σ) be a Brownian motion with drift, given by

B(t; θ, σ) = θt+ σB(t),

where (B(t)) is a standard Brownian motion. Let γ(t;µ, ν) be a gamma process with
mean rate µ and variance rate ν,. Then the VG process (X(t;σ, ν, θ)) is defined as

X(t;σ, ν, θ) = B(γ(t; 1, ν); θ, σ).

Note that the mean-rate of the γ-process is fixed as 1. This is due to our freedom to fix
one of the scaling factors µ or σ. Thus VG-processes form a three-parameter class of
processes.

The Lévy measure of a VG process can be obtained by first computing its charac-
teristic function and then applying Lévy-Khintchine’s formula in the inverse direction.
Thus we get:

ν(dx) =

µ2
n

νn

exp(−µn
νn
|x|)

|x| dx if x < 0

µ2
p

νp

exp(−µp
νp
x)

x
dx if x > 0,

where the parameters µp, νp, µn, νn are obtained in terms of the original parameters as
follows:

µp =
1

2

√
θ2 +

2σ2

ν
+
θ

2

µn =
1

2

√
θ2 +

2σ2

ν
− θ

2
νp = µ2

pν

νn = µ2
nν

160



From here we get the following remarkable property of VG processes: a VG process
Xt(σ, ν, θ) can be written as the difference of two gamma processes:

Xt(σ, ν, θ) = γp(t, µp, νp)− γ1(t, µn, νn).

In particular, it follows that a VG process is of finite variation.
Another early model in finance, proposed by Mandelbrot to model cotton prices, is

the symmetric α-stable process, with 0 < α < 2, is defined via the Lévy measure

ν(dx) = C|x|−1−αdx.

A recently widely studied class of Lévy processes is the CGMY process, due to Carr,
Geman, Madan and Yor [14]. It is obtained by multiplying the Lévy-density of a stable
process with a decreasing exponential on each half of the real axis. Its Lévy-measure,
using standard parametrization, is of the form:

ν(dx) =
Ce−G|x|

|x|1+Y
1x<0dx+

Ce−Mx

|x|1+Y
1x>0dx,

where C,G,M > 0, and 0 < Y < 2. Intuitively, C controls the level of activity, G and M
together control skewness. Y controls the density of small jumps, i.e. the fine structure.
For Y < 1 the corresponding Lévy process is of finite variation. Allowing Y = 0 yields
the Variance Gamma process.

The characteristic exponent of the CGMY process is given by

ψ(u) = CΓ(−Y )
(
(M − iu)Y −MY + (G+ iu)Y −GY

)
,

where Γ denotes the gamma-function.
In the following three figures we present the trajectories of compound Poisson ap-

proximations of three CGMY processes, with cut-off ε = 10−5, meaning that jumps with
absolute value less than 1 are nullified.

On Figures bellow we see a varieties of CGMY processes: with significant drift and
local noise on the fine structure due to the large value of Y , a symmetric CGMY process
with weak tempering, exhibiting some clustering phenomenon. Finally, on the last Figure
the tempering effect is stronger, and the local noise is weaker, resulting in an almost
constant process.

Although the geometric CGMY model is widely used in finance, it can not always be
validated on real data. Surprisingly, even the assumed independence of daily log-returns
may not always be validated on historical data.

14.3 The empirical characteristic function method

An important practical problem is the estimation of the parameters of an assumed model
class of Lévy processes from historical data. Suppose that we are given a sample of N in-
dependent and identically distributed observations obtained as the increments of a Lévy
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Figure 14.4: A CGMY process with visible drift and local noise, due to a high value of
Y = 1.95. The further parameters are C = 1, G = 0.1 and M = 0.2.

Figure 14.5: A CGMY process with visible drift, but less volatile local noise, due to a
medium value of Y = 1.2. The further parameters are C = 2, G = 1.2 and M = 1.5

Figure 14.6: A symmetric CGMY process with Y = 0.5. The further parameters are
C = 2 and G = M = 0.3

process. If we knew the probability density function of these random variables then we
could apply an ML (Maximum Likelihood) estimation method. The challenge of the
present problem is that it is the characteristic function of the noise that is explicitly
given, rather than the density function. Namely, it is typical for a Lévy process (Xt)
that the probability density function of Xt does not have a closed form, while its charac-
teristic function is known up to some unknown parameters. A natural approach to solve
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Figure 14.7: A CGMY process with a low value of Y = 0.3. The further parameters are
C = 1, G = 0.7 and M = 0.8.

this problem is therefore to apply the so-called empirical characteristic function (ECF)
method. In fact, the ECF method is widely used in finance.

We briefly describe the method for i.i.d. samples, see [17]. Let (r1, r2, . . . rN) be i.i.d.
observations, and let a closed form of the characteristic function ϕ(u, η) be known, with
η being a p-dimensional parameter vector, and u ∈ R. The true value of the parameter
will be denoted by η∗.

The idea is to estimate η∗ by a value of η for which the characteristic function (cf)
best matches the empirical characteristic function (ecf). The error for any fixed u is
defined as

hN(u, η) =
1

N

N∑
k=1

hk(u, η),

where hk(u, θ) is the generalized, normalized moment function, or score:

hk(u, η) = eiurk − ϕ(u, η).

An important, obvious property of the score is that

Ehk(u, η
∗) = 0, for all u,

where η∗ denotes the true parameter. Take a finite set of moments, evaluated, say at
u1, ..., um, with m > p, and set

hN(η) = (hN(u1, η), ..., hN(um, η))
T .

We would the estimate η∗ by minimizing the weighted quadratic cumulative error

VN(η) = |K−1/2hN(η)|2, (14.2)

where K is an appropriate, m × m weighing matrix. The resulting estimator will be
denoted by η̂N .
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To get the asymptotic covariance matrix of η̂N , we proceed along standard arguments
(see also the analysis of the PE estimator for MA or ARMA processes). We will provide
only an outline here. First, let the expectations of the scores be denoted by

gk(η) = Ehk,n(η).

Let the complex conjugate of a vector or matrix M be denoted by M∗. Then the gradient
equation (p equations) reads as:

h
∗
η(η)K

−1h(η) = 0.

The left hand side can be considered as a new set of exactly p scores. The corresponding
asymptotic score can be written as

g∗η(η)K
−1g(η),

while its derivative at η∗, (the Hessian of the asymptotic cost) is

R = g∗η(η
∗)K−1gη(η

∗).

Let us define the M × p matrix
G = gη(η

∗).

Then the Hessian of the asymptotic cost is

T = G∗K−1G.

To get the asymptotic covariance of the new set of scores define the M ×M covariance
matrix by

Ck,l = E h∗k,n(η
∗)hl,n(η

∗).

Note that we have

Ck,l = ϕ(uk − ul, η
∗)− ϕ(uk, η

∗)ϕ(−ul, η∗).

Set
C = (Ck,l).

Thus the asymptotic covariance of the new set of scores is

S = G∗K−1CK−1G.

The asymptotic covariance of the estimator η̂N is then

T−1ST−1,
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or equivalently,
(G∗K−1G)−1 G∗K−1CK−1G (G∗K−1G)−1.

It is relatively easy to see (using simple matrix inequalities) that the optimal value of K
is

K = C.

Thus we finally arrive at the following conclusion:

Proposition 14.2. The asymptotic covariance matrix of the ECF estimator η̂N for i.i.d.
data, using K = C, is

Σ = (G∗C−1G)−1.

It can be shown that the method gives a consistent estimate of η∗, and that the distrib-
ution of the estimation error η̂N − η∗ is normal.

A fascinating feature of the ECF method is that it can as efficient as the ML method,
when taking a continuum of u-s. To conclude this section we provide a heuristics behind
the latter claim. Let the data be {yn}Nn=1, and let the empirical distribution be Fn(x). Let
the family of distributions is F (x, η) having a density fη(yn, η). The likelihood equation
is then

N∑
n=1

fη(yn, η)

f(yn, η)
= 0.

Rewrite this as ∫ ∞

−∞

fη(x, η)

f(x, η)
(dFn(x)− dF (x, η)) = 0.

Using Parseval’s theorem (formally) yields∫ ∞

−∞
w(t, η)(ϕn(t)− ϕ(t, η))dt = 0,

where

w(t, η) =
1

2π

∫ ∞

−∞

∂ log f(x, η)

∂η
e−itxdx, (14.3)

and ϕn(t) is the empirical c.f. This reasoning shows that the likelihood equation of the
ML method is equivalent to an empirical characteristic function method using a weighted
integral of the scores (ϕn(t) − ϕ(t, η)) as given by the equation (14.3). Since the ML
estimates are consistent, it is reasonable to argue that the weights w(t, η) can be replaced
by their asymptotic value

w(t, η∗) =
1

2π

∫ ∞

−∞

∂ log f(x, η)

∂η

∣∣∣∣
η=η∗

e−itxdx
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without effecting the asymptotic properties of the ECF estimator. Now, it can be shown
that this variant of the ECF method is equivalent to choosing K = C, as described
above, using a continuum of u-s. Thus we finally conclude that the ECF method with a
continuum of u-s can be as efficient as the ML method.

In the figures below we present the Hessian of the asymptotic cost function for our
benchmark examples defined above:

H =


6.272 −17.70 30.25 111.3
−17.70 159.5 0.4964 −323.4
30.25 0.4964 294.9 511.7
111.3 −323.4 511.7 1981

 λ =


2178

0.0003913
220.4
42.57


Figure 14.8: The Hesse matrix of the asymptotic cost function of the ECF method, and
its eigenvalues for a CGMY process with visible drift and local noise, due to a high value
of Y = 1.95. The further parameters are C = 1, G = 0.1 and M = 0.2. We use 100
equidistant u-s on [−10, 10].

H =


182.0 339.6 450.9 −279.7
339.6 4140 2586 −1354
450.9 2586 2029 −1167
−279.7 −1354 −1167 713.9

 λ =


6485
543.7
34.94
1.400


Figure 14.9: The Hesse matrix of the asymptotic cost function of the ECF method, and
its eigenvalues for a CGMY process with visible drift and local noise, due to a high value
of Y = 1.5. The further parameters are C = 1.5, G = 1.2 and M = 0.5. We use 100
equidistant u-s on [−10, 10].

H =


5.237e+ 16 6.517e+ 16 7.284e+ 16 −4.592e+ 17
6.517e+ 16 1.078e+ 17 1.108e+ 17 −6.000e+ 17
7.284e+ 16 1.108e+ 17 1.165e+ 17 −6.604e+ 17
−4.592e+ 17 −6.000e+ 17 −6.604e+ 17 4.060e+ 18

 λ =


4.309e+ 18
2.757e+ 16
3.700e+ 13
5.672e+ 12


Figure 14.10: The Hesse matrix of the asymptotic cost function of the ECF method, and
its eigenvalues for a CGMY process with visible drift, but less volatile local noise, due
to a medium value of Y = 1.2. The further parameters are C = 2, G = 1.2 and M = 1.5
We use 100 equidistant u-s on [−10, 10].
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H =


0.1468 0.03579 0.02700 −0.2609
0.03579 0.01155 0.007205 −0.06422
0.02700 0.007205 0.01012 −0.07268
−0.2609 −0.06422 −0.07268 0.6234

 λ =


0.7539
0.03404
0.002866
0.001119


Figure 14.11: The Hesse matrix of the asymptotic cost function of the ECF method, and
its eigenvalues for a CGMY process with a low value of Y = 0.3. The further parameters
are C = 1, G = 0.7 and M = 0.8. The further parameters are C2, G = 1.2 and M = 1.5.
We use 100 equidistant u-s on [−10, 10].

14.4 Appendix: the gamma process

In this section we provide a brief introduction to gamma-processes that play a major
role in VG modelling. To construct a gamma process let ξn be an i.i.d. sequence of
random variables with exponential distribution having density λe−λx for x > 0. Let
sk = ξ1 + ...+ ξk. The probability density function and characteristic function of sk are
given by

λkxk−1e−λx/(k − 1)! (14.4)

and

Eexp(iusk) =

(
λ

λ− iu

)k
=

(
1

1− iu
λ

)k
. (14.5)

For the means and the variances of sk we have:

Esk = k/λ and σ2(sk) = k/λ2.

We can look upon sk as a stochastic process defined over the positive integers, with
independent and identically distributed increments. Let us re-parametrize the density
above by introducing the new variables

ν = 1/λ and t = k/λ = kν. (14.6)

Here ν = 1/λ is the mean life-time. Then define

γt = sk = st/ν .

Remember that t/ν is the number of exponential terms. The probability density function
of γt can be written as

ft(x) =

(
1

ν

)t/ν
xt/ν−1e−x/ν

Γ(t/ν)
. (14.7)
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The characteristic function of γt is given by

Eexp(iuγt) =

(
1

1− iνu

)t/ν
. (14.8)

Finally, the means and the variances of γt are

Eγt = t and σ2(γt) = tν. (14.9)

Now it can be shown that ft(x) as defined above, is a density function for any real
t ≥ 0. This is called a gamma-density. The corresponding characteristic function is
given by (14.8) for any real t ≥ 0. Obviously, thus set of characteristic functions is closed
under multiplication. Thus gamma-densities are closed under convolution. Consequently,
we can construct a stochastic process γt, with t ≥ 0 real, with stationary independent
increments, so that the the density function of γt+h − γt is fh. This is called a gamma-
process. Obviously, the means and variances of γt are obtained as in (14.9) for any real
t. Therefore we say that the mean rate of γt is 1, and its variance rate is ν.

Finally, we can re-scale the process by setting, with some µ′ > 0,

t′ = t/µ′ and γ′t′ = γt. (14.10)

Then
Eγ′t′ = µ′t′ and σ2(γ′t′) = (µ′t′)ν = (µ′ν)t′. (14.11)

Correspondingly, we say that the mean-rate of the re-scaled process is µ′, and the variance
rate of the re-scaled process is ν ′ = µ′ν. We can express the old variables in terms of the
new variables by the the following scaling equations:

t = µ′t′ and ν = ν ′/µ′.

Expressing the density function of γ′t′ = γt in terms of these parameters, and changing
the roles of parameters with and without superscripts, and correspondingly making the
replacements

t→ µt and ν → ν/µ

we get

ft(x;µ, ν) =
(µ
ν

)µ2 t
ν xµ

2 t
ν
−1e−µ

x
ν

Γ(µ2 t
ν
)

. (14.12)

Note that the following scaling property holds: for any c > 0

ft(x;µ, ν) = fct(x;µ/c, ν/c). (14.13)

168



A random variable with this distribution will be denoted by γt = γt(µ, ν), with µ denoting
the mean rate and ν denoting the variance rate. Its characteristic function is given by

φt(u;µ, ν) =

(
1

1− i ν
µ
u

)µ2 t
ν

.

Similarly, a stochastic process γt with stationary independent increments, so that the
the density function of γt+h − γt is fh(x;µ, ν) will be denoted by γt(µ, ν). This is then a
Lévy process, the Lévy density of which can be explicitly determined, see [49].

k(x;µ, ν) =
µ2e−µ

x
ν

x
1x>0. (14.14)
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