A perturbative proof of the Lee-Yang Circle Theorem

Marek Biskup
based on joint work with

Christian Borgs
Jennifer \top. Chayes
Logan J. Kleinwaks
Roman Kotecký

PLAN

(1) Historical perspective: theory of phase transitions
(2) Lee-Yang Circle Theorem (and proof)
(3) Perturbative approach

PHASE TRANSITIONS

Examples:

(1) Water freezes \& boils
(2) Permanent magnetism
(3) Superconductivity, etc.

Common feature: collective phenomenon

ISING MODEL

- $\wedge \subset \mathbb{Z}^{d}$ finite set
- $\sigma_{\wedge} \in\{-1,+1\}^{\wedge}$ spin configuration
- Probability measure

$$
\mathbb{P}\left(\left\{\sigma_{\Lambda}\right\}\right)=\frac{1}{\mathcal{Z}_{\Lambda}(J, h)}\left(\prod_{\langle x, y\rangle} e^{J \sigma_{x} \sigma_{y}}\right) \prod_{x \in \Lambda} e^{h \sigma_{x}}
$$

- Partition function

$$
\mathcal{Z}_{\Lambda}(J, h)=\sum_{\sigma_{\Lambda}}\left(\prod_{\langle x, y\rangle} e^{J \sigma_{x} \sigma_{y}}\right) \prod_{x \in \Lambda} e^{h \sigma_{x}}
$$

- Parameters:

$$
J \geq 0 \text { (coupling constant) }
$$

$$
h \bar{\in} \mathbb{R} \text { (magnetic field) }
$$

- Plus-minus symmetry: $\sigma \leftrightarrow-\sigma \& h \leftrightarrow-h$

PHASE TRANSITION IN ISING MODEL

- Quantity of interest

$$
m_{\Lambda}(J, h)=\frac{\mathrm{d}}{\mathrm{~d} h} \frac{1}{|\Lambda|} \log \mathcal{Z}_{\Lambda}(J, h)
$$

- Thermodynamic limit

$$
m_{\star}(J, h)=\lim _{\wedge \nearrow \mathbb{Z}^{d}} m_{\wedge}(J, h)
$$

- Symmetry: $m_{\star}(J,-h)=-m_{\star}(J, h)$
- Phase transition: In $d \geq 2 \exists J_{C} \in(0, \infty)$ such that

$$
\lim _{h \downarrow 0} m_{\star}(J, h) \begin{cases}>0 & J>J_{C} \\ =0 & J<J_{C}\end{cases}
$$

$$
\left(J_{\mathrm{C}}=\infty \text { in } d=1\right)
$$

ORIGINS OF SINGULARITY

Free energy/pressure

$$
f(J, h)=\lim _{\Lambda / \mathbb{Z}^{d}} \frac{1}{|\Lambda|} \log \mathcal{Z}_{\Lambda}(J, h)
$$

Non-analyticity at $h=0$ when $J>J_{\mathrm{C}}$:

But $h \mapsto \frac{1}{|\Lambda|} \log \mathcal{Z}_{\Lambda}(J, h)$ (real) analytic $\forall h!$

LEE \& YANG'S IDEA

Let $z=e^{2 h}$ and fix $J \geq 0$. Then

$$
\mathcal{Z}_{\Lambda}(J, h)=z^{-|\Lambda| / 2} Q_{|\Lambda|}(z)
$$

where $Q_{|\Lambda|}(z)$ is a polynomial in z with positive coefficients.

- Non-analyticity caused by complex zeros of $Q_{|\wedge|}$ wandering onto the (physical part of) real axis.
- Thus, $h \mapsto f(J, h)$ has analytic continuation into regions where $Q_{|\wedge|}$ has no zeros for any \wedge.

LEE-YANG CIRCLE THEOREM

Theorem 1 (Lee \& Yang, 1952) For every $J \geq 0$ and all finite $\wedge \subset \mathbb{Z}^{d}$, all zeros of $Q_{|\wedge|}$ lie on the unit circle in \mathbb{C}.

GENERALIZED SETUP

More general setting:

$$
Q_{n}\left(z_{1}, \ldots, z_{n}\right)=\sum_{S \subset\{1, \ldots, n\}} z^{S} \prod_{\substack{k \in S \\ \ell \notin S}} A_{k, \ell}
$$

where $z^{S}=\Pi_{k \in S} z_{k}$.

Theorem 2 (Lee \& Yang, 1952) Suppose that for all $k, \ell=1, \ldots, n$ the coefficients $\left(A_{k, \ell}\right)$ obey
(1) $A_{k, \ell}=A_{\ell, k}$
(2) $A_{k, \ell} \in[-1,1]$.

Then $\left|z_{1}\right|, \ldots,\left|z_{n-1}\right| \geq 1$ and $Q_{n}\left(z_{1}, \ldots, z_{n}\right)=0$ imply that $\left|z_{n}\right| \leq 1$.

CIRLE INVERSION

Lemma 3 For any $z_{1}, \ldots, z_{n} \in \mathbb{C}$ we have

$$
Q_{n}\left(\frac{1}{z_{1}^{*}}, \ldots, \frac{1}{z_{n}^{*}}\right)=\frac{1}{\left(z_{1} \ldots z_{n}\right)^{*}} Q_{n}\left(z_{1}, \ldots, z_{n}\right)^{*}
$$

In particular, if

$$
\left|z_{1}\right|=\left|z_{2}\right|=\cdots=\left|z_{n-1}\right|=1
$$

and $Q_{n}\left(z_{1}, \ldots, z_{n}\right)=0$, then $\left|z_{n}\right|=1$.

Proof. The first line follows from $A_{k, \ell} \in \mathbb{R}$ and the fact that Q_{n} is linear in each variable. To get the rest we note that $z \mapsto 1 / z^{*}$ is identity map on $\{z:|z|=1\}$. Thus $1 / z_{k}^{*}=z_{k}$ for every $k=1, \ldots, n-1$ and therefore

$$
\frac{1}{z_{n}^{*}}=z_{n} .
$$

i.e., $\left|z_{n}\right|^{2}=1 . \square$

HOMOGENEITY RELATION

Lemma 4 Suppose that $A_{k, \ell} \neq 0$. Then

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} z_{n}} Q_{n}\left(z_{1}, \ldots, z_{n}\right) \\
& \quad=\left(A_{n, 1} \ldots A_{n, n-1}\right) Q_{n-1}\left(\frac{z_{1}}{A_{n, 1}}, \ldots, \frac{z_{n-1}}{A_{n, n-1}}\right) .
\end{aligned}
$$

Proof. The derivative forces $n \in S$ and so the coefficient of z^{S} contains all $A_{n, \ell}$ with $\ell \notin S$. Taking out $A_{n, 1} \ldots A_{n, n-1}$, we have to divide each z_{k} by $A_{n, k}$ to compensate.

NOTE: Two-body interaction essential

PROOF OF THEOREM 2

Continuity: Assume that $A_{k, \ell} \in(-1,1) \backslash\{0\}$.

Induction argument: Holds for $n=1$ because $Q_{1}\left(z_{1}\right)=1+z_{1}$.

Now suppose Theorem 2 holds up to $n-1$ and fix z_{1}, \ldots, z_{n-2} outside the open unit disc.

Define a rational function $\phi: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ such that for each $z \in \overline{\mathbb{C}}$,

$$
Q_{n}\left(z_{1}, \ldots, z_{n-2}, \phi(z), z\right)=0
$$

The proof hinges on the fact that $|\phi(z)|<1$ for $|z|$ sufficiently large.

$$
|\phi(z)|<1 \text { FOR } z \text { LARGE }
$$

- $\phi(z)$ bounded for $z \rightarrow \infty\left(A_{k, \ell} \neq 0\right.$ implies that all coefficients nonzero).
- Hence, as $z \rightarrow \infty$ we must have

$$
\frac{\mathrm{d}}{\mathrm{~d} z_{n}} Q_{n}\left(z_{1}, \ldots, \phi(z), z_{n}\right) \rightarrow 0
$$

Letting $z_{n-1}=\phi(\infty)$, by Lemma 4 we thus have

$$
Q_{n-1}\left(\frac{z_{1}}{A_{n, 1}}, \ldots, \frac{z_{n-1}}{A_{n, n-1}}\right)=0
$$

But $\left|z_{k} / A_{n, k}\right|>\left|z_{k}\right| \geq 1$ and so by induction assumption

$$
\left|z_{n-1}\right|<\left|\frac{z_{n-1}}{A_{n, n-1}}\right| \leq 1
$$

i.e. $|\phi(\infty)|<1$.

BACK TO THE PROOF

Let now $z_{1}, \ldots, z_{n} \in \mathbb{C}$ be such that

$$
\left|z_{1}\right|, \ldots,\left|z_{n-1}\right| \geq 1
$$

and $Q_{n}\left(z_{1}, \ldots, z_{n}\right)=0$.

Suppose now that $\left|z_{n}\right|>1$. Then we define $z_{n-1}(\lambda)=\phi\left(\lambda z_{n}\right)$ and increase λ from 1 to ∞. By previous reasoning, $z_{n-1}(\lambda)$ must visit unit disc before λ reaches ∞. Stop when unit circle hit.

Do this for all z_{1}, \ldots, z_{n-1} to produce a collection $\tilde{z}_{1}, \ldots, \tilde{z}_{n}$ with

$$
\left|\tilde{z}_{1}\right|=\cdots=\left|\tilde{z}_{n-1}\right|=1<\left|\tilde{z}_{n}\right|<\infty
$$

and $Q_{n}\left(\tilde{z}_{1}, \ldots, \tilde{z}_{n}\right)=0$. This is in contradiction with Lemma 3.

DEFICIENCIES

(1) Restricted to two-body interactions.
(2) No info where the zeros are.
(3) Too dependent on symmetries.

PERTURBATIVE APPROACH

Restricted to:
(1) $d \geq 2$ (based on phase transition techniques)
(3) $\wedge=$ lattice torus (periodic b.c.)
(4) $J \gg 1$ to enable contour arguments.

Notation:

- $\Lambda_{L}=$ lattice torus of $L \times \ldots L$ sites
- $Z_{L}(z)=\mathcal{Z}_{\Lambda_{L}}(J, h)$ for $z=e^{h}$

REPRESENTATION OF Z_{L}

Theorem 5 (BBCKK, 2003) Let $d \geq 2$ and $J \gg 1$. Then there exist functions $\zeta_{ \pm}: \mathbb{C} \rightarrow \mathbb{C}$ such that Ξ_{L} defined by

$$
Z_{L}(z)=\zeta_{+}(z)^{L^{d}}+\zeta_{-}(z)^{L^{d}}+\Xi_{L}(z)
$$

satisfies, for some $\tau>0$,

$$
\left|\Xi_{L}(z)\right| \leq e^{-\tau L} \max \left\{\left|\zeta_{+}(z)^{L^{d}}\right|,\left|\zeta_{-}(z)^{L^{d}}\right|\right\}
$$

for all $z \in \mathbb{C}$ and all L sufficiently large.
Moreover, we have
(1) $\zeta_{ \pm}$are C^{2} everywhere, with ζ_{+}analytic on $\left\{z:\left|\zeta_{+}(z)\right|>\left|\zeta_{-}(z)\right|\right\}$ and vice versa.
(2) $\zeta_{ \pm}(z)=z^{ \pm 1} \exp \{s(z)\}$ where

$$
|s(z)|,\left|\partial_{z} s(z)\right|,\left|\partial_{\bar{z}} s(z)\right| \leq e^{-c_{1} J}
$$

for some $c_{1}>0$ and all $z \in \mathbb{C}$.

IDEA OF PROOF

Contour representation:

Each contour γ "costs" $e^{-2 J|\gamma|}$.

MORE DETAILS

No contours $(J=\infty)$

$$
Z_{L}(z)=z^{L^{d}}+z^{-L^{d}}
$$

For J very large, we decompose Z_{L} as follows:

LOCALIZING ZEROS

Theorem 6 (BBCKK, 2003) There exist constants $C, L_{0} \in(0,1)$ such that for all $L \geq L_{0}$, all zeros of Z_{L}
(1) are non-degenerate
(2) lie within $C e^{-\tau L}$ of the solutions to

$$
\begin{gathered}
\left|\zeta_{+}(z)\right|=\left|\zeta_{-}(z)\right| \\
L^{d}\left(\arg \zeta_{+}(z)-\arg \zeta_{-}(z)\right)=\pi \bmod 2 \pi
\end{gathered}
$$

(3) lie on the unit circle in \mathbb{C} with neighboring zeros further than $O\left(L^{-d}\right)$ apart.

