A perturbative proof of the Lee-Yang Circle Theorem

Marek Biskup

based on joint work with

Christian Borgs Jennifer T. Chayes Logan J. Kleinwaks Roman Kotecký

PLAN

- (1) Historical perspective: theory of phase transitions
- (2) Lee-Yang Circle Theorem (and proof)
- (3) Perturbative approach

PHASE TRANSITIONS

Examples:

- (1) Water freezes & boils
- (2) Permanent magnetism
- (3) Superconductivity, etc.

Common feature: collective phenomenon

ISING MODEL

- $\Lambda \subset \mathbb{Z}^d$ finite set
- $\sigma_{\Lambda} \in \{-1, +1\}^{\Lambda}$ spin configuration
- Probability measure

$$\mathbb{P}(\{\sigma_{\Lambda}\}) = \frac{1}{\mathcal{Z}_{\Lambda}(J,h)} \Big(\prod_{\langle x,y\rangle} e^{J\sigma_x\sigma_y}\Big) \prod_{x\in\Lambda} e^{h\sigma_x}$$

• Partition function
$$\mathcal{Z}_{\Lambda}(J,h) = \sum_{\sigma_{\Lambda}} \left(\prod_{\langle x,y \rangle} e^{J\sigma_x \sigma_y}\right) \prod_{x \in \Lambda} e^{h\sigma_x}$$

- Parameters: $J \ge 0$ (coupling constant) $h \in \mathbb{R}$ (magnetic field)
- Plus-minus symmetry: $\sigma \leftrightarrow -\sigma$ & $h \leftrightarrow -h$

PHASE TRANSITION IN ISING MODEL

• Quantity of interest

$$m_{\Lambda}(J,h) = \frac{\mathrm{d}}{\mathrm{d}h} \frac{1}{|\Lambda|} \log \mathcal{Z}_{\Lambda}(J,h)$$

• Thermodynamic limit

$$m_{\star}(J,h) = \lim_{\Lambda \nearrow \mathbb{Z}^d} m_{\Lambda}(J,h)$$

- Symmetry: $m_{\star}(J,-h) = -m_{\star}(J,h)$
- Phase transition: In $d \ge 2 \exists J_{\mathsf{C}} \in (0,\infty)$ such that

$$\lim_{h \downarrow 0} m_{\star}(J,h) \begin{cases} > 0 & J > J_{C} \\ = 0 & J < J_{C} \end{cases}$$
$$(J_{C} = \infty \text{ in } d = 1)$$

ORIGINS OF SINGULARITY

Free energy/pressure

$$f(J,h) = \lim_{\Lambda \nearrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \log \mathcal{Z}_{\Lambda}(J,h)$$

Non-analyticity at h = 0 when $J > J_C$:

But $h \mapsto \frac{1}{|\Lambda|} \log \mathcal{Z}_{\Lambda}(J,h)$ (real) analytic $\forall h!$

LEE & YANG'S IDEA

Let
$$z = e^{2h}$$
 and fix $J \ge 0$. Then
 $\mathcal{Z}_{\Lambda}(J,h) = z^{-|\Lambda|/2}Q_{|\Lambda|}(z)$

where $Q_{|\Lambda|}(z)$ is a polynomial in z with positive coefficients.

- Non-analyticity caused by complex zeros of $Q_{|\Lambda|}$ wandering onto the (physical part of) real axis.
- Thus, $h \mapsto f(J, h)$ has analytic continuation into regions where $Q_{|\Lambda|}$ has no zeros for any Λ .

LEE-YANG CIRCLE THEOREM

Theorem 1 (Lee & Yang, 1952) For every $J \ge 0$ and all finite $\Lambda \subset \mathbb{Z}^d$, all zeros of $Q_{|\Lambda|}$ lie on the unit circle in \mathbb{C} .

GENERALIZED SETUP

More general setting:

$$Q_n(z_1, \dots, z_n) = \sum_{S \subset \{1, \dots, n\}} z^S \prod_{\substack{k \in S \\ \ell \notin S}} A_{k,\ell}$$

re $z^S = \prod_{k \in G} z_k$

where $z^{S} = \prod_{k \in S} z_k$.

Theorem 2 (Lee & Yang, 1952) Suppose that for all $k, \ell = 1, ..., n$ the coefficients $(A_{k,\ell})$ obey

(1)
$$A_{k,\ell} = A_{\ell,k}$$

(2) $A_{k,\ell} \in [-1,1].$

Then $|z_1|, ..., |z_{n-1}| \ge 1$ and $Q_n(z_1, ..., z_n) = 0$ imply that $|z_n| \le 1$.

8

CIRLE INVERSION

Lemma 3 For any $z_1, \ldots, z_n \in \mathbb{C}$ we have

$$Q_n\left(\frac{1}{z_1^*},\ldots,\frac{1}{z_n^*}\right) = \frac{1}{(z_1\ldots z_n)^*}Q_n(z_1,\ldots,z_n)^*$$

In particular, if

$$|z_1| = |z_2| = \dots = |z_{n-1}| = 1$$

and $Q_n(z_1,...,z_n) = 0$, then $|z_n| = 1$.

Proof. The first line follows from $A_{k,\ell} \in \mathbb{R}$ and the fact that Q_n is linear in each variable. To get the rest we note that $z \mapsto 1/z^*$ is identity map on $\{z : |z| = 1\}$. Thus $1/z_k^* = z_k$ for every $k = 1, \ldots, n-1$ and therefore

$$\frac{1}{z_n^*} = z_n.$$

i.e., $|z_n|^2 = 1$. \Box

9

HOMOGENEITY RELATION

Lemma 4 Suppose that $A_{k,\ell} \neq 0$. Then

$$\frac{\mathrm{d}}{\mathrm{d}z_n} Q_n(z_1,\ldots,z_n)$$

= $(A_{n,1}\ldots A_{n,n-1}) Q_{n-1} \left(\frac{z_1}{A_{n,1}},\ldots,\frac{z_{n-1}}{A_{n,n-1}}\right).$

Proof. The derivative forces $n \in S$ and so the coefficient of z^S contains all $A_{n,\ell}$ with $\ell \notin S$. Taking out $A_{n,1} \ldots A_{n,n-1}$, we have to divide each z_k by $A_{n,k}$ to compensate. \Box

NOTE: Two-body interaction essential

PROOF OF THEOREM 2

Continuity: Assume that $A_{k,\ell} \in (-1,1) \setminus \{0\}$.

Induction argument: Holds for n = 1 because $Q_1(z_1) = 1 + z_1$.

Now suppose Theorem 2 holds up to n-1 and fix z_1, \ldots, z_{n-2} outside the open unit disc.

Define a rational function $\phi \colon \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ such that for each $z \in \overline{\mathbb{C}}$,

$$Q_n(z_1,\ldots,z_{n-2},\phi(z),z)=0.$$

The proof hinges on the fact that $|\phi(z)| < 1$ for |z| sufficiently large.

$|\phi(z)| < 1$ FOR z LARGE

- $\phi(z)$ bounded for $z \to \infty$ ($A_{k,\ell} \neq 0$ implies that all coefficients nonzero).
- Hence, as $z \to \infty$ we must have

$$\frac{\mathsf{d}}{\mathsf{d}z_n}Q_n(z_1,\ldots,\phi(z),z_n)\to 0$$

Letting $z_{n-1} = \phi(\infty)$, by Lemma 4 we thus have

$$Q_{n-1}\left(\frac{z_1}{A_{n,1}}, \dots, \frac{z_{n-1}}{A_{n,n-1}}\right) = 0.$$

But $|z_k/A_{n,k}| > |z_k| \ge 1$ and so by induction assumption

$$|z_{n-1}| < \left|\frac{z_{n-1}}{A_{n,n-1}}\right| \le 1,$$

i.e. $|\phi(\infty)| < 1$.

12

BACK TO THE PROOF

Let now $z_1, \ldots, z_n \in \mathbb{C}$ be such that

$$|z_1|,\ldots,|z_{n-1}|\geq 1$$

and $Q_n(z_1,...,z_n) = 0.$

Suppose now that $|z_n| > 1$. Then we define $z_{n-1}(\lambda) = \phi(\lambda z_n)$ and increase λ from 1 to ∞ . By previous reasoning, $z_{n-1}(\lambda)$ must visit unit disc before λ reaches ∞ . Stop when unit circle hit.

Do this for all z_1, \ldots, z_{n-1} to produce a collection $\tilde{z}_1, \ldots, \tilde{z}_n$ with

$$|\tilde{z}_1| = \dots = |\tilde{z}_{n-1}| = 1 < |\tilde{z}_n| < \infty$$

and $Q_n(\tilde{z}_1, \ldots, \tilde{z}_n) = 0$. This is in contradiction with Lemma 3. \Box

DEFICIENCIES

- (1) Restricted to two-body interactions.
- (2) No info where the zeros are.
- (3) Too dependent on symmetries.

PERTURBATIVE APPROACH

Restricted to:

- (1) $d \ge 2$ (based on phase transition techniques)
- (3) $\Lambda =$ lattice torus (periodic b.c.)

(4) $J \gg 1$ to enable contour arguments.

Notation:

- Λ_L = lattice torus of $L \times \ldots L$ sites
- $Z_L(z) = \mathcal{Z}_{\Lambda_L}(J,h)$ for $z = e^h$

REPRESENTATION OF Z_L

Theorem 5 (BBCKK, 2003) Let $d \ge 2$ and $J \gg 1$. Then there exist functions $\zeta_{\pm} \colon \mathbb{C} \to \mathbb{C}$ such that Ξ_L defined by

 $Z_L(z) = \zeta_+(z)^{L^d} + \zeta_-(z)^{L^d} + \Xi_L(z)$ satisfies, for some $\tau > 0$,

 $|\Xi_L(z)| \le e^{-\tau L} \max\{|\zeta_+(z)^{L^d}|, |\zeta_-(z)^{L^d}|\}$ for all $z \in \mathbb{C}$ and all L sufficiently large.

Moreover, we have

(1) ζ_{\pm} are C^2 everywhere, with ζ_{+} analytic on $\{z : |\zeta_{+}(z)| > |\zeta_{-}(z)|\}$ and vice versa.

(2)
$$\zeta_{\pm}(z) = z^{\pm 1} \exp\{s(z)\}$$
 where
 $|s(z)|, |\partial_z s(z)|, |\partial_{\overline{z}} s(z)| \le e^{-c_1 J}$
for some $c_1 > 0$ and all $z \in \mathbb{C}$.

IDEA OF PROOF

Contour representation:

Each contour γ "costs" $e^{-2J|\gamma|}.$

MORE DETAILS

No contours $(J = \infty)$ $Z_L(z) = z^{L^d} + z^{-L^d}$

For J very large, we decompose Z_L as follows:

LOCALIZING ZEROS

Theorem 6 (BBCKK, 2003) There exist constants $C, L_0 \in (0, 1)$ such that for all $L \ge L_0$, all zeros of Z_L

(1) are non-degenerate

(2) lie within $Ce^{-\tau L}$ of the solutions to

 $|\zeta_+(z)| = |\zeta_-(z)|$

 $L^{d}(\arg \zeta_{+}(z) - \arg \zeta_{-}(z)) = \pi \mod 2\pi$

(3) lie on the unit circle in \mathbb{C} with neighboring zeros further than $O(L^{-d})$ apart.