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PHASE TRANSITIONS

Examples:

(1) Water freezes & boils

(2) Permanent magnetism

(3) Superconductivity, etc.

Common feature: collective phenomenon
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ISING MODEL

• Λ ⊂ Zd finite set

• σΛ ∈ {−1,+1}Λ spin configuration

• Probability measure

P({σΛ}) =
1

ZΛ(J, h)

(

∏

〈x,y〉

eJσxσy

)

∏

x∈Λ

ehσx

• Partition function

ZΛ(J, h) =
∑

σΛ

(

∏

〈x,y〉

eJσxσy

)

∏

x∈Λ

ehσx

• Parameters:

J ≥ 0 (coupling constant)

h ∈ R (magnetic field)

• Plus-minus symmetry: σ ↔ −σ & h ↔ −h
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PHASE TRANSITION IN ISING MODEL

• Quantity of interest

mΛ(J, h) =
d

dh

1

|Λ|
logZΛ(J, h)

• Thermodynamic limit

m?(J, h) = lim
Λ↗Zd

mΛ(J, h)

• Symmetry: m?(J,−h) = −m?(J, h)

• Phase transition: In d ≥ 2 ∃Jc ∈ (0,∞)

such that

lim
h↓0

m?(J, h)







> 0 J > Jc

= 0 J < Jc

(Jc = ∞ in d = 1)

4



ORIGINS OF SINGULARITY

Free energy/pressure

f(J, h) = lim
Λ↗Zd

1

|Λ|
logZΛ(J, h)

Non-analyticity at h = 0 when J > Jc:

h

f (J,h)

But h 7→ 1
|Λ|

logZΛ(J, h) (real) analytic ∀h!
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LEE & YANG’S IDEA

Let z = e2h and fix J ≥ 0. Then

ZΛ(J, h) = z−|Λ|/2Q|Λ|(z)

where Q|Λ|(z) is a polynomial in z with positive

coefficients.

• Non-analyticity caused by complex zeros

of Q|Λ| wandering onto the (physical part

of) real axis.

• Thus, h 7→ f(J, h) has analytic continuation

into regions where Q|Λ| has no zeros for

any Λ.
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LEE-YANG CIRCLE THEOREM

Theorem 1 (Lee & Yang, 1952) For every

J ≥ 0 and all finite Λ ⊂ Zd, all zeros of Q|Λ| lie

on the unit circle in C.
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GENERALIZED SETUP

More general setting:

Qn(z1, . . . , zn) =
∑

S⊂{1,...,n}

zS
∏

k∈S
6̀∈S

Ak,`

where zS =
∏

k∈S zk.

Theorem 2 (Lee & Yang, 1952) Suppose that

for all k, ` = 1, . . . , n the coefficients (Ak,`) obey

(1) Ak,` = A`,k

(2) Ak,` ∈ [−1,1].

Then |z1|, . . . , |zn−1| ≥ 1 and Qn(z1, . . . , zn) = 0

imply that |zn| ≤ 1.
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CIRLE INVERSION

Lemma 3 For any z1, . . . , zn ∈ C we have

Qn

(

1

z∗1
, . . . ,

1

z∗n

)

=
1

(z1 . . . zn)∗
Qn(z1, . . . , zn)

∗

In particular, if

|z1| = |z2| = · · · = |zn−1| = 1

and Qn(z1, . . . , zn) = 0, then |zn| = 1.

Proof. The first line follows from Ak,` ∈ R and

the fact that Qn is linear in each variable. To

get the rest we note that z 7→ 1/z∗ is iden-

tity map on {z : |z| = 1}. Thus 1/z∗k = zk for

every k = 1, . . . , n− 1 and therefore

1

z∗n
= zn.

i.e., |zn|2 = 1. �
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HOMOGENEITY RELATION

Lemma 4 Suppose that Ak,` 6= 0. Then

d

dzn
Qn(z1, . . . , zn)

= (An,1 . . . An,n−1)Qn−1

(

z1
An,1

, . . . ,
zn−1

An,n−1

)

.

Proof. The derivative forces n ∈ S and so the

coefficient of zS contains all An,` with ` 6∈ S.

Taking out An,1 . . . An,n−1, we have to divide

each zk by An,k to compensate. �

NOTE: Two-body interaction essential

10



PROOF OF THEOREM 2

Continuity: Assume that Ak,` ∈ (−1,1) \ {0}.

Induction argument: Holds for n = 1 because

Q1(z1) = 1 + z1.

Now suppose Theorem 2 holds up to n−1 and

fix z1, . . . , zn−2 outside the open unit disc.

Define a rational function φ : C → C such that

for each z ∈ C,

Qn(z1, . . . , zn−2, φ(z), z) = 0.

The proof hinges on the fact that |φ(z)| < 1

for |z| sufficiently large.
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|φ(z)| < 1 FOR z LARGE

• φ(z) bounded for z → ∞ (Ak,` 6= 0 implies

that all coefficients nonzero).

• Hence, as z →∞ we must have

d

dzn
Qn(z1, . . . , φ(z), zn) → 0

Letting zn−1 = φ(∞), by Lemma 4 we thus

have

Qn−1

(

z1
An,1

, . . . ,
zn−1

An,n−1

)

= 0.

But |zk/An,k| > |zk| ≥ 1 and so by induction

assumption

|zn−1| <

∣

∣

∣

∣

zn−1

An,n−1

∣

∣

∣

∣

≤ 1,

i.e. |φ(∞)| < 1.
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BACK TO THE PROOF

Let now z1, . . . , zn ∈ C be such that

|z1|, . . . , |zn−1| ≥ 1

and Qn(z1, . . . , zn) = 0.

Suppose now that |zn| > 1. Then we de-

fine zn−1(λ) = φ(λzn) and increase λ from 1

to ∞. By previous reasoning, zn−1(λ) must

visit unit disc before λ reaches ∞. Stop when

unit circle hit.

Do this for all z1, . . . , zn−1 to produce a collec-

tion z̃1, . . . , z̃n with

|z̃1| = · · · = |z̃n−1| = 1 < |z̃n| < ∞

and Qn(z̃1, . . . , z̃n) = 0. This is in contradiction

with Lemma 3. �
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DEFICIENCIES

(1) Restricted to two-body interactions.

(2) No info where the zeros are.

(3) Too dependent on symmetries.
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PERTURBATIVE APPROACH

Restricted to:

(1) d ≥ 2 (based on phase transition techniques)

(3) Λ = lattice torus (periodic b.c.)

(4) J � 1 to enable contour arguments.

Notation:

• ΛL = lattice torus of L× . . . L sites

• ZL(z) = ZΛL
(J, h) for z = eh
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REPRESENTATION OF ZL

Theorem 5 (BBCKK, 2003) Let d ≥ 2 and

J � 1. Then there exist functions ζ± : C → C

such that ΞL defined by

ZL(z) = ζ+(z)Ld
+ ζ−(z)Ld

+ ΞL(z)

satisfies, for some τ > 0,

|ΞL(z)| ≤ e−τL max
{

|ζ+(z)Ld
|, |ζ−(z)Ld

|
}

for all z ∈ C and all L sufficiently large.

Moreover, we have

(1) ζ± are C2 everywhere, with ζ+ analytic on

{z : |ζ+(z)| > |ζ−(z)|} and vice versa.

(2) ζ±(z) = z±1 exp{s(z)} where

|s(z)|, |∂zs(z)|, |∂z̄s(z)| ≤ e−c1J

for some c1 > 0 and all z ∈ C.
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IDEA OF PROOF

Contour representation:

Each contour γ “costs” e−2J |γ|.
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MORE DETAILS

No contours (J = ∞)

ZL(z) = zLd
+ z−Ld

For J very large, we decompose ZL as follows:
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LOCALIZING ZEROS

Theorem 6 (BBCKK, 2003) There exist con-

stants C, L0 ∈ (0,1) such that for all L ≥ L0,

all zeros of ZL

(1) are non-degenerate

(2) lie within Ce−τL of the solutions to

|ζ+(z)| = |ζ−(z)|

Ld(arg ζ+(z)− arg ζ−(z)) = π mod 2π

(3) lie on the unit circle in C with neighboring

zeros further than O(L−d) apart.
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