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Introduction

These notes are intended to contain as much of the material discussed in
the lectures, as possible – with extensions at those points where there was no
time to discuss thing I would be sorry to leave out. However, for a long time I
will certainly be way behind with writing up the material. To still be of some
help, I will publish the highly incomplete versions. So on the short term the
main goal is to provide precise formulation of the definitions and theorems
– in part to compensate for being vague on the lectures. Explanation about
the background, motivation and logical structure will hopefully be added at
some later time.

Nothing of the material presented is my own result. In fact, most of it
is by now considered “classical” or “standard knowledge” in Mathematics,
and I will not attempt to give references to the original papers of the true
authors. Instead, I will (when I get to it) cite some textbooks and lecture
notes where the material is easily accessible, and which I myself use to reduce
the number of false statements written.

1 Probability warming-up

1.1 Measure, measure space, probability, probability

space

Definition 1.1 (σ-algebra). For a nonempty set Ω, a family F of subsets of
ω (i.e. F ⊂ 2Ω, where 2Ω := {A : A ⊂ Ω} is the power set of Ω) is called a
σ-algebra over Ω if

• ∅ ∈ F

• if A ∈ F , then AC := Ω\A ∈ F (that is, F is closed under complement
taking)

• if A1, A2, · · · ∈ F , then (∪∞
i=1Ai) ∈ F (that is, F is closed under count-

able union).

Definition 1.2 (measurable space, measurable set). If Ω is a nonempty set
and F is a σ-algebra over Ω, then the pair (Ω,F) is called a measurable
space. The elements of F arer called measurable subsets of Ω.

Lemma 1.3. A σ-algerba is closed under finite intersection, countable union
and finite union.

Proof. Homework.
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Note that a σ-algebra is in general not closed under arbitrary intersection
and union. For example, the Borel σ-algebra on the set R of real numbers
(see later) contains every 1-element subset of R, but it does not contain every
subset (a fact we will not prove).

Two trivial examples of σ-algebra:

Definition 1.4 (indiscrete σ-algebra). For a nonempty set Ω, the family of
subsets Find = {∅,Ω} is called the indiscrete or trivial σ-algebra over Ω.

Definition 1.5 (discrete σ-algebra). For a nonempty set Ω, the family of
subsets Fdiscr = 2Ω (the entire power set) is called the discrete σ-algebra over
Ω.

It is immediate from the definition that these are indeed σ-algebras over
Ω.

Lemma 1.6. The intersection of any (nonempty) family of σ-algebras over
the same Ω is also a σ-algerba over Ω. That is, if Ω is a nonempty set and
Fi is a σ-algerba over Ω for every i ∈ I where I is any nonempty index set,
then F := ∩i∈IFi is also a σ-algebra over Ω.

Proof. (trivial set algebra) By definition, ∅ ∈ Fi for every i ∈ I, and I is
nonempty, so ∅ ∈ ∩i∈IFi = F . Similarly, if A ∈ F = ∩i∈IFi, then A ∈ Fi for
every i ∈ I, so by definition Ω\A ∈ Fi for every i ∈ I, so Ω\A ∈ F . Finally,
if A1, A2, · · · ∈ F , then A1, A2, · · · ∈ Fi for every i ∈ I, so by definition
(∪∞

k=1Ak) ∈ Fi for every i ∈ I, which means that (∪∞
k=1Ak) ∈ F .

It is important to note that I being any nonempty set means in particular
that it can well be a large set, having infinitely many, or even uncountably
many, or possibly much more elements.

Corollary 1.7. If Ω is a nonempty set and H ⊂ 2Ω is any family of subsets,
then there exists a unique σ-algebra σ(H) over Ω, which is the smallest σ-
algebra containig H in the following sense:

• H ⊂ σ(H)

• If F is any σ-algebra over Ω with H ⊂ F , then F ⊂ σ(H).

Proof. The family

{F : F is a σ-algebra over Ω and H ⊂ F}

is nonempty, since it contains at least the discrete σ-algebra 2Ω. Thus by the
above lemma,

σ(H) := ∩{F : F is a σ-algebra over Ω and H ⊂ F}
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will do. Uniqueness also follows from the lemma: if there were two diferent
such minimal σ-algebras, their intersection would also be a σ-algebra, but it
would not contain them – a contradiction.

Definition 1.8 (σ-algebra generated by a family of sets). The above σ(H)
is called the σ-algebra generated by H.

Definition 1.9 (Borel σ-algebra). If (Ω, T ) is a topological space (which
means that it makes sense to talk about open subsets of Ω, and T is the set
of these open subsets), then B(Ω) := σ(T ) is called the Borel σ-algebra on Ω.

Remark 1.10. The set T is called the topology, so the Borel σ-algebra is
the σ-algebra generated by the topology. For those, who haven’t heard, but
are interested: A collection T ⊂ 2Ω of subsets of Ω is called (by definition) a
topology over Ω if it contains ∅ and Ω, and it is closed under finite intersec-
tion and arbitrary union. Then the elements of T are called open sets, and
the pair (Ω, T ) is called a topological space. (So the definition only says that
∅ and Ω are open, the intersection of finitely many open set is open, and that
the union of any family of open sets is open.)

When we talk about the Borel sets on R or Rn, we always think of the
usual notion of open sets on these spaces.

Remark 1.11. Not every subset of [0, 1] is Borel. In fact, a non-Borel subset
can be constructed (and not only the existence can be proven). We don’t go
into that.

Notation 1.12. We denote by R+ the set of nonnegative real numbers – that
is, R+ = [0,∞). In particular, R+ includes zero.

Definition 1.13 (measure space, measure). Let (Ω,F) be a measurable
space. The nonnegative extended real valued function µ on F (that is, µ :
F → R+ ∪ {∞}) is called a measure on Ω, if

• µ(∅) = 0,

• µ is σ-additive, meaning that if {Ai}i∈I is a countable family of pairwise
disjoint measureable sets (with formulas: Ai ∈ F for every i ∈ I where
I is a countable index set, and Ai ∩ Aj = ∅ for every i 6= j, i, j ∈ I),
then

µ (∪i∈IAi) =
∑

i∈I

µ(Ai).

Then the triple (Ω,F , µ) is called a measure space and µ(A) is called the
measure of the set A.
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Remark 1.14. It is absolutely important that in the definition of σ-additivity
I is countably infinite: σ-additivity is more than finite additivity and less
than arbitrary additivity. For example, if µ is the Lebesgue measure on R
(see later), every 1-element set {x} has µ({x}) = 0, which implies that every
countable set has zero measure, but of course

1 = µ([0, 1]) = µ(∩x∈[0,1]{x}) 6=
∑

x∈[0,1]

µ({0}) =
∑

x∈[0,1]

0 = 0.

(Whatever the sum of uncountably many real numbers could mean.)

Once it came up, we mention the following, absolutely non-important
definition:

Definition 1.15 (sum of many nonnegative extended real numbers). If ai ∈
R+ ∪ {∞} for every i ∈ I where I is any index set, then we define the sum
of all ai as

∑

i∈I

ai := sup

{

∑

i∈J

ai : J ⊂ I and J is finite

}

.

Note that it is important that the ai are nonnegative. This definition
obviously coincides with the usual sum of (an arbitrarily reorderable) series
if I is countable. This new notion of an infinite sum is no serious extention
of the well known notion of a countable series: it is easy to see that if the
sum is finite, then at most countably many terms can be nonzero.

Remark 1.16. In the definition of the measure, the first requirement µ(∅) =
0 is almost automatic from σ-additivity: it’s only there to rule out the trivial
nonsense µ(∅) = ∞. In fact it would be enough to require that at least one
measurable set A has finite measure: σ-additivity implies

µ(A) = µ(A∪∅∪∅∪∅∪. . . ) = µ(A)+µ(∅)+µ(∅)+µ(∅)+· · ·= µ(A)+

∞
∑

i=1

µ(∅).

If µ(A) < ∞, then this implies 0 =
∑∞

i=1 µ(∅), so µ(∅) = 0.

Definition 1.17. The measure χ on a nonempty set Ω equipped with the
discrete σ-algebra 2Ω defined as

χ(A) := ♯A :=

{

number of elements in A, if A is finite

∞, if A is infinite

is called the counting measure on Ω. The restriction of χ to any σ-algebra
F ⊂ 2Ω is still called a counting measure (on F).
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One of the most important examples of a measure is the Lebesgue measure
on R or on Rd

Definition 1.18 (Lebesgue measure vaguely). Consider the set R with the
Borel σ-algebra B. The measure Leb : B → R+ ∪ {∞} is called the Lebesgue
measure on R, if it assigns to every interval its length – that is, for every
a, b ∈ R, a ≤ b we have

Leb((a, b)) = Leb((a, b]) = Leb([a, b)) = Leb([a, b]) = b− a.

The restriction of Leb to a Borel subset of R (e.g. an interval [c, d] or (c,∞))
is still called Lebesgue measure and is still denoted by Leb. (More precisely,
if (R,B,Leb) is the Lebesgue measure space on R, and I ∈ B, than one can
define the “restriction of Leb to I” as the measure space (I,BI ,LebI) where
BI := {A ∩ I : A ∈ B} = {B : B ∈ B, B ⊂ I} ⊂ B and LebI := Leb|BI

is
the restriction of Leb to BI .)

Similarly, the “Lebesgue measure on Rd” is the measure on Borel subsets
of Rd which assigns to every box its d-dimensional volume, i.e. for every
a1 ≤ b1, a2 ≤ b2, . . . ad ≤ bd ∈ R we have

Lebd([a1, b1]× [a2, b2]× · · · × [ad, bd]) =

d
∏

i=1

(bi − ai).

Restrictions to Borel subsets of Rd are still called Lebesgue measure, and
denoted by Lebd or just Leb.

Remark 1.19. The above “definition” of the Lebesgue measure is far from
being complete, and is not the usual definition – it’s actually a characteriza-
tion of the Lebesgue measure which shows its essence. It can be (and needs
to be) shown that such a measure indeed exists, since in the “definition” we
only gave the value of Leb for a few very special sets, and not every Borel set.
Also uniqueness can and needs to be shown. These questions lead to the con-
struction of measures based on their pre-known values on certain pre-chosen
“to-be-measurable” sets, which can sometimes be of crucial importance, but
we don’t go into that here.

Remark 1.20. In the measure theory literature, Lebesgue measure is defined
on a σ-algerba F which is larger than the Borel σ-algebra (i.e. B $ F), called
the “set of Lebesgue measurable sets”. In particular, F has the property that
if B ∈ F , Leb(B) = 0 and A ⊂ B, then A ∈ F , which is not true for Borel
sets. However, in probability theory it is usual to consider Lebesgue measure
restricted to Borel sets only (as in the above definition).
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The following definition shows that the basic object of probability theory,
called “the probability” is in fact a measure.

Definition 1.21 (Kolmogorov probability space). The triple (Ω,F ,P) is
called a Kolmogorov probability space (or just probability space) if it is a
measure space and P(Ω) = 1. Then P is called the probability or a “proba-
bility measure”, elements of F are called events, and elements of Ω are the
elementary events. For A ∈ F , P(A) ∈ [0, 1] is called the probability of the
event A.

Picture ω ∈ Ω as possible outcomes of an experiment, so an event A ∈ F
often consists of many possible outcomes of that experiment, which have
some common property that we are interested in. By definition, an “event”
is something which has a probability.

1.2 Measurable functions, random variables and their

distributions

Notation 1.22. For a function f : Ω → Ω′ and a set A′ ⊂ Ω′, let f−1(A′)
denote, as usual, the complete inverse image of A′ defined as f−1(A′) :=
{ω ∈ Ω : f(ω) ∈ A′}. Note that this makes sense for any function and any
A′ – in particular, f need not be invertable.

Definition 1.23 (measureable function, observable, random variable). Let
(Ω,F) and (Ω′,F ′) be measurable spaces. The function X : Ω → Ω′ is called
measurable or (F ,F ′)-measurable, if for every A′ ∈ F ′ we have X−1(A′) ∈
F . (That is, if the inverse image of any measurable set is also measurable.)
In physical applications, when Ω is the (possibly complicated) phase space of
a system and Ω′ is a (usually simple) set of possible measurement results (e.g.
Ω′ = R), the same X is called an observable. In the context of probability
theory, when (Ω,F ,P) is a probability space, X is called a (Ω′-valued) random
variable.

Note that the notion of measurability of a function depends on the choice
of the σ-algebras F and F ′. However, in many cases when this choice is
clear from the context, we simply say “measurable” instead of “(F ,F ′)-
measurable”. When we talk about a random variable, and do not specify the
range, usually (Ω′,F ′) = (R,B) is understood.

Remark 1.24. If X : Ω → Ω′ is a random variable and x ∈ Ω′, then we
denote by {X = x} the set of elementary events where X takes the value x –
that is,

{X = x} := {ω ∈ Ω : X(ω) = x} = X−1({x}).
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Similarly, if A′ ⊂ Ω′, then {X ∈ A′} denotes the set of elementary events
where X takes values in A′:

{X ∈ A′} := {ω ∈ Ω : X(ω) ∈ A′} = X−1(A).

With this in mind, the definition of a random variable as a measurable func-
tion is very natural. The definition says exactly that is A′ is a measurable
subset of the range Ω′, then the set {X ∈ A} is indeed an event – that is, it
makes sense to talk about its probability.

Example 1.25. coordinate, number rolled, sum of these

Random variables are the central objects of study in probability theory. In
a typical situation they extract fairly little information (e.g. a single number)
from a big probability space containing many complicated possible outcomes
of an experiment. So to “understand” a random variable X : Ω → Ω′ on
the probability space (Ω,F ,P) well, we need less information than the what
P and X contain. From another point of view: when we consider a random
variable, Ω is often not needed, or not even known. All we need to know is the
possible values (in Ω′) X can take, and the probability of these being taken.
This information is contained exactly in a measure on Ω′, as the following
definition shows.

Definition 1.26 (distribution of a random variable). Let (Ω,F ,P) be a prob-
ability space, (Ω′,F ′) a measurable space and X : Ω → Ω′ a random variable.
Then the distribution of X is the measure µ on (Ω′,F ′) which is defined as

µ(A) := P({X ∈ A}) = P(X−1(A)) for every A ∈ F ′.

This can be written in short as

µ := P ◦X−1.

µ is nothing else than the “push-forward” of the probability P by X to Ω′.

In the special case when Ω′ = R and X is discrete (meaning that it can
take finitely many, or at most countably many values), there is a convenient
alternative way to “desribe the distribution of X”, by simply listing the
possible values xk and their probabilities pk := P(X = xk) := P({X = xk}).
Then the information contained in the sequence of pairs {(xk, pk)}

N
k=1 (with

possibly N = ∞) is called the discrete probability distribution. Having this
information, one can calculate probabilities of events by summation:

µ(A) = P({X ∈ A}) =
∑

k:xk∈A

pk.
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Similarly, in the special case when Ω′ = R and X is absolutely continuous
(see later), there is convenient alternative “description of the distribution”
by a density function f : R → R+ from which one can calculate probabilities
of events by integration:

µ(A) = P({X ∈ A}) =

∫

A

f(x) dx.

The above notion of a probability distribution is a far-reaching general-
ization of both notions.

Example 1.27. sum of two rolled numbers real number generated by a se-
quence of fair coin tosses real number generated by a sequence of biased coin
tosses

1.3 Integral and expectation

1.3.1 Integral, integrability

For an (extended) real-valued measurable functions X : Ω → R on a measure
space (Ω,F , µ) it makes sense to talk about the integral

∫

Ω
X dµ. This is

an essential tool, and also an important object of study both in measure
theory and in probability theory. We don’t go deep into the definition and
properties of the integral here – we don’t want to, and we can’t substitute
a measure theory course now. I just give very briefly one of the shortest
possible definitions, and point out a few main feaures.

Since we don’t want to exclude the case when either a function or a
measure takes the value ∞, we work with extended real numbers, and use
the convention

0 · ∞ := ∞ · 0 := 0.

We start by defining the integral of nonnegative functions.

Definition 1.28 (integral of non-negative extended real valued functions).
If (Ω,F , µ) is a measure space and X : Ω → R+ ∪ {∞} is measurable, we
introduce a sequence Xn : Ω → R+ of simple functions (i.e. taking only
finitely many values) which approximate X (from below) as

Xn(ω) := max{x ∈ {0,
1

2n
,
2

2n
, . . . , 2n −

1

2n
, 2n} : x ≤ X(ω)}.

Than we define the n-th integral-approximating sum as

In :=
∑

x∈{0, 1

2n
, 2

2n
,...,2n− 1

2n
,2n}

xµ(X−1
n ({x})),
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and the integral of X as

∫

Ω

X dµ := lim
n→∞

In.

The sets X−1
n ({x}) ⊂ Ω in the definition of In are ensured to be F -

measurable by the assumption that X is measurable (and the fact that {x}
is Borel-measurable in R), so µ(X−1

n ({x})) makes sense. The sequence Xn

of functions is cleverly defined to be increasing, and so is the sequence In, so
the limit in the above definition exists, but is possibly infinite.

We can now go on to the general definition of the integral for extended
real valued functions:

Definition 1.29 (integral). If (Ω,F , µ) is a measure space and X : Ω → R∪
{−∞,∞} is measurable, we introduce the positive part X+ and the negative
part X− of X as

X+(ω) :=

{

X(ω), if X(ω) > 0,

0, if not
, X−(ω) :=

{

−X(ω), if X(ω) < 0,

0, if not
.

Note that both X+ and X− are nonnegative and X = X+ −X−.
Now

• If either
∫

Ω
X+ dµ < ∞ or

∫

Ω
X− dµ < ∞, then we define the integral

of X as
∫

Ω

X dµ :=

∫

Ω

X+ dµ−

∫

Ω

X− dµ,

which can possibly be ∞ or −∞.

• If both
∫

Ω
X+ dµ = ∞ and

∫

Ω
X− dµ = ∞, then we say that the integral

of X doesn’t exist (or that it is undefined).

In the usual mathematical language, there is an important distinction
between the existence of an integral and the integrability of a function. We
emphasize this in the following definition:

Definition 1.30 (integrability). Let (Ω,F , µ) be a measure space and X :
Ω → R∪{−∞,∞} measurable. If the integral

∫

Ω
X dµ exists and it is finite,

then we say that X is integrable (with respect to µ).

So integrability of X means −∞ <
∫

Ω
X dµ < ∞, which is equivalent to

both
∫

Ω
X+ dµ and

∫

Ω
X− dµ being finite.
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Remark 1.31 (comparison to the Riemann integral). The above definition
of the integral is similar to the construction of the good old Riemann integral:
in both cases the domain of integration, Ω, is chopped up into pieces, on each
of which the function X takes nearly constant values. Than the “size” of
each piece is multiplied by the approximate value of the function there, and
these products are added up to obtain an integral approximating sum. The
crucial difference is that in the case of Riemann integral, these small pieces
of Ω had to be intervals, while here they can be any measurable subset of Ω.
In particular, the points in X−1

n ({x}) don’t need to be “close” to each other
in any sense, thus Ω absolutely doesn’t need to be the real line or anything
similar. It doesn’t need to have any additional structure that would give sense
to the words “distance” or “being close”. Really, any measure space will do.

A trivial but important example of integrable functions:

Lemma 1.32 (bounded functions on finite measure spaces are integrable). If
(Ω,F , µ) is a finite measure space (meaning that µ(Ω) < ∞) and X : Ω → R
is measurable and bounded – meaning that there exists an M ∈ R such that
−M ≤ X(ω) ≤ M for every ω ∈ Ω, then X is integrable w.r.t. µ.

Proof. X being bounded by M implies that 0 ≤ X+(ω), X−(ω) ≤ M . when
calculating the integral of, say, X+, we have Xn(ω) ≤ X+(ω) ≤ M , and thus

In :=
∑

x∈{0, 1

2n
, 2

2n
,...,2n− 1

2n
,2n}

xµ(X−1
n ({x}))

≤ M
∑

x∈{0, 1

2n
, 2

2n
,...,2n− 1

2n
,2n}

µ(X−1
n ({x}))

= Mµ(∪x∈{0, 1

2n
, 2

2n
,...,2n− 1

2n
,2n}X

−1
n ({x}))

= Mµ(Ω).

So we get
∫

Ω
X+ dµ < Mµ(Ω). Similarly,

∫

Ω
X− dµ < Mµ(Ω), so

−∞ < −Mµ(Ω) ≤

∫

Ω

X dµ ≤ Mµ(Ω) < ∞.

A basic property of the integral with a huge importance is linearity in the
function integrated (the integrand):

Theorem 1.33 (linearity of integrability and the integral). Let X1 and X2

be real valued measurable functions on the same probability space (Ω,F , µ),
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and let α1, α2 ∈ R. If both I1 :=
∫

Ω
X1 dµ and I2 :=

∫

Ω
X2 dµ exist and

α1I1 + α2I2 is not of the form ∞−∞, then
∫

Ω
(α1X1 + α2X2) dµ exists and

∫

Ω

(α1X1 + α2X2) dµ = α1

∫

Ω

X1 dµ+ α2

∫

Ω

X2 dµ.

As a consequence, if X1 and X2 are both integrable, then so is α1X1+α2X2.

The proof is easy from the definition, but we don’t discuss it here. See
any measure theory book. It is useful to note that the integral is linear not
only in the integral, but also in the measure:

Theorem 1.34 (linearity of the integral II.). Let (Ω,F) be a measurable
space, µ1 and µ2 measures on it, X a real valued measurable function and 0 ≤
α1, α2 ∈ R. If both I1 :=

∫

Ω
X dµ1 and I2 :=

∫

Ω
X dµ2 exist and α1I1 + α2I2

is not of the form ∞−∞, then
∫

Ω
X d(α1µ1 + α2µ2) exists and

∫

Ω

X d(α1µ1 + α2µ2) = α1

∫

Ω

X dµ1 + α2

∫

Ω

X dµ2.

As a consequence, if X is integrable w.r.t. both µ1 and µ2, then so it is w.r.t.
α1µ1 + α2µ2.

Remark 1.35 (bilinearity of the integral). In the last theorem, we required
that α1 and α2 be nonnegative – otherwise α1µ1+α2µ2 may not be a measure,
since in our definition a measure has to be nonnegative. For the same reason,
the measures on a measurable space do not form a linear space. In functional
analysis, to overcome that limitation, it is common to introduce the notion
of “signed measures” (say, as a difference of two measures), which already
form a linear space (with the usual notion of addition and multiplication).
Then the two-variable real-valued mapping

〈µ,X〉 :=

∫

X dµ

can be defined on suitably chosen linear spaces of measures and functions
(e.g. µ ∈ {signed finite measures}, X ∈ {bounded measurable functions}.)
The above two theorems show that this mapping is bilinear, which is the
property where functional analysis starts.

1.3.2 Exchanging limits with integrals

It is utmost important that Theorem 1.33 is about the linear combination
of two integrable functions. Of course, it immediately implies linearity of
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the integral for finite linear combinations, but does not say anything about
infinite sums. Indeed, linearity of the integral for infinite sums is not at all
true in general. In fact, it is an important issue, in which cases exchanging
an integral with a limit is possible – one has to be at least always careful. In
the following we state (without proof) three theorems, which are the most
frequently (and almost exclusively) used tools in checking exchangeability.
In a situation where none of them works, exchangeability is usually hard to
prove, and may very well not be true.

The first and most used tool is the Lebesgue dominated convergence the-
orem:

Theorem 1.36 (dominated convergence). Let (Ω,F , µ) be a measure space
and f1, f2, . . . measurable real valued functions on Ω which converge to the
limit function pointwise, µ-almost everywehere. (That is, limn→∞ fn(x) =
f(x) for every x ∈ Ω, except possibly for a set of x-es with µ-measure zero.)
Assume furthermore that the fn admit a common integrable dominating func-
tion: there exists a g : Ω → R such that |fn(x)| ≤ g(x) for every x ∈ Ω and
n ∈ N, and

∫

Ω
g dµ < ∞. Then (all the fn and also f are integrable and)

lim
n→∞

∫

Ω

fn dµ =

∫

Ω

f dµ.

As you see, it is enough to require “almost everywhere” convergence,
which is no surprise, since changing a function on a set of measure zero
doesn’t change the integral. In fact, it would be enough to require that
g dominates the fn almost everywhere – moreover, it would be enough to
require that the fn and g be extended real valued and defined almost every-
where. This is not a serious generalization, so I decided to rather keep the
formulation simple. In the literature usually the most general form is given.

The second and easiest tool is Beppo Levi’s monotone convergence theo-
rem:

Theorem 1.37 (monotone convergence). Let (Ω,F , µ) be a measure space
and f1, f2, . . . a sequence of measurable nonnegative real valued functions
on Ω which is pointwise increasing. (That is, 0 ≤ fn(x) ≤ fn+1(x) for
every n ∈ N and x ∈ Ω.) Then the pointwise limit function f defined by
f(x) := limn→∞ fn(x) is also measurable and

lim
n→∞

∫

Ω

fn dµ =

∫

Ω

f dµ.

The third and trickiest tool is the Fatou lemma:
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Theorem 1.38 (Fatou lemma). Let (Ω,F , µ) be a measure space and f1, f2,
. . . a sequence of measureabale functions fn : Ω → R, which are nonneagtive,
e.g. fn(x) ≥ 0 for every n = 1, 2, . . . and every x ∈ Ω. Then

∫

Ω

lim inf
n→∞

fn(x) dµ(x) ≤ lim inf
n→∞

∫

Ω

fn(x) dµ(x)

(and both sides make sense).

Definition 1.39 (Absolute continuity of measures, singularity of measures).
Let µ and ν be two measures on the same measurable space Ω,F . We say
that ν is absolute continuous with respect to µ (notation: ν ≪ µ) if for every
A ∈ F for which µ(A) = 0, also ν(A) = 0. We say that ν and µ are singular
(with respect to each other) (notation: ν ⊥ µ) if there exists and A ∈ F for
which ν(A) = 0 and µ(Ω \ A) = 0.

The best known probability distributions are all examples of either one or
the other of these: the “discrete” probability distributions are singular w.r.t.
Lebesgue measurer on R, while the ones that are loosely called “continuous”
are actually absolutely continuous w.r.t. Lebesgue measurer on R.

Theorem 1.40 (Radon-Nykodim). If µ and ν are two measures on the same
measurable space Ω,F and ν ≪ µ, then there exists a measurable f : Ω → R,
called the density of ν w.r.t. µ, which satisfies ν(A) =

∫

A
f dµ.

absolute continuity w.r.t. counting measure
absolute continuity w.r.t. Lebesgue measure
integration w.r.t counting measure
integration w.r.t. Lebesgue measure
integration w.r.t. absolutely continouos measures
density function, distribution function
continuity of measures
expectation if it exists - real-valued - complex or Rd -valued - remark

about more complicated spaces
integration by substitution

Theorem 1.41. Let (Ω,F) and (Ω′,F ′) be measurable spaces, µ a measure
on Ω, X : Ω → Ω′ measurable and ν := µ ◦X−1 the push-forward of µ by X
(a measure on Ω′) (the distribution of X, if µ is a probability). Then for any
measurable g : Ω′ → R

∫

Ω

g(X) dµ =

∫

Ω′

g dν.

14



D
R

A
FT

expectation of a distribution
linearity of expectation
variance, standard deviation
moments, centered moments, moment-generating function, characteristic

function
product measure space, product measure - be careful with infinite prod-

ucts
pairwise independence, marginal distributions
mutual independence
variance of linear combination of independent random variables
Markov inequality
weak law of large numbers
central limit theorem
weak convergence of measures
weak convergence of random variables
continuity of the characteristic function

1.4 conditioning

If A and B are events on the same probability space (Ω,F ,P) and P(A) 6= 0,
then the conditional probability of B under the condition A is defined as

P(B|A) :=
P(A and B)

P(A)
.

What we do now is a generalization of this notion for the case when P(A) = 0.
We do not restrict to the case of probability measures.

The generalization happens through the “integral form” of the above
equation, which is the “law of total probability”: If A1, A2, . . . are pairwise
disjoint and ∪iAi = Ω, then

P(B) =
∑

i

P(Ai)P(B|Ai).

As a result, we will not be able to generalize the notion of P(B|A) for a
single event A with P(A) = 0. Instead, we need a family of (possibly zero
probability) conditions.

Definition 1.42. Let (Ω1,F1) and (Ω2,F2) be measurable spaces. A function
p : Ω1 ×F2 → R is called a kernel from Ω1 to Ω2, if

• ∀x ∈ Ω1, p(x, .) is a measure on (Ω2,F2)
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• ∀A ∈ F2, p(., A) is an F1-measurable function (from Ω1 to R).

p is called a probability kernel if ∀x ∈ Ω1, p(x,Ω2) = 1.

In certain cases, the numbers p(x,A) can play the role of “conditional
probability of A under the condition x”. In other cases p(x, .) can be called
a “conditional measure” on (Ω2,F2).

Definition 1.43. Let (Ω1,F1) and (Ω2,F2) be measurable spaces, µ1 a mea-
sure on (Ω1,F1) and p : Ω1 × F2 a kernel. The “composition of µ1 and p”,
denoted by

∫

p dµ1 is a measure on (Ω2,F2) defined by

(
∫

p dµ1

)

(A) :=

∫

Ω1

p(x,A) dµ1(x)

for every A ∈ F2.

Remark 1.44. On the lecture I used the notation µ⊗p to denote two different
notions (one of them was the above

∫

p dµ, se below for the other), and caused
a lot of confusion. I will try to avoid this notation here.

This way we have built up a measure from many component measures.
The phrases conditional measure and conditional probability are typically
used with slightly different meanings:

In the following definition, imagine Ω1 as a small set of parameters and
Ω2 as a big set, decomposed into disjoint subsets Ωx with x ∈ Ω1.

Definition 1.45 (Conditional measure). Let (Ω1,F1) and (Ω2,F2) be mea-
surable spaces and π : Ω2 :→ Ω1 measurable. Use the notation

Ωx := π−1(x) := {ω ∈ Ω2 : π(ω) = x} for every x ∈ Ω1.

For a measure µ on Ω2 we say that it admits a decomposition w.r.t. π if
there exist µ1 and p such that

• µ1 is a measure on (Ω1,F1),

• p is a kernel from Ω1 to Ω2,

• p(x, .) is concentrated on Ωx for every x ∈ Ω1 – that is, p(x,Ω2 \Ωx) =
p(x, {ω ∈ Ω2 : π(ω) 6= x}) = 0,

• µ =
∫

p dµ1.

In this case we also say that p(x, .) is the conditional measure of µ under the
condition {π = x}.
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Remark 1.46. It is easy to see that µ1 has to be the push-forward of µ w.r.t.
π and that if µ admits two decompositions p1 and p2, then p1(x, .) = p2(x, .)
for µ1-almost every x. Rokhlin’s theorem ensures that a decomposition (and
thus conditional measures) exist in the cases we will be interested in.

Remark 1.47. Note that in the above definition, Ω2 doesn’t need to have
a true product structure such that Ω1 is one of the components. Indeed, in
our most important application, Ω2 will be the phase space of a Hamiltonian
system and π will be the Hamiltonian function H, so the Ωx will be the
“energy level surfaces”, which are absolutely not flat – it’s better to picture
them like the surface of a potato.

As opposed to the above notion of “conditional measure”, the word “con-
ditional probability” is used for a decomposition of the joint distribution of
two random variables, which is a measure on the product space R× R:

Definition 1.48 (Conditional probability). Let (Ω,F ,P) be a probability
space and X : Ω → Ω1, Y : Ω → Ω2 random variables. (You can think of
Ω1 = Ω2 = R.) Let µ1 := P ◦X−1 denote the distribution of X, and let p be
a probability kernel from
Omega1 to Ω2. We say that p is the conditional (probability) distribution of
Y under the condition X if the joint distribution can be decomposed in the
form

P((X, Y ) ∈ D) =

(
∫

p̂dµ1

)

(D) for every D ⊂ Ω1 × Ω2 measurable, (1)

where p̂ is a kernel from Ω1 to Ω1 × Ω2 constructed from p as

p̂(x,D) := p(x,Dx) := p(x, {y ∈ Ω2 : (x, y) ∈ D}).

Remark 1.49. This Dx is the projection to the Ω2 (the “y axis“) of the
intersection of D with the {x} × Ω2 (the “vertical line at x”), so p̂(x, .) is
concentrated on {x}×Ω2 ⊂ Ω1×Ω2. The definition (1) can be written without
introducing p̂ in the slightly more scaring form

P((X, Y ) ∈ D) =

∫

Ω1

(
∫

Ω2

1D(x, y)p(x, dy)

)

dµ1(x).

Of course, it is enough to demand this for D ⊂ Ω1 × Ω2 that are of product
from A× B, so (1) holds iff

P(X ∈ A, Y ∈ B) =

∫

A

p(x,B) dµ1(x) for ∀A ⊂ Ω1, B ⊂ Ω2 measurable.
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1.5 Entropy

Definition 1.50. Let M = {x1, x2, . . . , xn} be a finite set. For a probability
measure µ on M , the entropy of µ is

S(µ) := −
n

∑

k=1

pk log pk,

with the convention 0 log 0 := 0, where {pk} is the “discrete probability vec-
tor” defined as pk := µ({xk}). This is clearly independent of the order of
points in the set M = {xk}.

Many interesting properties of this notion were discussed. Most impor-
tantly,

1. S ∈ [0, logn],

2. S(µ) is zero iff µ is concentrated on a single point.

3. On a given set M = {x1, x2, . . . xn}, the entropy S(µ) is maximal and
equal to logn iff µ is the uniform distribution.

4. If a measure is decomposed into conditional measures – that is, there
is a (finite) index set I = {i} with a measure µ1 on it and a kernel P
from I to M such that the measures νi := P (i, .) are concentrated on
disjoint subsets of M and µ =

∫

P dµ1, then

S(µ) = S(µ1) +
∑

i∈I

piS(νi),

where pi := µ1({i}).

In particluar, if µ is a product measure µ = µ1 ⊗ µ2, then S(µ) =
S(µ1) + S(µ2).

The next definition generalizes this notion to measures on possibly non-
finite sets:

Definition 1.51. Let µ and ν be two measures on the same measurable space
(Ω,F). The relative entropy of µ with respect to ν is

S(µ|ν) :=

{

−
∫

Ω
f log f dν, if µ has density f w.r.t. ν

−∞, if µ is not absolutely continuous w.r.t. ν
.

Properties:
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1. The old notion of entropy is exactly the relative entropy w.r.t. counting
measure.

2. As opposed to the previous notion of entropy, this relative entropy can
in general be negative.

3. If ν is a finite measure with ν(Ω) = K < ∞, then S(µ|ν) ≤ logK
and the maximum logK is obtained iff µ is uniform w.r.t. ν – that is,
F ≡ 1

K
, of simply µ = 1

K
ν.

4. However, if ν(Ω) = ∞, then S(µ|ν) is not bounded and there is no
probability measure with maximal relative entropy.

5. However2, the problem of measures with maximal relative entropy un-
der some constraints (on expectations of observables) is of special in-
terest in Physics. See Homework 4.6, 5.2 and 5.3.

2 Equilibrium statistical ensembles in finite

systems

In this section we consider “finite systems”, by which we mean Hamiltonian
systems in some finite box Λ ⊂ Rd. This, however, will not mean that the
number of particles is also limited to some finite number. In fact, in the
first two cases (the microcanonical and the canonical ensemble) the particle
number will be fixed, but in the third case (the grand canonical ensemble) it
can be unbounded (although finite with probability 1).

In all three cases we describe the system “in equilibrium”, under different
conditions. The definitions will not follow in any strict sense from “first
principles” – that is, laws of motion for the underlyin Hamiltonian system
– but we will argue that it is a good and natural idea to define equilibrium
states this way.

The first key idea is contained the following definition:

Definition 2.1. A statistical ensemble is a probability measure on the phase
space of a physical (here: Hamiltonian) system. An equilibrium statistical
ensemble is a probability measure on the phase space which is invariant under
the dynamics.

It is important to understand the distinction between a “state” or “mi-
crostate“ of the Hamiltonian system, which is nothing else than a point in
the phase space, and a “state” or “macrostate“ of a “Statistical Physical
system” or just “Statistical ensemble”. This can be pictured as a huge set
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of copies of the same Hamiltonian system, being in different phase points
(“microstates”). As a mathematical abstraction, we start the have a sys-
tem in “every possible microstate”, with some weight associated to it. The
mathematical notion is exactly the notion of a @emphmeasure on the phase
space: it reflects the uncertaintiy in our knowledge of the microstate, so that
we can not say in which microstate our system is in – instead, we can only
talk about probabilities of the microstate having this or that property.

The notion of invariance of a measure will be discussed in detail in Sec-
tion 5.

Consider a Hamiltonian system of N particles in a finite box Λ ⊂ Rd with
phase space Ω and Hamiltonian function H : Ω → R. Maybe surprisingly
for the first look, we will not be very interested in describing the microscopic
dynamics – we will only make use of a single feature of Hamiltonian systems:
the existence of a natural invariant measure, called Liouville measure.

Definition 2.2. Consider a Hamiltoninan system with n degrees of freedom,
phase space Ω and canonical coordinates q1, . . . , qn with associated momenta
p1, . . . pn. The Liouville measure ν of this system is the measure on Ω which
is locally the 2n-dimensional Lebesgue measure: dν = dnq dnp.

Remark 2.3. Physicists often call this measure “phase space volume”. The
reason for the tricky definition is that in general, the phase space of a Hamil-
tonian system can be some (Riemannian) manifold, so speaking about Le-
besgue measure doesn’t really make sense. In the simplest case of point par-
ticles where the qi are actually Cartesian coordinates of particle positions
and the pi are velocities (times mass), Ω is just a piece of R2n and the Li-
ouville measure is exactly the Lebesgue measure. Since this is not a course
on Hamiltonian mechanics, we will only consider this simplest case in our
explicit calculations.

Theorem 2.4. The Liouville measure is invariant under the Hamiltonian
dynamics.

Physicists often furmulate this theorem as “Phase space volume is invari-
ant”. The proof is an easy calculation, but we don’t go into it now – in parti-
cluar the precise meaning of “invariance of a measure”, or the “time evolution
of a measure” will be discussed in Section 5. We can do without those now,
because we are only building equilibrium Statistical Physics at the moment:
we are not interested in the “dynamics” of the statistical physical system,
which would be the time-dependence of the macrostates=ensembles=mea-
sures. The only thing we care about is to make sure that those measures,
which we will call equilibrium ensembles, don’t evolve anywhere, but are
time-invariant.
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2.1 Identical particles and factorization of the phase

space

To get physically correct results, we make the following

Ansatz 2.5 (Identification of identical particles). Identical particles (parti-
cles of the “same kind”) are indistinguishable. For that reason, we consider
the phase space of the statistical physical system to be the Hamiltonian phase
space factorized by the eqivalence relation ∼, where ω1 ∼ ω2 for ω1, ω2 ∈ Ω
(the states ω1 and ω2 are equivalent) if ω1 can be transformed into ω2 by
renumbering identical particles:

Ω := ΩHam/ ∼ .

This ansatz, which does not follow in any way from our (classical me-
chanical) microscopic descripiton of the physical systems (i.e. Newton’s law),
should be considered as a physical law based on experience, which has to be
included as an axiom in the mathematical discussion. It has an explanation
in quantum mechanics, but we don’t go into that.

The reader may be worried that an explicit description of the dynamics
(writing the equations of motion) on this factorized phase space could be
difficult, but we will never need to do that. In fact, the only things we use
about Hamiltonian dynamics are that

• it leaves the Liouville measure invariant, and

• energy is preserved.

The only practical consequence of the above ansatz is the following

Definition 2.6. Let π denote the canonical projection from ΩHam to Ω :=
ΩHam/ ∼. If a system contains N identical particles, the “Liouville measure”
of a set A ∈ Ω := ΩHam/ ∼ is

ν(A) :=
1

N !
ν̃(π−1(A))

where ν̃ denotes the Liouville measure on ΩHam (before factorization).

This definition results in the utmost important appearence of the factor 1
N !

in the formulas involving the microcanonical, canonical and grand canonical
measures we will introduce. The consequences were discussed in detail in
class.
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2.2 Microcanonical ensemble

It is obvious that the Liouville measure is not the only invariant measure, and
not even the only interesting invariant measure for a Hamiltonian system. In
fact, since Hamiltonian dynamics preserves the energy, H is an invariant
function, and consequently the level sets of H are invariant sets:

{H = E} := ΩΛ
N,E := {ω ∈ ΩΛ

N} : H(ω) = E

can never be left by any phase point which was once in it. Similarly, set of
the form Emin ≤ H ≤ Emax are invariant, and the restriction of the Liouville
measure to such sets is also invariant.

In the definition of the microcanonical ensemble we would like to look at
such a “restriction” to a single level set {H = E}, which however (usually)
has zero Liouville measure, so the sensible notion is that of conditioning in
Definition 1.45:

Definition 2.7 (Microcanonical ensemble). Consider a Hamiltonian system
of N particles in a finite box Λ ⊂ Rd with phase space ΩΛ

N (with indis-
tinguishability of identical particles (Ansatz 2.5) in mind) and Hamiltonian
function H : ΩΛ

N → R. For possible values E of H set {H = E} := ΩΛ
N,E :=

{ω ∈ ΩΛ
N : H(ω) = E}. If the conditional measure of the Liouville measure,

under the condition {H = E} exists (that is, the Liouville measure admits
a decomposition w.r.t. H) and the conditional measure is finite, denote it
by νΛ,N,E and call it the (microcanonical) reference measure. In this case
we say that the microcanonical ensemble µmicr = µΛ,N,E exists, and it is the
probability measure on ΩΛ

N,E which is uniform w.r.t. νΛ,N,E.

Of course µmicr being the “probability measure which is uniform w.r.t.
νΛ,N,E” is just a tricky way of saying that µmicr is the normalized version of
νΛ,N,E:

µΛ,N,E =
1

Zmicr(Λ, N, E)
νΛ,N,E,

where

Definition 2.8 (Microcanonical partition function).

Zmicr(Λ, N, E) := νΛ,N,E(Ω
Λ
N,E) = νΛ,N,E(Ω

Λ
N)

is the microcanonical partition function.

Definition 2.9 (Microcanonical entropy). The microcanonical entropy is
defined as the relative entropy

Smicr(Λ, N, E) := H(µΛ,N,E|νΛ,N,E).
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It is immediate from the definition that

Smicr(Λ, N, E) = logZmicr(Λ, N, E).

Acually, in Physics Smicr(Λ, N, E) = k logZmicr(Λ, N, E) where k is Boltza-
mann’s constant, but we will omit k (which is equivalent to choosing units
so that k = 1).

Remark 2.10. The definition of the microcanonical enseble is justified by
the belief that in true physical systems the microcanonical measure cannot
be further decomposed into invariant measures – in a way, it is the only
physically interesting invariant measure on the energy level set {H = E},
at least with good approximation when the system is big (consisting of many
particles). This is roughly the content of the Boltzmann ergodic hypothesis,
which belongs to Section 5.

Having introduced the microcanonical entropy, we can define the micro-
canonical temperature T , pressure P and chemical potential µ. For this, we
assume that Zmicr depends on Λ only through the volume V of Λ with good
approximation. In this case we set

1

T (V,N,E)
:= β(T,N,E) :=

∂

∂E
S(V,N,E) (2)

P (V,N,E)

T (V,N,E)
:=

∂

∂V
S(V,N,E) (3)

−
µ(V,N,E)

T (V,N,E)
:=

∂

∂N
S(V,N,E). (4)

(The differentiation w.r.t. N is usually performed formally, but we can
also mean the discrete derivative, so ∂

∂N
S(V,N,E) := S(V,N + 1, E) −

S(V,N,E).)
However, in the present context of the microcanonical ensemble, these

notions have no probabilistic interpretation, since we are differentiating w.r.t.
parameters whose different choices result in completely different measures on
different spaces, and the normalizing factor Z comes from the pretty arbitrary
choice of the reference measure. The probabilistic interpretations (at least
for the temperature and the chemical potential) will come from the canonical
and the grand canonical ensembles.

To make the calculation of the of the microcanonical measure and parti-
tion functiion easier, we mention without proof the following (easy) theorem:

Theorem 2.11 (Calcualtion with the microcanonical measure). Suppose that
H is differentiable and ∇H 6= 0 on H = E. Then {H = E} is a surface in
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the Hamiltoninan phase space and νΛ,N,E is absolutely continuous w.r.t. the
surface measure σE, with density 1

||∇H||
, where ||.|| denotes Euclidean norm.

Consequently, Zmicr(Λ, N, E) =
∫

1
||∇H||

dσE .

Note that we consider the Hamiltonian phase space with the identification
of indistinguishable particles, so the surface measure σE contains the factor
1
N !

is we have N identical particles. For an application, see Homework 4.7.

2.3 Canonical ensemble

Similarly to the microcanonical ensemble, the canonical ensemble we are
about to define is a measure on the Hamiltonian phase space. However, as
opposed to the microcanonical setting, we will not fix the energy, but allow
it to be a random variable. This models a system in a heat bath, with which
it can exchange energy (unlike the microcanonical ensemble, which models a
closed system).

The density w.r.t. Liouville measure will only depend on the energy:

Definition 2.12 (Canonical ensemble). Consider a Hamiltonian system of N
particles in a finite box Λ ⊂ Rd with phase space ΩΛ

N (with indistinguishability
of identical particles (Ansatz 2.5) in mind) and Hamiltonian function H :
ΩΛ

N → R. Let β ∈ R+. The canonical ensemble with inverse temperature β
is the probability measure µcan = µΛ,N,β on ΩΛ

N which is absolutely continuous
w.r.t. the Liouville measure νΛ,N and has the density

dµΛ,N,β

dνΛ,N
(ω) :=

1

Zcan(Λ, N, β)
e−βH(ω)

(if it exists).

Definition 2.13 (Canonical partition function). The normalizing factor

Zcan(Λ, N, β) :=

∫

ΩΛ

N

e−βH dνΛ,N

is the microcanonical partition function.

Clearly, µcan exists exactly if Zcan < ∞.
The fact that the density

dµΛ,N,β

dνΛ,N
depends on H only, ensures that we

again have an invariant measure under the Hamiltonian dynamics (mean-
ing: not taking into account the effect of the environment). Actually, it’s
a composition of the microcanonical measures on the different energy sur-
faces. Precisely, if we condition the canonical measure on the {H = E}
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surfaces (and normalize), we get exactly the microcanonical measures back.
Of course, such a composition of the microcanonical measures colud be done
in many ways – in other words, one could choose many different densities
(w.r.t. Liouville measure) that depend on the energy only. The definition
of the canonical measure specifies one of these many possible choices. The
reason for the choice was discussed in detail in the lectures by considering
some trivial model of the heat bath.

Definition 2.14 (Canonical energy). The canonical energy is defined as the
expectation of the Hamiltonian w.r.t. the canonical measure:

E = Ecan(Λ, N, β) :=

∫

H(ω) dµΛ,N,β(ω).

An easy calculation gives

Theorem 2.15.

Ecan = −
∂

∂β
logZcan(Λ, N, β).

Definition 2.16 (Canonical entropy). The canonical entropy is defined as
the relative entropy

Scan(Λ, N, β) := H(µΛ,N,β|νΛ,N).

Theorem 2.17.

Scan = βEcan + logZcan

meaning

Scan(Λ, N, β) = βEcan(Λ, N, β) + logZcan(Λ, N, β).

Proof. Homework 5.2.

Having introduced the canonical partition function, we can define the
temperature T , free energy A, the canonical pressure P and chemical poten-
tial µ. As before, we assume that Z depends on Λ only through the volume
V of Λ. In this case we set

T :=
1

β

−βA(V,N, β) := logZ(V,N, β)

−P (V,N, β) :=
∂

∂V
logZ(V,N, β)

−µ(V,N, β) :=
∂

∂N
logZ(V,N, β).

Note that – as opposed to the microcanonical setting, the temperature is
a parameter and the energy has a clear probabilistic interpretation.
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2.4 Grand canonical ensemble

Assume now that our system can exchange not only energy, but also particle
with its environment – so it is not only in a “heat bath”, but also in a
“particle bath”. This models e.g. a volume in space which is only defined
by the observing scientist (and not surrounded by walls). Now not only
the energy, but also the number of particles will be a random variable. We
reach this by manually building up a “grand canonical phase space” as a
disjoint union of the Hamiltonian (canonical) phase spaces for the different N .
The Hamiltonian dynamics will of course never change the particle number,
so the construction may seem unnatural, but remember that the canonical
phase space is also the disjoint union of the microcanonical phase spaces,
and the dynamics doesn’t change the energy either. If fact, in both cases our
model “ignores” the effect of the environment – more preciely, it assumes
that the effect of the environment can be seen as setting the parameters of
the ensemble. In the canonical ensemble we only had one parameter, the
temperature, which turned out to fix the expectation of the energy. Now we
will have two parameters, the temperature and the chamical potantial, which
will fix the expectation of both the energy and the particle number.

Definition 2.18 (Grand canonical ensemble). Consider, for every n =
0, 1, 2, . . . a Hamiltonian system of n particles in a finite box Λ ⊂ Rd with
phase space ΩΛ

n (with indistinguishability of identical particles (Ansatz 2.5)
in mind) and Hamiltonian function Hn : ΩΛ

n → R. (ΩΛ
n consists of a single

point ∅ and H0(∅) := 0.) The grand canonical phase space is the disjoint
union

ΩΛ :=
⋃

n≥0

ΩΛ
n := {(n, ωn) : n ∈ N, ωn ∈ ΩΛ

n},

and the grand canonical reference measure on ΩΛ is νΛ :=
∑

n≥0 νΛ,n meaning

νΛ(A) :=
∑

n≥0

νΛ,n({ωn ∈ ΩΛ
n : (n, ωn) ∈ A}),

where νΛ,n is the Liouville measure on ΩΛ
n .

On ΩΛ define the observables N (particle number) and H (Hamiltonian)
as

N((n, ωn)) := n , H((n, ωn)) := Hn(ωn).

Let β ∈ R+ and β ′ ∈ R. The grand canonical ensemble with parameters β, β ′

is the probability measure µgr = µΛ,β,β′ on ΩΛ which is absolutely continuous
w.r.t. reference measure νΛ and has the density

dµΛ,β,β′

dνΛ
(ω) :=

1

Zgr(Λ, β, β ′)
e−βH(ω)−β′N(ω)
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(if it exists).

Definition 2.19 (Grand canonical partition function). The normalizing fac-
tor

Zgr(Λ, β, β
′) :=

∫

ΩΛ

e−βH−β′N dνΛ

is the grand canonical partition function.

Clearly, µgr exists exactly if Zgr < ∞.
Using the definition of νΛ, N and H we get that

Zgr(Λ, β, β
′) =

∑

n≥0

e−β′n

∫

ΩΛ
n

e−βH dνΛ,n =
∑

n≥0

e−β′nZcan(Λ, n, β).

Let E denote the expectation of H and N̄ denote the expectation of N :

E = Egr(Λ, β, β
′) :=

∫

H(ω) dµΛ,β,β′(ω),

N̄ = N̄gr(Λ, β, β
′) :=

∫

N(ω) dµΛ,β,β′(ω).

An easy calculation gives

Theorem 2.20.

Egr = −
∂

∂β
logZgr(Λ, β, β

′),

N̄gr = −
∂

∂β ′
logZgr(Λ, β, β

′).

Definition 2.21 (Grand canonical entropy). The grand canonical entropy is
defined as the relative entropy

Sgr(Λ, β, β
′) := H(µΛ,β,β′|νΛ).

Theorem 2.22.

Sgr = βEgr + β ′N̄gr + logZgr

meaning

Sgr(Λ, N, β) = βEgr(Λ, β, β
′) + β ′N̄gr(Λ, β, β

′) + logZgr(Λ, β, β
′).

Proof. Homework 5.3.
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Having introduced the grand canonical partition function, we can define
the temperature T , chemical potential µ, grand free energy G, the grand
canonical pressure P . As before, we assume that Z depends on Λ only
through the volume V of Λ. In this case we set

T :=
1

β

β ′ := −βµ

G(V, β, β ′) := −
1

β
logZ(V, β, β ′)

P (V, β, β ′) := −
1

V
G(V, β, β ′) =

1

βV
logZ(V, β, β ′)

Note that this time both the temperature and the chemical potential are
parameters, and the energy and the average particle number have probabilis-
tic interpretations.

3 Thermodynamic limit

3.1 Convergence of thermodynamic functions

In the thermodynamic limit, meaning V → ∞, we hope to see that the
thermodynamic quantites scale with V as expected from their physical inter-
pretations. In particular

• In the canonical setting, when fixing β and choosing the parameters V
and N so that the density convegres (meaning N(V )

V
→ ρ as V → ∞) we

hope to see that the energy and also the free energy scale linearly with
V which means exactly that 1

V
logZ convegres to a (finite nonzero)

limit.

• In the grand canonical setting, when fixing β and β ′, we hope to see
that the grand free energy scales linearly with V which means exactly
that 1

V
logZ (and also the pressure) converges to a (finite nonzero)

limit.

Remark 3.1. The existence of these limits in turn imply the proper scaling of
the expectations (energy in both cases and also the average particle number
in the grand canonical case) unless there is some issue with exchangeabil-
ity of the limit and the differentiation. Investigating such issues (i.e. non-
differentiability of the limiting quantities) is the main interest in equilibrium
statistical physics, being related to the presence of a phase transition in the
model.
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The above thermodynamic limits don’t always exist. To study this is-
sue, we restrict to the simplest possible Hamiltonian system: identical point
particles with mass m interacting only via a spherically symmetric pair in-
teraction potential. In particular, we fix a domain Λ ⊂ Rd, the Hamiltonian
phase space to be

ΩΛ
n = Λn ×

(

Rd
)n

and the Hamiltonian to be

Hn(q1, . . . , qn, p1, . . . , pn) :=
n

∑

i=1

p2i
2m

+
1

2

∑

i 6=j

Φ(|qi − qj |)

where Φ : R+ → R is the pair interaction potential.
If we consider the canonical ensemble for this Hamiltonian, it is clear that

the positions and the velocities are independent (random variables), and that
the velocities can be described explicitly – i.e. they are just the same as in
the free gas with Φ ≡ 0 discussed in Homework 5.4. This means that it’s
enough to understand the case when we ignore the velocities completely by
rather setting the phase space to be

ΩΛ
n = Λn×

and the Hamiltonian to be

Hn(q1, . . . , qn, p1, . . . , pn) :=
1

2

∑

i 6=j

Φ(|qi − qj|).

This model is called the configuration gas. Its relation to the original model
on the level of the partition function is discussed in Homework 10.2.

The definitions and theorem below give a sufficient condition for the ex-
istence of the limiting free energy per particle in the canonical setting.

Definition 3.2 (tempered pair interaction). The pair interaction potential
Φ : R+ → R is tempered if there is a real R < ∞ for which Φ(r) ≤ 0 for all
r > R.

Definition 3.3 (stable pair interaction). The pair interaction potential Φ :
R+ → R is stable (in d dimensions) if there is a real B < ∞ for which

Φ(q) :=
∑

q≤i<j≤N

Φ(|qi − qj |) ≥ −BN

holds for every N ∈ N and every q ∈
(

Rd
)N

.
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Note that the definition is very implicit and that the same B has to work
for every N .

Theorem 3.4 (Fisher and Ruelle, 1963). Consider the configuration gas in
Λ ⊂ Rd with the pair interaction potential Φ, in the canonical ensemble.
Suppose that Φ is tempered and stable. Then in the thermodynamic limit
Λ ր Rd and N

V
→ ρ, the free energy density converges to a (non-constant)

function a(ρ, β) which is convex (and continuous) in ρ.

Note that to be precise, one would need to set some conditions on how
and in what sense Λ ր Rd, ensuring not only that every point is sooner or
later included, but also that the shape of Λ is “nice” in the sense that points
close to the boundray become less and less important as Λ grows. As an
example, a sequance of bowes where the ratios of sidelengths are bounded
away form 0 would do. On the lecture the proof was presented for a special
sequence of squares.

3.2 Gibbs measures

Another approach to thermodynamic limits is not to consider limiting be-
haviour of the partition function, but the limiting behaviour of the measure
itself. This is highly non-trivial, since

• First of all, simply setting Λ = Rd clearly doesn’t make sense, because
in the interesting cases the particle number would be infinite and the
Hamiltoninan also infinite or minus infinity.

• If we consider the Hamiltonian system in a big box λ2, but only look
at what we see in a smaller box Λ1 ⊂ Λ2, we don’t get the “system
with Λ1” back – e.g. neither the particle number, nor the energy is
preserved by the dynamics. What we could hope is that the grand
canonical distribution of the big system, when viewed only in Λ1, gives
the grand canonical distribution of the system with Λ1 back. This
is indeed the case, and this “compatibility” property will be used to
define “a measure with Λ = Rd” called a Gibbs measure. However, it is
important to understand what we exactly mean by “the grand canonical
distribution of the big system, when viewed only in Λ1”. This cannot
simply be a marginal of the distribution, since then we would ignore
the interaction between the susbystems in and outside Λ1, which are or
course there in a Hamiltonian systems, and are responsible for all the
interesting statistical physical phenomena.
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For that reason, we have to start by introducing a conditional grand
canonical distribution on a finite Λ,taking also the environment into account.
This will be defined just like the good old grand canonical distribution, but
using a conditional Hamiltonian, which also takes into account the interaction
with the environment.

We restrict to the case of pair intercations. The conditional Hamiltonian
will contain the contribution to the total energy by the particles inside λ as
well as pairs that consist of a particle inside and one outside. The positions
of the particles outside are considered as parameters, and the state of those
inside are the variables of or function.

Since the environment typically contains infinitely many particles, we
have to define the phase space Ω for Λ = Rd, which is the generalization of
our earlier grand canonical phase space ωΛ. This is not difficult: instead of
a list of particles (meaning an element of

(

ΩΛ
1

)n
=

(

Λ× Rd
)n
) we consider a

set of particles meaning a subset of the one-particle phase space ΩΛ
1 = Λ×Rd.

We only have to make sure that the number of particles in every finite box
is finite:

Definition 3.5 (locally finite configuration). ω ⊂ Rd ×Rd is called a locally
finite configuration if ω ∩ (Λ× Rd) is finite for every finite box Λ ⊂ Rd.

(Note that this is not exactly the notion of a locally finite subset of R2d,
because the box is given in terms of the positions only (and not the velocities)
- e.g. infinitely many particles with the same position but different velocities,
are, for us, not allowed.)

Definition 3.6 (infinite volume phase space).

Ω :=
{

ω : ω ⊂ Rd × Rd is a locally finite configuration
}

.

For an ω ∈ Ω and a finite box Λ ⊂ Rd, the set of particles in Λ, which
is ω ∩ Λ can be naturally identified with an element of the grand canonical
phase space ΩΛ – with factorization due to non-distinguishability of particles
automatically taken care of. Thus Ω can be equipped with a natural σ-
algerba by simply requiring that sets of the form {ω ∈ Ω : ω ∩ Λ ∈ A} be
measurable whenever A ⊂ ΩΛ is measurable. We set F to be the σ-algebra
generated by such events.

4 Ising model

5 Basics of ergodic theory

31


